1. <rp id="zsypk"></rp>

      2. 矩形練習(xí)題

        時間:2021-06-12 15:57:52 試題 我要投稿

        關(guān)于矩形練習(xí)題

          由于矩形是特殊的平行四邊形,故包含平行四邊形的性質(zhì);矩形又可分為長方形和正方形,故包含長方形和正方形的一些共有的性質(zhì)。

          矩形練習(xí)題

          一、教學(xué)目標(biāo):

          1.掌握矩形的概念和性質(zhì),理解矩形與平行四邊形的區(qū)別與聯(lián)系.

          2.會初步運(yùn)用矩形的概念和性質(zhì)來解決有關(guān)問題.

          3.滲透運(yùn)動聯(lián)系、從量變到質(zhì)變的觀點(diǎn).

          二、重點(diǎn)、難點(diǎn)

          1.重點(diǎn):矩形的性質(zhì).

          2.難點(diǎn):矩形的性質(zhì)的靈活應(yīng)用.

          三、例題的意圖分析

          例1是教材P104的例1,它是矩形性質(zhì)的直接運(yùn)用,它除了用以鞏固所學(xué)的矩形性質(zhì)外,對計(jì)算題的格式也起了一個示范作用.例2與例3都是補(bǔ)充的題目,其中通過例2的講解是想讓學(xué)生了解:(1)因?yàn)榫匦嗡膫角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法;(2)“直角三角形斜邊上的高”是一個基本圖形,利用面積公式,可得到兩直角邊、斜邊及斜邊上的高的一個基本關(guān)系式.并能通過例2、例3的講解使學(xué)生掌握解決有關(guān)矩形方面的一些計(jì)算題目與證明題的方法.

          四、課堂引入

          1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

          2.思考:拿一個活動的平行四邊形教具,輕輕拉動一個點(diǎn),觀察不管怎么拉,它還是一個平行四邊形嗎?為什么?(動畫演示拉動過程如圖)

          3.再次演示平行四邊形的移動過程,當(dāng)移動到一個角是直角時停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長方形)引出本課題及矩形定義.

          矩形定義:有一個角是直角的平行四邊形叫做矩形(通常也叫長方形).

          矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

          【探究】在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點(diǎn)上(作出對角線),拉動一對不相鄰的頂點(diǎn),改變平行四邊形的形狀.

         、 隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

          ② 當(dāng)∠α是直角時,平行四邊形變成矩形,此時它的其他內(nèi)角是什么樣的角?它的兩條對角線的長度有什么關(guān)系?

          操作,思考、交流、歸納后得到矩形的性質(zhì).

          矩形性質(zhì)1  矩形的四個角都是直角.

          矩形性質(zhì)2  矩形的對角線相等.

          如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

          五、例習(xí)題分析

          例1 (教材P104例1)已知:如圖,矩形ABCD的兩條對角線相交于點(diǎn)O,∠AOB=60°,AB=4c,求矩形對角線的長.

          分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅,所以它具有對角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個特性和已知,可得△OAB是等邊三角形,因此對角線的長度可求.

          解:∵ 四邊形ABCD是矩形,

          ∴ AC與BD相等且互相平分.

          ∴ OA=OB.

          又 ∠AOB=60°,

          ∴ △OAB是等邊三角形.

          ∴ 矩形的對角線長AC=BD = 2OA=2×4=8(c).

          例2(補(bǔ)充)已知:如圖 ,矩形 ABCD,AB長8 c ,對角線比AD邊長4 c.求AD的長及點(diǎn)A到BD的距離AE的長.

          分析:(1)因?yàn)榫匦嗡膫角都是直角,因此矩形中的.計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法.

          略解:設(shè)AD=xc,則對角線長(x+4)c,在Rt△ABD中,由勾股定理:,解得x=6. 則 AD=6c.

         。2)“直角三角形斜邊上的高”是一個基本圖形,利用面積公式,可得到兩直角邊、斜邊及斜邊上的高的一個基本關(guān)系式: AE×DB= AD×AB,解得 AE= 4.8c.

          例3(補(bǔ)充) 已知:如圖,矩形ABCD中,E是BC上一點(diǎn),DF⊥AE于F,若AE=BC. 求證:CE=EF.

          分析:CE、EF分別是BC,AE等線段上的一部分,若AF=BE,則問題解決,而證明AF=BE,只要證明△ABE≌△DFA即可,在矩形中容易構(gòu)造全等的直角三角形.

          證明:∵ 四邊形ABCD是矩形,

          ∴ ∠B=90°,且AD∥BC. ∴ ∠1=∠2.

          ∵ DF⊥AE, ∴ ∠AFD=90°.

          ∴ ∠B=∠AFD.又 AD=AE,

          ∴ △ABE≌△DFA(AAS).

          ∴ AF=BE.

          ∴ EF=EC.

          此題還可以連接DE,證明△DEF≌△DEC,得到EF=EC.

          六、隨堂練習(xí)

          1.(填空)

          (1)矩形的定義中有兩個條件:一是 ,二是 .

         。2)已知矩形的一條對角線與一邊的夾角為30°,則矩形兩條對角線相交所得的四個角的度數(shù)分別為 、 、 、 .

          (3)已知矩形的一條對角線長為10c,兩條對角線的一個交角為120°,則矩形的邊長分別為 c, c, c, c.

          2.(選擇)

         。1)下列說法錯誤的是( ).

         。ˋ)矩形的對角線互相平分 (B)矩形的對角線相等

          (C)有一個角是直角的四邊形是矩形 (D)有一個角是直角的平行四邊形叫做矩形

         。2)矩形的對角線把矩形分成的三角形中全等三角形一共有( ).

         。ˋ)2對 (B)4對 (C)6對 (D)8對

          3.已知:如圖,O是矩形ABCD對角線的交點(diǎn),AE平分∠BAD,∠AOD=120°,求∠AEO的度數(shù).

          七、課后練習(xí)

          1.(選擇)矩形的兩條對角線的夾角為60°,對角線長為15c,較短邊的長為( ).

          (A)12c (B)10c (C)7.5c (D)5c

          2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度數(shù).

          3.已知:矩形ABCD中,BC=2AB,E是BC的中點(diǎn),求證:EA⊥ED.

          4.如圖,矩形ABCD中,AB=2BC,且AB=AE,求證:∠CBE的度數(shù).

        【矩形練習(xí)題】相關(guān)文章:

        關(guān)于矩形的教案練習(xí)題01-27

        關(guān)于矩形和菱形的練習(xí)題06-22

        關(guān)于矩形的性質(zhì)的隨堂練習(xí)題02-05

        矩形菱形正方形練習(xí)題07-10

        矩形菱形與正方形練習(xí)題05-10

        《矩形的性質(zhì)》說課稿11-04

        矩形的性質(zhì)說課稿11-02

        《矩形》教學(xué)設(shè)計(jì)06-08

        矩形性質(zhì)說課稿02-20

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>