《線性代數(shù)》教學(xué)的一些思考論文
[摘要]
《線性代數(shù)》是工科高校中頗為重要的一門課,也是較抽象難學(xué)的一門課程。本文從理論與實(shí)踐兩方面以作者的體會(huì)與認(rèn)識(shí),提出《線性代數(shù)》教學(xué)抽象概念的講解應(yīng)注意的幾點(diǎn)問題,闡釋了如何進(jìn)行《線性代數(shù)》課程的課堂教學(xué),并且能收到良好的教學(xué)效果。
[關(guān)鍵詞]
線性代數(shù);數(shù)學(xué)概念;教學(xué)方法
《線性代數(shù)》是高等院校理、工類專業(yè)重要的數(shù)學(xué)基礎(chǔ)課。它不但廣泛應(yīng)用于概率統(tǒng)計(jì)、微分方程、控制理論等數(shù)學(xué)分支,而且其知識(shí)已滲透到自然科學(xué)的其它學(xué)科,如工程技術(shù)、經(jīng)濟(jì)與社會(huì)科學(xué)等領(lǐng)域。不僅如此,這門課程對(duì)提高學(xué)生的數(shù)學(xué)素養(yǎng)、訓(xùn)練與提高學(xué)生的抽象思維能力與邏輯推理能力都有重要作用。但由于“線性代數(shù)”本身的特點(diǎn),對(duì)其內(nèi)容學(xué)生感到比較抽象,要深入理解與掌握代數(shù)的基本概念與基本理論學(xué)生感到相當(dāng)吃力、難以理解。因此,為培養(yǎng)與提高學(xué)生應(yīng)用數(shù)學(xué)知識(shí)、解決實(shí)際問題的能力,進(jìn)一步研究這門課程的教學(xué)思想和方法對(duì)提高教學(xué)效果甚為重要。
一、加強(qiáng)基本概念的教與學(xué)
線性代數(shù)這一抽象的數(shù)學(xué)理論和方法體系是由一系列基本概念構(gòu)成的。行列式、矩陣、逆矩陣、初等矩陣、轉(zhuǎn)置、線性表示、線性相關(guān)、特征值與特征向量等抽象概念根植于客觀的現(xiàn)實(shí)世界,有著深刻的實(shí)際背景,即是比較直接抽象的產(chǎn)物。高等數(shù)學(xué)與初等數(shù)學(xué)在含義與思維模式上的變化必然會(huì)在教學(xué)中有所反映。線性代數(shù)作為中學(xué)代數(shù)的繼續(xù)與提高,與其有著很大不同,這不僅表現(xiàn)在內(nèi)容上,更重要的是表現(xiàn)在研究的觀點(diǎn)和方法上。在研究過程中一再體現(xiàn)由具體事物抽象出一般的概念,再以一般概念回到具體事物去的辨證觀點(diǎn)和嚴(yán)格的邏輯推理。新生剛進(jìn)入大學(xué),其思維方式很難從初等數(shù)學(xué)的那種直觀、簡(jiǎn)潔的方法上升到線性代數(shù)抽象復(fù)雜的方式,故思維方式在短期內(nèi)很難達(dá)到線性代數(shù)的要求。大部分同學(xué)習(xí)慣于傳統(tǒng)的公式,用公式套題,不習(xí)慣于理解定理的'實(shí)質(zhì),用一些已知的定理、性質(zhì)及結(jié)論來推理、解題等。
在概念的教學(xué)中,教師要研究概念的認(rèn)識(shí)過程的特點(diǎn)和規(guī)律性,根據(jù)學(xué)生的認(rèn)識(shí)能力發(fā)展的規(guī)律來選擇適當(dāng)?shù)慕虒W(xué)方式。因此,在概念教學(xué)中應(yīng)注意以下幾點(diǎn)。
1.合理借助概念的直觀性
盡管抽象性是《線性代數(shù)》這門課的突出特點(diǎn),直觀性教學(xué)同樣可應(yīng)用到這門課的教學(xué)上,且在教學(xué)中占有重要地位。歐拉認(rèn)為:“數(shù)學(xué)這門科學(xué),需要觀察,也需要實(shí)驗(yàn),模型和圖形的廣泛應(yīng)用就是這樣的例子!敝庇^有助于概念的引入和形成。如介紹向量的概念,盡管抽象,但它具有幾何直觀背景,在二維空間、三維空間中,向量都是有向線段,由此教學(xué)中可從向量的幾何定義出發(fā)講解抽象到現(xiàn)有形式的過程,降低學(xué)生抽象思考的難度。
2.充分利用概念的實(shí)際背景和學(xué)生的經(jīng)驗(yàn)
教師在教學(xué)中應(yīng)充分利用學(xué)生已有的數(shù)學(xué)現(xiàn)實(shí)和生活經(jīng)驗(yàn),引導(dǎo)和啟發(fā)學(xué)生進(jìn)行概念發(fā)現(xiàn)和創(chuàng)造。如在講解n階行列式,首先從學(xué)生已掌握的二元、三元一次方程組的求解入手,然后求出方程組的解由二階、三階行列式表示,分析二階、三階行列式的特點(diǎn)。
二階行列式,不難看出:它含有兩項(xiàng),若不考慮符號(hào),每項(xiàng)均是來自不同行不同列的兩個(gè)元素的乘積,那么會(huì)提出這樣的問題:右邊各項(xiàng)之前所帶的正負(fù)號(hào)有什么規(guī)律?同樣的,三階行列式若不考慮符號(hào),它含有3!=6項(xiàng),每項(xiàng)也是來自不同行不同列的三個(gè)元素的乘積,并且包含了所有由不同行不同列的三個(gè)元素的組合。為解決n階行列式,又引出排列的概念、性質(zhì),介紹奇偶排列后,又回到我們提出的問題上,可以發(fā)現(xiàn),行標(biāo)按自然排列,列標(biāo)排列為奇排列時(shí),該項(xiàng)為負(fù);列標(biāo)排列為偶排列時(shí),該項(xiàng)為正(問題得到解決)。經(jīng)過這一過程,學(xué)生對(duì)n階行列式已有接觸和了解,此時(shí)可給出n階行列式定義,這樣一來,學(xué)生就容易理解和掌握n階行列式的性質(zhì)了。
3.注意概念體系的建立
R.斯根普指出:“個(gè)別的概念一定要融入與其它概念合成的概念結(jié)構(gòu)中才有效用!睌(shù)學(xué)中的概念往往不是孤立的,理解概念間的聯(lián)系既能促進(jìn)新概念的引入,也有助于接近已學(xué)過概念的本質(zhì)及整個(gè)概念體系的建立。如矩陣的秩與向量組的秩的聯(lián)系:矩陣的秩等于它的行向量組的秩,也等于它的列向量組的秩;矩陣行(列)滿秩,與向量組的線性相關(guān)和線性無關(guān)也有一定的聯(lián)系。
二、學(xué)生要掌握科學(xué)的學(xué)習(xí)方法
學(xué)習(xí)重在理解,學(xué)生必須在理解、領(lǐng)悟其深刻含義的基礎(chǔ)上記憶定義、定理及一些結(jié)論,才能收到理想的效果。線性代數(shù)的最大特點(diǎn)就是:知識(shí)體系是一環(huán)扣一環(huán),環(huán)環(huán)相連的。前面的知識(shí)是后面學(xué)習(xí)的基礎(chǔ),如用初等變換求矩陣的秩熟練與否,直接影響求向量組的秩及極大無關(guān)組,進(jìn)一步影響到求由向量組生成的向量空間的基與維數(shù);又如求解線性方程組的通解熟練與否,會(huì)影響到后面特征向量的求解,以及利用正交變換將二次型化為標(biāo)準(zhǔn)型等。因此,學(xué)習(xí)線性代數(shù),一定要堅(jiān)持溫故而知新的學(xué)習(xí)方法,及時(shí)復(fù)習(xí)鞏固,為此,教師課前的知識(shí)回顧以及學(xué)生提前預(yù)習(xí)是十分必要的。
三、加強(qiáng)對(duì)學(xué)生解題的基本訓(xùn)練
一定量的典型練習(xí)題能有助于學(xué)生深化對(duì)所學(xué)知識(shí)的理解,培養(yǎng)學(xué)生一題多解的能力,解題后反思,及時(shí)總結(jié)解題思路和方法。如證明抽象矩陣的可逆,就有很多方法,一是用定義。二是用秩的有關(guān)命題。三是借助于特征值理論。四是證明矩陣的行列式不為零等。
四、培養(yǎng)與激發(fā)學(xué)生的學(xué)習(xí)興趣
興趣是最好的老師。教師一方面在傳授知識(shí),另一方面要鼓勵(lì)學(xué)生有針對(duì)性的設(shè)計(jì)他們的目標(biāo),這樣,他們才肯自覺鉆研,樂于鉆研。同時(shí),課堂教學(xué)中可選擇近年來研究生入學(xué)考題及一些與實(shí)際聯(lián)系較緊的題目講解或練習(xí),以激發(fā)學(xué)生的學(xué)習(xí)欲望,并給他們帶來成功的滿足。此外,還可以適當(dāng)介紹一些有趣的應(yīng)用典范或教學(xué)史來激發(fā)學(xué)生的學(xué)習(xí)熱情,提高他們的學(xué)習(xí)興趣。
五、發(fā)揮多媒體優(yōu)勢(shì),增強(qiáng)教學(xué)效果
多媒體教學(xué)成為當(dāng)前高校教學(xué)模式的重要手段。教師只有把傳統(tǒng)教學(xué)手段、教師自己的特色和多媒體輔助教學(xué)三者有機(jī)結(jié)合起來,才能真正發(fā)揮多媒體課堂教學(xué)的效果?傊處熢诮虒W(xué)中所做的一切,其目的應(yīng)在于既教會(huì)他們有用的知識(shí),又教會(huì)學(xué)生有益的思考方式及良好的思維習(xí)慣。
參考文獻(xiàn):
[1]張向陽.線性代數(shù)教學(xué)中的幾點(diǎn)體會(huì).山西財(cái)經(jīng)大學(xué)學(xué)報(bào)(高等教育版),2006.
[2]于朝霞.線性代數(shù)與空間解析幾何.北京:中國(guó)科學(xué)技術(shù)出版社,2003.
【《線性代數(shù)》教學(xué)的一些思考論文】相關(guān)文章:
對(duì)中醫(yī)發(fā)展的一些思考論文04-18
關(guān)于雙語幼兒園教學(xué)的一些思考論文09-05
線性代數(shù)教學(xué)實(shí)踐與教學(xué)改革研究論文08-27
初中作文有效教學(xué)的一些思考12-05
對(duì)中小學(xué)心理教育的一些思考論文08-21
有效語文課堂的一些思考論文01-10
對(duì)新課改的一些思考12-05