函數(shù)單調(diào)性說課稿范文
本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識。教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明。所以小編為大家?guī)淼氖呛瘮?shù)單調(diào)性說課稿范文,希望對大家有所幫助~
一、教學(xué)內(nèi)容的分析
1.教材的地位和作用
首先,從單調(diào)性知識本身來講.學(xué)生對于函數(shù)單調(diào)性的學(xué)習(xí)共分為三個階段,第一階段是在初中學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)圖象的基礎(chǔ)上對增減性有一個初步的感性認(rèn)識;第二階段是在高一進(jìn)一步學(xué)習(xí)函數(shù)單調(diào)性的嚴(yán)格定義,從數(shù)和形兩個方面理解單調(diào)性的概念;第三階段則是在高三利用導(dǎo)數(shù)為工具研究函數(shù)的單調(diào)性.高一單調(diào)性的學(xué)習(xí),既是初中學(xué)習(xí)的延續(xù)和深化,又為高三的學(xué)習(xí)奠定基礎(chǔ).
其次,從函數(shù)角度來講. 函數(shù)的單調(diào)性是學(xué)生學(xué)習(xí)函數(shù)概念后學(xué)習(xí)的第一個函數(shù)性質(zhì),也是第一個用數(shù)學(xué)符號語言來刻畫的概念.函數(shù)的單調(diào)性與函數(shù)的奇偶性、周期性一樣,都是研究自變量變化時,函數(shù)值的變化規(guī)律;學(xué)生對于這些概念的認(rèn)識,都經(jīng)歷了直觀感受、文字描述和嚴(yán)格定義三個階段,即都從圖象觀察,以函數(shù)解析式為依據(jù),經(jīng)歷用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果的過程.因此,函數(shù)單調(diào)性的學(xué)習(xí)為進(jìn)一步學(xué)習(xí)函數(shù)的其它性質(zhì)提供了方法依據(jù).
最后,從學(xué)科角度來講.函數(shù)的單調(diào)性是學(xué)習(xí)不等式、極限、導(dǎo)數(shù)等其它數(shù)學(xué)知識的重要基礎(chǔ),是解決數(shù)學(xué)問題的常用工具,也是培養(yǎng)學(xué)生邏輯推理能力和滲透數(shù)形結(jié)合思想的重要素材.
2.教學(xué)的重點和難點
對于函數(shù)的單調(diào)性,學(xué)生的認(rèn)知困難主要在兩個方面:
首先,要求用準(zhǔn)確的數(shù)學(xué)符號語言去刻畫圖象的上升與下降,把對單調(diào)性直觀感性的認(rèn)識上升到理性的高度, 這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說比較困難.
其次,單調(diào)性的證明是學(xué)生在函數(shù)學(xué)習(xí)中首次接觸到的代數(shù)論證內(nèi)容,而學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的.
根據(jù)以上的分析和教學(xué)大綱對單調(diào)性的教學(xué)要求,本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念,判斷、證明函數(shù)的單調(diào)性;難點是引導(dǎo)學(xué)生歸納并抽象出函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.
二、教學(xué)目標(biāo)的確定
根據(jù)本課教材的特點、教學(xué)大綱對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):
1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.
2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.
3.通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣;讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過程.
三、教學(xué)方法的選擇
1.教學(xué)方法
本節(jié)課是函數(shù)單調(diào)性的起始課,根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法.教學(xué)過程中,根據(jù)教材提供的線索,安排適當(dāng)?shù)慕虒W(xué)情境,讓學(xué)生展示相應(yīng)的數(shù)學(xué)思維過程,使學(xué)生有機會經(jīng)歷數(shù)學(xué)概念抽象的各個階段,引導(dǎo)學(xué)生獨立自主地開展思維活動,深入探究,從而創(chuàng)造性地解決問題,最終形成概念,獲得方法,培養(yǎng)能力.
2.教學(xué)手段
教學(xué)中使用了多媒體投影和計算機來輔助教學(xué).目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的理解和認(rèn)識.
四、教學(xué)過程的設(shè)計
為達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程設(shè)計為四個階段:創(chuàng)設(shè)情境,引入課題;歸納探索,形成概念;掌握證法,適當(dāng)延展;歸納小結(jié),提高認(rèn)識.具體過程如下:
(一)創(chuàng)設(shè)情境,引入課題
概念的形成主要依靠對感性材料的抽象概括,只有學(xué)生對學(xué)習(xí)對象有了豐富具體經(jīng)驗以后,才能使學(xué)生對學(xué)習(xí)對象進(jìn)行主動的、充分的理解,因此在本階段的教學(xué)中,我從具體材料??——有關(guān)奧運會天氣的例子出發(fā),而不是從抽象語言入手來引入函數(shù)的單調(diào)性.使學(xué)生體會到研究函數(shù)單調(diào)性的必要性,明確本課我們要研究和學(xué)習(xí)的課題,同時激發(fā)學(xué)生的學(xué)習(xí)興趣和主動探究的精神.
在課前,我給學(xué)生布置了兩個任務(wù):
(1) 由于某種原因,2008年北京奧運會開幕式時間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因.
課上通過交流,可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開始下降,比較適宜大型國際體育賽事.
(2) 通過查閱歷史資料研究北京奧運會開幕式當(dāng)天氣溫變化情況.
課上我引導(dǎo)學(xué)生觀察2006年8月8日的氣溫變化曲線圖,引導(dǎo)學(xué)生體會在某些時段溫度升高,某些時段溫度降低.
然后,我指出生活中我們關(guān)心很多數(shù)據(jù)的變化,并讓學(xué)生舉出一些實際例子(如燃油價格等). 隨后進(jìn)一步引導(dǎo)學(xué)生歸納:所有這些數(shù)據(jù)的變化,用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變。
(二)歸納探索,形成概念
在本階段的教學(xué)中,為使學(xué)生充分感受數(shù)學(xué)概念的發(fā)生與發(fā)展過程和數(shù)形結(jié)合的數(shù)學(xué)思想,經(jīng)歷觀察、歸納、抽象的探究過程,加深對函數(shù)單調(diào)性的本質(zhì)的認(rèn)識,我設(shè)計了三個環(huán)節(jié),引導(dǎo)學(xué)生分別完成對單調(diào)性定義的三次認(rèn)識.
1.借助圖象,直觀感知
本環(huán)節(jié)的教學(xué)主要是從學(xué)生的已有認(rèn)知出發(fā),即從學(xué)生熟悉的.常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認(rèn)識.
在本環(huán)節(jié)的教學(xué)中,我主要設(shè)計了兩個問題:
問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時,函數(shù)值有什么變化規(guī)律?
在學(xué)生畫圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個圖象從左向右逐漸上升,隨x的增大而增大;第二個圖象從左向右逐漸下降,隨x的增大而減小.然后讓學(xué)生明確,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù).
而后兩個函數(shù)圖象的上升與下降要分段說明,通過討論使學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì).
對于概念教學(xué),若學(xué)生能用自己的語言來表述概念的相關(guān)屬性,則能更好的理解和掌握概念,因此我設(shè)計了問題2.
問題2:能否根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)?
教學(xué)中,我引導(dǎo)學(xué)生用自己的語言描述增函數(shù)的定義:
如果函數(shù)在某個區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù)在某個區(qū)間上隨自變量x的增大,也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù).
然后讓學(xué)生類比描述減函數(shù)的定義.至此,學(xué)生對函數(shù)單調(diào)性就有了一個直觀、描述性的認(rèn)識.
2.探究規(guī)律,理性認(rèn)識
在此環(huán)節(jié)中,我設(shè)計了兩個問題,通過對兩個問題的研究、交流、討論,將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式,使學(xué)生對單調(diào)性的認(rèn)識由感性認(rèn)識上升到理性認(rèn)識的高度,使學(xué)生完成對概念的第二次認(rèn)識.
問題1:右圖是函數(shù)的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減函數(shù)嗎?
對于問題1,學(xué)生的困難是難以確定分界點的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究,使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性,從而將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式.
問題2:如何從解析式的角度說明在上為增函數(shù)?
在前邊的鋪墊下,問題2是形成單調(diào)性概念的關(guān)鍵.在教學(xué)中,我組織學(xué)生先分組探究,然后全班交流,相互補充,并及時對學(xué)生的發(fā)言進(jìn)行反饋,評價,對普遍出現(xiàn)的問題組織學(xué)生討論,在辨析中達(dá)成共識.
對于問題2,學(xué)生錯誤的回答主要有兩種:
(1)在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為,所以在上為增函數(shù).
(2)仿(1),取很多組驗證均滿足,所以在上為增函數(shù).
對于這兩種錯誤,我鼓勵學(xué)生分別用圖形語言和文字語言進(jìn)行辨析.引導(dǎo)學(xué)生明確問題的根源是兩個自變量不可能被窮舉.在充分討論的基礎(chǔ)上,引導(dǎo)學(xué)生從給定的區(qū)間內(nèi)任意取兩個自變量,然后求差比較函數(shù)值的大小,從而得到正確的回答:
任意取,有,即,所以在為增函數(shù).
這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點:(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小.事實上,這種回答也給出了證明單調(diào)性的方法,為后續(xù)用定義證明其他函數(shù)的單調(diào)性做好鋪墊,降低難度.至此,學(xué)生對函數(shù)單調(diào)性有了理性的認(rèn)識.
3.抽象思維,形成概念
本環(huán)節(jié)在前面研究的基礎(chǔ)上,引導(dǎo)學(xué)生歸納、抽象出函數(shù)單調(diào)性的定義,使學(xué)生經(jīng)歷從特殊到一般,從具體到抽象的認(rèn)知過程,完成對概念的第三次認(rèn)識.
教學(xué)中,我引導(dǎo)學(xué)生用嚴(yán)格的數(shù)學(xué)符號語言歸納、抽象增函數(shù)的定義,并讓學(xué)生類比得到減函數(shù)的定義.然后我指導(dǎo)學(xué)生認(rèn)真閱讀教材中有關(guān)單調(diào)性的概念,對定義中關(guān)鍵的地方進(jìn)行強調(diào).
(三)掌握證法,適當(dāng)延展
本階段的教學(xué)主要是通過對例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握根據(jù)單調(diào)性定義證明函數(shù)單調(diào)性的方法,同時引導(dǎo)學(xué)生探究定義的等價形式,對證明方法做適當(dāng)延展.
(四)歸納小結(jié),提高認(rèn)識
本階段通過學(xué)習(xí)小結(jié)進(jìn)行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識、技能、方法的一般規(guī)律,深化對數(shù)學(xué)思想方法的認(rèn)識,為后續(xù)學(xué)習(xí)打好基礎(chǔ).
1.學(xué)習(xí)小結(jié)
在知識層面上,引導(dǎo)學(xué)生回顧函數(shù)單調(diào)性定義的探究過程,使學(xué)生對單調(diào)性概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,體會到數(shù)學(xué)概念形成的主要三個階段:直觀感受、文字描述和嚴(yán)格定義.
在方法層面上,首先引導(dǎo)學(xué)生回顧判斷,證明函數(shù)單調(diào)性的方法和步驟;然后引導(dǎo)學(xué)生回顧知識探究過程中用到的思想方法和思維方法,如數(shù)形結(jié)合,等價轉(zhuǎn)化,類比等,重點強調(diào)用符號語言來刻畫圖形語言,用定量分析來解釋定性結(jié)果;同時對學(xué)習(xí)過程作必要的反思,為后續(xù)的學(xué)習(xí)做好鋪墊.
2.布置作業(yè)
在布置書面作業(yè)的同時,為了尊重學(xué)生的個體差異,滿足學(xué)生多樣化的學(xué)習(xí)需要,我設(shè)計了探究作業(yè)供學(xué)有余力的同學(xué)課后完成.
(1) 證明:函數(shù)在上是增函數(shù)的充要條件是對任意的,且有.
目的是加深學(xué)生對定義的理解,而且這種方法進(jìn)一步發(fā)展同樣也可以得到導(dǎo)數(shù)法.
(2) 研究函數(shù)的單調(diào)性,并結(jié)合描點法畫出函數(shù)的草圖.
目的是使學(xué)生體會到利用函數(shù)的單調(diào)性可以簡化函數(shù)圖象的繪制過程,體會由數(shù)到形的研究方法和引入單調(diào)性定義的必要性,加深對數(shù)形結(jié)合的認(rèn)識.
以上就是我對《函數(shù)的單調(diào)性》這節(jié)課的教學(xué)設(shè)想.
各位專家、評委,本節(jié)課我在概念教學(xué)上進(jìn)行了一些嘗試.在教學(xué)過程中,我努力創(chuàng)設(shè)一個探索數(shù)學(xué)的學(xué)習(xí)環(huán)境,通過設(shè)計一系列問題,使學(xué)生在探究問題的過程中,親身經(jīng)歷數(shù)學(xué)概念的發(fā)生與發(fā)展過程,從而逐步把握概念的實質(zhì)內(nèi)涵,深入理解概念。
【函數(shù)單調(diào)性說課稿】相關(guān)文章:
函數(shù)的單調(diào)性說課稿06-11
函數(shù)單調(diào)性的說課稿03-09