《圓錐體積》數(shù)學(xué)說課稿
一、說教材
(一)、圓錐是小學(xué)幾何初步知識的最后一個教學(xué)單元中的內(nèi)容,是學(xué)生在學(xué)習(xí)了平面圖形和長方體、正方體、圓柱體這三種立體圖形的基礎(chǔ)上進(jìn)行研究的含有曲面圍成的最基本的立體圖形。由研究長方體、正方體和圓柱體的體積擴(kuò)展到研究圓錐的體積,這是發(fā)展學(xué)生空間觀念的內(nèi)容。
內(nèi)容包括理解圓錐體積的計算公式和圓錐體積計算公式的具體運用。學(xué)生掌握這些內(nèi)容,不僅有利于全面掌握長方體、正方體、圓柱體和圓錐之間的本質(zhì)聯(lián)系、提高幾何體知識掌握水平,為學(xué)習(xí)初中幾何打下基礎(chǔ),同時提高了運用所學(xué)的數(shù)學(xué)知識和方法解決一些簡單實際問題的能力。
(二)、教學(xué)目標(biāo)
1、通過實驗,使學(xué)生理解和掌握圓錐體積公式,能運用公式正確地計算圓錐的體積
2、培養(yǎng)學(xué)生的觀察、操作能力和初步的空間觀念,培養(yǎng)學(xué)生應(yīng)用所學(xué)知識解決實際問題的能力。
3、滲透事物間相互聯(lián)系的辯證唯物主義觀點的啟蒙教育。
(三)、教學(xué)重點、難點和關(guān)鍵
重點:理解和掌握圓錐體積的計算公式。
難點:理解圓柱和圓錐等底等高時體積間的倍數(shù)關(guān)系。
關(guān)鍵:組織學(xué)生動手做實驗,引導(dǎo)學(xué)生動腦、動手推導(dǎo)出圓錐體積的計算公式。
二、說教法
以談話法、實驗法為主,討論法、讀書指導(dǎo)法、練習(xí)法為輔,實現(xiàn)教學(xué)目標(biāo)。教學(xué)中,既充分發(fā)揮學(xué)生的主體作用,調(diào)動學(xué)生積極主動地參與教學(xué)的全過程。
小學(xué)階段學(xué)習(xí)的幾何知識是直觀幾何。小學(xué)生學(xué)習(xí)幾何知識不是嚴(yán)格的論證,而主要是通過觀察、操作。根據(jù)課題的特點,主要采取讓學(xué)生做實驗的方法主動獲取知識。主要引導(dǎo)學(xué)生做了三個實驗。一是比較圓柱和圓錐是等底等高,強(qiáng)調(diào)圓柱和圓錐是等底等高這個必要條件;二是做在圓錐中倒的實驗,使學(xué)生理解等底等高的圓柱和圓錐存在著一定的倍數(shù)關(guān)系;三是做在小圓錐里裝滿沙土往大圓柱中倒的實驗,再次強(qiáng)調(diào)只有等底等高的圓柱和圓錐存在著的倍數(shù)關(guān)系,搞清了圓錐體積公式的由來,從而理解和掌握了圓錐體積公式,培養(yǎng)了學(xué)生的觀察、操作能力和初步的空間觀念,克服了幾何形體計算公式教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解,重知識、輕能力的弊病。突出了教學(xué)重點。
三、說學(xué)法
1、教學(xué)中充分發(fā)揮學(xué)生的主體作用。學(xué)生能做的盡量讓學(xué)生自己做,學(xué)生能想的盡量讓學(xué)生自己想,學(xué)生不能想的,教師啟發(fā)、引導(dǎo)學(xué)生想,學(xué)生能說的盡量讓學(xué)生自己說。學(xué)生的整個學(xué)習(xí)過程圍繞著教師創(chuàng)設(shè)的問題情境之中。
2、學(xué)生學(xué)習(xí)圓錐體積公式的推導(dǎo)時,通過自己操作實驗、觀察比較、討論小結(jié)、推導(dǎo)出圓錐的計算公式,從而初步學(xué)會運用實驗的方法探索新知識。
四、說教學(xué)程序
(一)、導(dǎo)入課題
1、讓學(xué)生自己找出自己桌子上的圓柱體,指出它的底面和高。
回答:(1)已知底面積和高怎樣求它的體積?(2)已知底面半徑、直徑或周長又怎樣求它的體積?
這樣,學(xué)生可以利用遷移規(guī)律,從求圓柱體積的思路、方法中得到啟示,領(lǐng)悟出求圓錐體積的方法。
2、讓學(xué)生自己找出圓錐體,指出它的底面和高,同時引出課題:圓錐的體積
(二)講授新知
1、(1)引入新課
引導(dǎo)學(xué)生回憶圓柱的體積計算公式是怎樣推導(dǎo)的?想:圓錐的體積也能轉(zhuǎn)化成學(xué)過的體積來計算嗎?轉(zhuǎn)化成哪種形體最合適?
(2)教學(xué)圓錐體積公式
首先,學(xué)生帶著如下三個問題自學(xué)課文,(電腦出示):(1)用什么方法可以得到計算圓錐體積的公式?(2)圓柱和圓錐等底等高是什么意思?(3)得出了什么結(jié)論?圓錐體積的計算公式是什么?
其次,學(xué)生操作實驗,先讓學(xué)生比較圓柱和圓錐是等底等高。再讓學(xué)生做在圓錐中裝滿沙土往等底等高的圓柱中倒和在圓柱中裝滿沙土往等底等高的圓錐中倒的實驗,得出倒三次正好倒?jié)M。使學(xué)生理解等底等高的圓柱和圓錐,圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐的3倍。
第三、小組討論,全班交流,歸納,推導(dǎo)出圓錐體積的計算公式:V= 1/3Sh。
第四、讓學(xué)生做在小圓錐里裝滿沙土往大圓柱中倒的實驗,得出倒三次不能倒?jié)M。再次強(qiáng)調(diào),只有等底等高的圓柱和圓錐才存在著一定的倍數(shù)關(guān)系。
第五、師生小結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。
練習(xí):
填空:(口答)(電腦出示)等底等高的圓柱和圓錐,圓錐的體積是15立方厘米,圓柱的體積是( )立方厘米,如果圓柱的體積是a立方厘米,圓錐的體積是( )立方厘米。
2、教學(xué)應(yīng)用體積公式計算體積(電腦出示題目)
、倩揪毩(xí)。一個圓錐的底面積是25平方分米,高是9分米,它的'體積是多少?(學(xué)生獨立做在練習(xí)本上,教師行間巡視、指導(dǎo),做完后集體訂正)。
、谧兪骄毩(xí)。只列式不計算。將上題中的已知條件:“底面積是25平方分米”,依次改為“半徑是3分米”、“直徑是6分米”、“周長是12.56厘米”引導(dǎo)學(xué)生想:要求體積,先要求什么?
、坌〗Y(jié):要求圓錐的體積,不論已知條件如何改變,都必須先求出底面積。求圓錐的體積,不但不能忘記乘以1/3,還要注意單位統(tǒng)一。
3、 教學(xué)例3(出示例3)
例3:工地上有一些沙子,堆起來近似于一個圓錐,測得底面直徑是4米,高是1.2米。這堆沙子大約有多少立方米?(得數(shù)保留兩位小數(shù)。)
學(xué)生讀題、想:要求這堆沙子大約有多少立方米,必須先求什么?(先分組討論,再嘗試練習(xí),個別板演,然后集體評講。)
通過這道練習(xí),培養(yǎng)學(xué)生解決實際問題的能力,了解數(shù)學(xué)與生活的緊密聯(lián)系。
4 、操作練習(xí)。
讓學(xué)生把實驗用的沙子堆成圓錐形沙堆,合作測量計算出它的體積,這道題就地取材,給了學(xué)生一個運用所學(xué)知識解決實際問題的機(jī)會,讓他們動手動腦,提高了學(xué)習(xí)數(shù)學(xué)的興趣。
(三)、鞏固應(yīng)用
1、做P27-28練習(xí)九的第3、4、7、8題,(學(xué)生練習(xí),教師巡視,個別輔導(dǎo),特別注意對學(xué)習(xí)有困難的學(xué)生的輔導(dǎo)。)
2、思考題:一個長15厘米,寬6厘米,高4厘米的長方體木料,用它制成一個最大的圓錐體,這個圓錐體的體積是多少?(此題給學(xué)有余力的學(xué)生練習(xí))。
(四)全課總結(jié),課外延伸。
讓學(xué)生說說這節(jié)課的收獲,還有什么不懂得的問題?并在課后從生活中找一個圓錐形物體,想辦法計算出它的體積。這樣結(jié)尾,激發(fā)了學(xué)生到生活中繼續(xù)探究數(shù)學(xué)問題的興趣。
總之,本節(jié)課教學(xué),學(xué)生變被動學(xué)習(xí)為主動獲取,掌握了學(xué)習(xí)知識的方法,真正體現(xiàn)了陶行之先生所說的:“教正是為了不教”的教學(xué)思想.
【《圓錐體積》數(shù)學(xué)說課稿】相關(guān)文章:
小學(xué)數(shù)學(xué)《圓錐的體積》說課稿05-25
《圓錐的體積》的說課稿12-20
圓錐的體積說課稿02-25
《圓錐的體積》說課稿02-18
圓錐的體積說課稿11-04
圓錐的體積的說課稿06-30
《圓錐的體積》的說課稿03-29
圓錐的體積說課稿01-17
圓錐的體積說課稿范文03-15
《圓錐的體積》說課稿范文06-05