高一數(shù)學(xué)集合的課后練習(xí)題
一、填空題.(每小題有且只有一個(gè)正確答案,5分×10=50分)
1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )
2 . 如果集合A={x|ax2+2x+1=0}中只有一個(gè)元素,則a的值是 ( )
A.0 B.0 或1 C.1 D.不能確定
3. 設(shè)集合A={x|1
A.{a|a ≥2} B.{a|a≤1} C.{a|a≥1}. D.{a|a≤2}.
5. 滿足{1,2,3} M {1,2,3,4,5,6}的集合M的個(gè)數(shù)是 ( )
A.8 B.7 C.6 D.5
6. 集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},則a的值是( )
A.-1 B.0 或1 C.2 D.0
7. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},則 ( )
A.I=A∪B B.I=( )∪B C.I=A∪( ) D.I=( )∪( )
8. 設(shè)集合M= ,則 ( )
A.M =N B. M N C.M N D. N
9 . 集合A={x|x=2n+1,n∈Z}, B={y|y=4k±1,k∈Z},則A與B的關(guān)系為 ( )
A.A B B.A B C.A=B D.A≠B
10.設(shè)U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},則下列結(jié)論正確的是( )
A.3 A且3 B B.3 B且3∈A C.3 A且3∈B D.3∈A且3∈B
二.填空題(5分×5=25分)
11 .某班有學(xué)生55人,其中音樂(lè)愛(ài)好者34人,體育愛(ài)好者43人,還有4人既不愛(ài)好體育也不愛(ài)好音樂(lè),則班級(jí)中即愛(ài)好體育又愛(ài)好音樂(lè)的有 人.
12. 設(shè)集合U={(x,y)|y=3x-1},A={(x,y)| =3},則 A= .
13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},則M∪N=_ __.
14. 集合M={a| ∈N,且a∈Z},用列舉法表示集合M=_
15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,則m的值為
三.解答題.10+10+10=30
16. 設(shè)集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的`值
17.設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B, 求實(shí)數(shù)a的值.
18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?
(1)若A∩B=A∪B,求a的值;
(2)若 A∩B,A∩C= ,求a的值.
19.(本小題滿分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求實(shí)數(shù)a的取值范圍.
20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范圍.
21、已知集合 ,B={x|2
參考答案
C B A D C D C D C B
26 {(1,2)} R {4,3,2,-1} 1或-1或0
16、x=-1 y=-1
17、解:A={0,-4} 又
(1)若B= ,則 ,
(2)若B={0},把x=0代入方程得a= 當(dāng)a=1時(shí),B=
(3)若B={-4}時(shí),把x=-4代入得a=1或a=7.
當(dāng)a=1時(shí),B={0,-4}≠{-4},∴a≠1.
當(dāng)a=7時(shí),B={-4,-12}≠{-4}, ∴a≠7.
(4)若B={0,-4},則a=1 ,當(dāng)a=1時(shí),B={0,-4}, ∴a=1
綜上所述:a
18、.解: 由已知,得B={2,3},C={2,-4}.
(1)∵A∩B=A∪B,∴A=B
于是2,3是一元二次方程x2-ax+a2-19=0的兩個(gè)根,由韋達(dá)定理知:
解之得a=5.
(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,
得32-3a+a2-19=0,解得a=5或a=-2?
當(dāng)a=5時(shí),A={x|x2-5x+6=0}={2,3},與2 A矛盾;
當(dāng)a=-2時(shí),A={x|x2+2x-15=0}={3,-5},符合題意.
∴a=-2.
19、解:A={x|x2-3x+2=0}={1,2},
由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).
(1)當(dāng)2
(2)當(dāng)a≤2或a≥10時(shí),Δ≥0,則B≠ .
若x=1,則1-a+3a-5=0,得a=2,
此時(shí)B={x|x2-2x+1=0}={1} A;
若x=2,則4-2a+3a-5=0,得a=1,
此時(shí)B={2,-1} A.
綜上所述,當(dāng)2≤a<10時(shí),均有A∩B=B.
20、解:由已知A={x|x2+3x+2 }得 得 .(1)∵A非空 ,∴B= ;(2)∵A={x|x }∴ 另一方面, ,于是上面(2)不成立,否則 ,與題設(shè) 矛盾.由上面分析知,B= .由已知B= 結(jié)合B= ,得對(duì)一切x 恒成立,于是,有 的取值范圍是
21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1}, B={x|1
∵ ,(A∪B)∪C=R,
∴全集U=R。
∴ 的解為x<-2 x="">3,
即,方程 的兩根分別為x=-2和x=3,
由一元二次方程由根與系數(shù)的關(guān)系,得
b=-(-2+3)=-1,c=(-2)×3=-6
【高一數(shù)學(xué)的課后練習(xí)題】相關(guān)文章:
數(shù)學(xué)比的意義課后練習(xí)題07-23
數(shù)學(xué)體積單位課后練習(xí)題11-11