1. <rp id="zsypk"></rp>

      2. 高二數(shù)學(xué)三角與二項(xiàng)式系數(shù)的性質(zhì)的說課稿

        時(shí)間:2021-06-15 13:19:11 說課稿 我要投稿

        高二數(shù)學(xué)三角與二項(xiàng)式系數(shù)的性質(zhì)的說課稿

          一、教學(xué)設(shè)計(jì)

        高二數(shù)學(xué)三角與二項(xiàng)式系數(shù)的性質(zhì)的說課稿

          ——人教A版數(shù)學(xué)選修2-3第1章第3節(jié)第2課時(shí)

          一、教材背景分析

          1.教材的地位和作用

          《“楊輝三角”與二項(xiàng)式系數(shù)的性質(zhì)》是全日制普通高級(jí)中學(xué)教科書人教A版選修2-3第1章第3節(jié)第2課時(shí). 教科書將二項(xiàng)式系數(shù)性質(zhì)的討論與“楊輝三角”結(jié)合起來,是因?yàn)椤皸钶x三角”蘊(yùn)含了豐富的內(nèi)容,由它可以直觀看出二項(xiàng)式系數(shù)的性質(zhì),“楊輝三角”是我國古代數(shù)學(xué)重要成就之一,顯示了我國古代人民的卓越智慧和才能,應(yīng)抓住這一題材,對(duì)學(xué)生進(jìn)行愛國主義教育,激勵(lì)學(xué)生的民族自豪感.

          本節(jié)內(nèi)容以前面學(xué)習(xí)的二項(xiàng)式定理為基礎(chǔ),由于二項(xiàng)式系數(shù)組成的數(shù)列就是一個(gè)離散函數(shù),引導(dǎo)學(xué)生從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì),便于建立知識(shí)的前后聯(lián)系,使學(xué)生體會(huì)用函數(shù)知識(shí)研究問題的方法,可以畫出它的圖象,利用幾何直觀、數(shù)形結(jié)合、特殊到一般的數(shù)學(xué)思想方法進(jìn)行思考,這對(duì)發(fā)現(xiàn)規(guī)律,形成證明思路等都有好處. 這一過程不僅有利于培養(yǎng)學(xué)生的思維能力、理性精神和實(shí)踐能力,也有利于學(xué)生理解本節(jié)課的核心數(shù)學(xué)知識(shí),發(fā)展其數(shù)學(xué)應(yīng)用意識(shí).

          研究二項(xiàng)式系數(shù)這組特定的組合數(shù)的性質(zhì),對(duì)鞏固二項(xiàng)式定理,建立相關(guān)知識(shí)之間的聯(lián)系,進(jìn)一步認(rèn)識(shí)組合數(shù)、進(jìn)行組合數(shù)的計(jì)算和變形都有重要的作用,對(duì)后續(xù)學(xué)習(xí)微分方程等也具有重要地位.

          2.學(xué)情分析

          知識(shí)結(jié)構(gòu):學(xué)生已學(xué)習(xí)兩個(gè)計(jì)數(shù)原理和二項(xiàng)式定理,再讓學(xué)生課前探究“楊輝三角”包含的規(guī)律,結(jié)合“楊輝三角”,并從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì).

          心理特征:高二的學(xué)生已經(jīng)具備了一定的分析、探究問題的能力,恰時(shí)恰點(diǎn)的問題引導(dǎo)就能建立知識(shí)之間的相互聯(lián)系,解決相關(guān)問題.

          3.教學(xué)重點(diǎn)與難點(diǎn)

          重點(diǎn):體會(huì)用函數(shù)知識(shí)研究問題的方法,理解二項(xiàng)式系數(shù)的性質(zhì).

          難點(diǎn):結(jié)合函數(shù)圖象,理解增減性與最大值時(shí),根據(jù)n的奇偶性確定相應(yīng)的分界點(diǎn);利用賦值法證明二項(xiàng)式系數(shù)的性質(zhì).

          關(guān)鍵:函數(shù)思想的滲透.

          二、教學(xué)目標(biāo)

          1.通過課前組織學(xué)生開展“了解楊輝三角、探究與發(fā)現(xiàn)楊輝三角包含的規(guī)律”的學(xué)習(xí)活動(dòng),讓學(xué)生感受我國古代數(shù)學(xué)成就及其數(shù)學(xué)美,激發(fā)學(xué)生的民族自豪感.

          2.通過學(xué)生從函數(shù)的角度研究二項(xiàng)式系數(shù)的性質(zhì),建立知識(shí)的前后聯(lián)系,體會(huì)用函數(shù)知識(shí)研究問題的方法,培養(yǎng)學(xué)生的觀察能力和歸納推理能力.

          3.通過體驗(yàn)“發(fā)現(xiàn)規(guī)律、尋找聯(lián)系、探究證明、性質(zhì)運(yùn)用”的學(xué)習(xí)過程,使學(xué)生掌握二項(xiàng)式系數(shù)的一些性質(zhì),體會(huì)應(yīng)用數(shù)形結(jié)合、特殊到一般進(jìn)行歸納、賦值法等重要數(shù)學(xué)思想方法解決問題的“再創(chuàng)造”過程.

          4.通過恰時(shí)恰點(diǎn)的問題引入、引申,采用學(xué)生課前自主探究、課上合作探究、課下延伸探究的學(xué)習(xí)方式,培養(yǎng)學(xué)生問題意識(shí),提高學(xué)生思維能力,孕育學(xué)生創(chuàng)新精神,激發(fā)學(xué)生探索、研究我國古代數(shù)學(xué)的熱情.

          三、教法選擇和學(xué)法指導(dǎo)

          教法:問題引導(dǎo)、合作探究.

          學(xué)法:從課前探究和課上展示中感知規(guī)律,結(jié)合“楊輝三角”和函數(shù)圖象性質(zhì)領(lǐng)悟性質(zhì),在探究證明性質(zhì)中理解知識(shí),螺旋上升地學(xué)習(xí)核心數(shù)學(xué)知識(shí)和滲透重要數(shù)學(xué)思想.

          四、教學(xué)基本流程設(shè)計(jì)

          五、教學(xué)過程

          1. 展示成果話楊輝

          課前開展學(xué)習(xí)活動(dòng):了解“楊輝三角”的歷史背景、地位和作用,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律.

         。1)學(xué)生從不同的角度暢談“楊輝三角”,對(duì)它有何了解及認(rèn)識(shí).

         。2)各小組展示探究與發(fā)現(xiàn)的成果——“楊輝三角”包含的一些規(guī)律.

          【設(shè)計(jì)意圖】引導(dǎo)學(xué)生開展課外學(xué)習(xí),了解“楊輝三角”,探究與發(fā)現(xiàn)“楊輝三角”包含的規(guī)律,弘揚(yáng)我國古代數(shù)學(xué)文化;展示探究與發(fā)現(xiàn)的楊輝三角的規(guī)律,為學(xué)習(xí)二項(xiàng)式系數(shù)的性質(zhì)埋下伏筆.

          2. 感知規(guī)律悟性質(zhì)

          通過課外學(xué)習(xí),同學(xué)們觀察發(fā)現(xiàn)了楊輝三角的一些規(guī)律,并且知道楊輝三角的第 行就是 展開式的二項(xiàng)式系數(shù), 展開式的二項(xiàng)式系數(shù)具有楊輝三角同行中的規(guī)律——對(duì)稱性和增減性與最大值.

          【設(shè)計(jì)意圖】尋找二項(xiàng)式系數(shù)與楊輝三角的關(guān)系,從而讓學(xué)生理解二項(xiàng)式系數(shù)具有楊輝三角同行中的規(guī)律.

          3. 聯(lián)系舊知探新知

          【問題提出】怎樣證明 展開式的二項(xiàng)式系數(shù)具有對(duì)稱性和增減性與最大值呢?

          【問題探究】探究:(1) 展開式的二項(xiàng)式系數(shù) , 可以看成是以 為自變量的函數(shù) 嗎?它的定義域是什么?

          (2)畫出 和7時(shí)函數(shù) 的圖象,并觀察分析他們是否具有對(duì)稱性和增減性與最大值.

          (3)結(jié)合楊輝三角和所畫函數(shù)圖象說明或證明二項(xiàng)式系數(shù)的性質(zhì).

          對(duì)稱性:與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等. .

          增減性與最大值: ,所以 相對(duì)于 的增減情況由 決定.由 可知,當(dāng) 時(shí),二項(xiàng)式系數(shù)是逐漸增大的.由對(duì)稱性知它的后半部分是逐漸減小的,且在中間取得最大值.當(dāng) 的偶數(shù)時(shí),中間的`一項(xiàng)取得最大值;當(dāng) 是奇數(shù)時(shí),中間的兩項(xiàng) , 相等,且同時(shí)取得最大值.

          【設(shè)計(jì)意圖】教師引導(dǎo)學(xué)生用函數(shù)思想探究二項(xiàng)式系數(shù)的性質(zhì),學(xué)生畫圖并觀察分析圖象性質(zhì);運(yùn)用特殊到一般、數(shù)形結(jié)合的數(shù)學(xué)思想歸納二項(xiàng)式系數(shù)的性質(zhì),升華認(rèn)識(shí);通過分組討論、自主探究、合作交流,說明或證明二項(xiàng)式系數(shù)的對(duì)稱性和增減性與最大值,提高學(xué)生合作意識(shí).

          4. 合作交流議方法

          【繼續(xù)探究】問題: 展開式的各二項(xiàng)式系數(shù)的和是多少?

          探究:(1)計(jì)算 展開式的二項(xiàng)式系數(shù)的和( =1,2,3,4,5,6).

         。2)猜想 展開式的二項(xiàng)式系數(shù)的和.

         。3)怎樣證明你猜想的結(jié)論成立?

          賦值法:已知 ,

          令 ,則 .

          這就是說, 的展開式的各個(gè)二項(xiàng)式系數(shù)的和等于 .

          元集合子集的個(gè)數(shù)(兩個(gè)計(jì)數(shù)原理).

          分類計(jì)數(shù)原理:

          分步計(jì)數(shù)原理: 個(gè)2相乘,即 .

          所以 .

          【問題拓展】你能求 嗎?

          在展開式 中,令 ,

          則得 ,

          即 ,所以 ,

          在 的展開式中,奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和等于偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)的和.

          【設(shè)計(jì)意圖】通過學(xué)生歸納猜想各二項(xiàng)式系數(shù)的和,引導(dǎo)學(xué)生驗(yàn)證猜想結(jié)論是否正確;同時(shí)為了突破利用賦值法證明二項(xiàng)式系數(shù)性質(zhì)的難點(diǎn),引導(dǎo)學(xué)生從模型化的角度出發(fā),多角度的分析問題、探究問題、解決問題,將學(xué)生思維推向高潮,既加深學(xué)生對(duì)前后知識(shí)的內(nèi)在聯(lián)系的理解,又從深度和廣度上讓學(xué)生感受數(shù)學(xué)知識(shí)的串聯(lián)和呼應(yīng).

          5. 反饋升華撥思路

          練1. 的展開式中的第四項(xiàng)和第八項(xiàng)的二項(xiàng)式系數(shù)相等,則 等于 .

          練2. 的展開式中前 項(xiàng)的二項(xiàng)式系數(shù)逐漸增大,后半部分逐漸減小,二項(xiàng)式系數(shù)取得最大值的是第 項(xiàng).

          練3.已知 ,求:

         。1) ;(2) .

          【設(shè)計(jì)意圖】促進(jìn)學(xué)生進(jìn)一步掌握二項(xiàng)式系數(shù)的性質(zhì),學(xué)會(huì)用賦值法解決問題,促進(jìn)其有意識(shí)的運(yùn)用.

          6. 懸念小結(jié)再求索

          【課堂小結(jié)】 通過本節(jié)課的學(xué)習(xí),你有什么收獲和體會(huì)(從數(shù)學(xué)和生活的角度)?還有什么疑問嗎?

          【課堂延伸】今天同學(xué)們展示了一些楊輝三角的規(guī)律,但是作為我國古代數(shù)學(xué)重要成就之一的楊輝三角還有更多有趣的規(guī)律,相信大家一定有極高的熱情和嚴(yán)謹(jǐn)?shù)膽B(tài)度去探究與發(fā)現(xiàn)楊輝三角的奧妙之處.

          【課外活動(dòng)】(研究性學(xué)習(xí))

          活動(dòng)主題:楊輝三角中的奧妙.

          活動(dòng)目標(biāo):探究與發(fā)現(xiàn)楊輝三角中的更多奧妙.

          活動(dòng)方案步驟:查閱資料,收集信息;獨(dú)立思考,發(fā)現(xiàn)規(guī)律,猜想證明;合作探究,小組討論,形成初步結(jié)論;與指導(dǎo)老師及其他小組成員交流展示;撰寫研究性學(xué)習(xí)報(bào)告.

          【設(shè)計(jì)意圖】通過課堂的整理、總結(jié)與反思,使學(xué)生更好的掌握主干知識(shí),體會(huì)探究過程中滲透的數(shù)學(xué)思想方法,再次感受我國古代數(shù)學(xué)成就,激勵(lì)自己努力學(xué)習(xí).“楊輝三角”還有很多有趣的規(guī)律,讓學(xué)生帶著問題走進(jìn)課堂,帶著疑問離開教室,培養(yǎng)學(xué)生自主研修的習(xí)慣,提高學(xué)生探究問題、解決問題的能力.設(shè)計(jì)研究性學(xué)習(xí)活動(dòng),誘發(fā)學(xué)生創(chuàng)造性的想象和推理.同時(shí)教會(huì)學(xué)生如何開展研究性學(xué)習(xí).

        【高二數(shù)學(xué)三角與二項(xiàng)式系數(shù)的性質(zhì)的說課稿】相關(guān)文章:

        三角與二項(xiàng)式系數(shù)的性質(zhì)的說課稿04-11

        《二項(xiàng)式系數(shù)性質(zhì)》的教學(xué)反思07-06

        數(shù)學(xué)梯形的性質(zhì)說課稿06-20

        高三數(shù)學(xué)《二項(xiàng)式定理》說課稿03-31

        高三數(shù)學(xué)《二項(xiàng)式定理》說課稿09-08

        小學(xué)數(shù)學(xué)小數(shù)性質(zhì)的說課稿04-07

        小學(xué)數(shù)學(xué)《小數(shù)的性質(zhì)》說課稿02-11

        《小數(shù)的性質(zhì)》數(shù)學(xué)說課稿02-10

        初中數(shù)學(xué)等腰三角形性質(zhì)說課稿01-08

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>