分數的基本性質教學設計(精選20篇)
作為一名優(yōu)秀的教育工作者,總歸要編寫教學設計,教學設計是教育技術的組成部分,它的功能在于運用系統方法設計教學過程,使之成為一種具有操作性的程序。教學設計應該怎么寫才好呢?下面是小編幫大家整理的分數的基本性質教學設計,僅供參考,大家一起來看看吧。
分數的基本性質教學設計 1
一、教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
二、教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
三、教學難點:
理解和掌握分數的基本性質,初步建立數學模型。
四、教學準備:
課件、正方形的紙。
五、教學設計過程:
。ㄒ唬┻w移舊知.提出猜想
1、回憶舊知
猜信封:老師手上的信封里有一個數、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3
你為什么這樣猜呢?引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數÷除數=
誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
。ǘ炞C猜想,建構新知
A、 看圖分類
下面是一組相等的.正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
B、 討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究規(guī)律
師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的數
得到的分數
研究對象與得到的分數相等嗎?
相等( )不相等( )
猜想是否成立?
成立( )不成立( )
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。(板書)
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的基本性質與商不變性質有什么聯系?
D、質疑完善
3/4 = 3×( )/ 4×( )
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4= 3×X/ 4×X(X≠0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
。ㄈ 練習升華
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、 和 哪一個分數大,你能講出判斷的依據嗎?
。ㄋ模┛偨Y延伸
師:這節(jié)課學了什么?
師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)
六、作業(yè)p87-1、2
板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
分數的基本性質教學設計 2
一、教學目標
1.經歷探索分數基本性質的過程,理解分數的基本性質。
2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
二、 教學重、難點
教學重點是:分數的基本性質。
教學難點是:對分數的基本性質的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
(一)、故事引入,揭示課題
1.教師講故事。
猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)
2.組織討論。
(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,14=28=312,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:34=68=912。
。3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:12=24=20xx。
3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:
分數的分子和分母變化了,
分數的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
。 二)、比較歸納,揭示規(guī)律
1.出示思考題。
比較每組分數的分子和分母:
。1)從左往右看,是按照什么規(guī)律變化的?
。2)從右往左看,又是按照什么規(guī)律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。
(1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。
板書:
。2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。
。3)引導口述:34的.分子、分母都乘以2,得到68,分數的大小不變。
。4)在其它幾組分數中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數的分子和分母都乘以相同的數,分數的大小不變。
。ò鍟憾汲艘韵嗤臄担
。5)從右往左看,分數的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都除以相同的數,分數的大小不變。
(板書:都除以)
。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規(guī)定“零除外”?
。ò鍟毫愠猓
。7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。
3.出示例2:把12和1024化成分母是12而大小不變的分數。
思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
( 三)、溝通說明,揭示聯系
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
。 四)、多層練習,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)
教學反思:
學生是學習的主人,教師是數學學習的組織者、引導者與合作者。因此數學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性。一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現在:
1、學生在故事情境中大膽猜想。
通過創(chuàng)設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發(fā)學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規(guī)律讓學生自主發(fā)現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數的基本性質的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
分數的基本性質教學設計 3
教學目標
1. 讓學生通過經歷預測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2. 根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。
3. 培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是互相聯系、發(fā)展變化的辯證唯物主義觀點。體驗到數學驗證的思想,培養(yǎng)敢于質疑、學會分析的能力。
教學重點
使學生理解分數的基本性質。
教學難點
讓學生自主探索,發(fā)現和歸納分數的基本性質,以及應用它解決相關的問題。
教學過程
一、故事情景引入
同學們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數)你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學們,你們覺得奶奶公平嗎?現在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多。”
生乙:“我覺得小明分得多。”
生丙:“我覺得公平,他們三個分得一樣多!
師:“看樣子我們班的同學也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學們就會明白了。”
二、新授
師:“下面我們來做個實驗。同學們請你們拿出老師為你們準備的學具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大!
1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了。”
首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導)
2. 師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的'三分之一!
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”
師:“那九分之三又是怎么得到的呢?大家一起說!
生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”
(學生說的同時,教師操作,分完后把圓片貼在黑板上。)
3. 師:“同學們,觀察這些圓的陰影部分,你有什么發(fā)現?”
小結:原來三個圓的陰影部分是同樣大的。
師:“ 現在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學生回答)
生:“奶奶分月餅是公平的,因為他們三個分得的月餅一樣多!
師:“現在我們的意見都統一了,奶奶是非常公平的,他們三個人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數應該是一樣大的。”
生乙:“這三個分數是相等的!
師:“剛才的試驗證明,它們的大小是相等的!保ò鍟,打上等號)
4. 研究分數的基本規(guī)律。
師:“我們仔細觀察這一組分數,它的什么變了,什么沒變?”
生甲:“三個分數的分子分母都變了,大小沒變。”
師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數從左往右看,跟第二個分數比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍!
師:“跟第三個分數比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導學生反過來看,讓學生自己說出其中的規(guī)律。(邊講邊板書)
教師小結:“剛才大家都觀察得很仔細,這組分數的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結一下,好嗎?”
學生發(fā)言
小結:像分數的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學習的新知識。分數的基本性質。
5. 深入理解分數的基本性質。
師:“什么叫做分數的基本性質呢?就你的理解,用自己的語言說一說!保▽W生討論后發(fā)言)
師:剛才同學們都用自己的語言說了分數的基本性質,我們的書上也總結了分數的基本性質,現在請打開書看到108頁?纯磿鲜窃趺凑f的,是你說得好,還是書上說得好,為什么?
齊讀分數的基本性質,并用波浪線表出關鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學生結合以前學過的商不變的性質討論,為什么加“零除外”。
教師小結:“以三分之一這個分數為例,它的分子分母同時除以零,行嗎?不行,除數為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現,分子分母都為零了,而分數與除法的關系里,分母又相當于除數,這樣的話,除數又為零了,無意義。所以一定要加上零除外。”(邊講邊板書。)
三、應用
1.學了分數的基本性質到底又什么用呢?老師告訴你們,根據分數的基本性質,我們就能變魔術一樣,把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來變個魔術。
2.學生練習課本例題2,兩名學生在黑板上做。
3.學生自己小結方法。
4.按規(guī)律寫出一組相等的分數。
分數的基本性質教學設計 4
教學目標:
知識目標:
通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
能力目標:
培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
情感目標:
讓學生在學習過程當中養(yǎng)成互相幫助、團結協作的良好品德。
教學準備:
圓形紙片、彩筆、各種卡片。
教學過程:
一、創(chuàng)設情境,激發(fā)興趣
孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的!必愗、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)
【通過學生耳熟能詳的人物對話,給學生設計一個懸念,抓住學生的好奇心理,由此激發(fā)學生的學習興趣!
二、動手操作 、導入新課
師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數怎么表示呢?我現在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數又該怎樣表示呢?這三個分數大小相等嗎?為什么呢?這節(jié)課,我們就來研究這個數學問題。
【通過學生的動手操作,初步感知三個分數的大小相等,為尋找原因設置懸念,再次激發(fā)學生的學習興趣。】
三、觀察對比, 由“數”變 “式”
你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)
四、概括分析,由“式”變 “語”
、、觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數的分子、分母是怎樣變化的。
⒉、先從左往右看,是怎樣變?yōu)榕c它相等的的?
(1)分母乘2,分子乘2。
根據分數的意義,""表示把單位"1"平均分成2份,取其中的1份,而現在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現在平均分成了2×2=4(份),現在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]
即原來把單位"1"平均分成2份,取1份,現在把平均分的份數和取的份數都擴大2倍,就得到。與的大小相等,分數值沒變。
(2)由到,分子、分母又是怎樣變化的.?(把平均分的份數和取的份數都擴大了4倍。)
(3)誰能用一句話說出這兩個式子的變化規(guī)律?
、场⒃購挠彝罂
(1) 是怎樣變化成與之相等的的?
原來把單位"1"平均分成4份,取其中的2份,現在把同樣的單位"1"平均分成2份,即把原來的每兩份合并成 1份,現在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現在把平均分的份數和取的份數都縮小了2倍,得到,分數的大小沒有變。
(2) 又是怎樣變成的?(把平均分的份數和取的份數都縮小了4倍。)
(3)誰能用一句話說出這兩個式子的變化規(guī)律?
、础⒕C合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?
、、這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。
(1)理解概念。
學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?
(2)瘃木鳥診所。(請說出理由)
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。( )
分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。( )
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。( )
、、小結。
從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
【此過程主要由學生通過觀察、比較,得出這三個分數大小相等的規(guī)律,由此牽引到其他的有同等規(guī)律的分數中,從而引出分數的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮。,是同倍變化的(擴大或縮小的倍數相同)。只有這樣變化,分數的大小才不會變!
五、鞏固練習
⒈、卡片練習:
、、做P96“練一練”1、2。
、、趣味游戲:
數學王國開音樂會,分數大家族的節(jié)目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。
要求:第一排是分數值等于的,第二排是分數值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?
【通過練習,讓學生加深對分數的基本性質的理解,為下節(jié)課分數的基本性質的應用打好堅實的基礎!
六、課堂總結
這節(jié)課你學到了什么?什么是分數的基本性質?你是怎樣理解的?
七、布置作業(yè)
做P97練習十八2。
分數的基本性質教學設計 5
教學目標:
情感態(tài)度:
培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯系,發(fā)展變化的辯證唯物主義觀點。
知識技能:
理解分數的基本性質,并且能夠靈活應用。
過程方法:
動手操作、觀察、討論
教學重、難點:
理解并掌握分數的基本性質并靈活應用。
教具準備:
自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。
學具準備:
拼圖12組。
教學設計理念:
《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數學,參與知識的發(fā)現過程。在教學分數的基本性質時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發(fā)現問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數學知識應用于實際中。感受數學的價值,本課設計完全從學生發(fā)展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。
教學過程:
一、 創(chuàng)設情境,激趣導入。
設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的興趣參與學習,激發(fā)學生探索數學問題欲望,并訓練學生小組合作學習的方法和習慣。
師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現在開始。
請看拼圖要求:
1、用所給材料拼成三個完全一樣圖形。
2、用分數表示陰影部分占整幅圖的幾分之幾,并寫出來。
二、合作交流,探究規(guī)律。
設計意圖:讓學生在具體的情境中充分利用現有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發(fā)揮集體力量的小組合作學習,培養(yǎng)學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發(fā)了學生的學習興趣,體現了主體性。
。ㄒ唬┢磮D,寫分數。
。1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數。
。2)匯報優(yōu)勝組介紹經驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數。
(二)找分數間的大小關系。
。1)師:請同學們用自己喜歡的方法找一找每組中三個分數的大小關系,學生獨立思考后與同桌交流方法。
(2)匯報:每組中三個分數大小相等。
比較方法。
。1)看圖比較
。2)化小數比較
(3)利用商不變的性質比較
。ㄈ┨骄恳(guī)律
(1)每組中三個分數看似不同,實質大小相等,它們之間到底有什么聯系?小組討論探究規(guī)律。
。2)交流自己的發(fā)現。
①每組中三個分數平均分的份數不同取的分數也不同?
、诜肿,分母都擴大了2倍(3倍)
。3)師:分數的分子和分母怎樣變化時,分數的大小才會不變,學生自由發(fā)言,教師給予肯定和鼓勵。
(4)師結合圖依據分數的意義講解變化規(guī)律。
(5)小結分數的基本性質:強調“相同”“同時”組織討論:“相同的數”可以是哪些數?
。ㄋ模⿲Ρ确謹档幕拘再|和商不變的性質。
學生對比,說出兩個性質間的區(qū)別與聯系。
三、應用。
設計意圖:本環(huán)節(jié)所設計是由易到難,緊扣本課的`重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發(fā)探究熱情,培養(yǎng)創(chuàng)新能力。
1、填空
。1)學生獨立思考。(2)交流口答,并說明依據,同時訓練學生應用所學知識解決實際問題的能力。
2、比較 和 的大小。
四、游戲"找朋友”。
設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數找到自己的朋友。游戲規(guī)則新穎而恰當,既鞏固新知又體會到數學與生活的密切聯系。
同學們拿出課前老師發(fā)給你的紙,紙上所寫分數大小相等的同學,你們是“好朋友”。請學生讀自己的分數,與他所讀分數大小相等的同學舉起來確定后手拉手離場。
分數的基本性質教學設計 6
教學目標:
1、讓學生理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2、根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數
重點難點:
1、使學生理解分數的基本性質。
2、讓學生自主探索,發(fā)現和歸納分數的基本性質,以及應用它解決相關的問題。
過程設計:
一、激情導入
1、導入課題
生讀故事。
唐僧師徒四人在西天取經的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經很多了,高興得答應了。可是悟空卻在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?
師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數到底有什么關系呢?下面我們用折紙的方法來看一下它們之間有什么樣的關系?
2、明確目標
理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系;并會應用分數的基本性質。
3、預期效果
達到教學目標
二、民主導學
任務一
任務呈現
動手操作驗證性質
自主學習
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發(fā)現什么?
師:同位分工合作完成,F在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發(fā)現?
請二至三位同學說一說。
師:我們都發(fā)現了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?
生回答。師:現在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)
下面請同學們把這個式子從左往右地觀察,看一下每個分數的分子分母怎樣變化?才得到下一個分數。
生:我發(fā)現了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5分數的大小變嗎?同時乘以10呢?那你們能不能根據這個式子來總結一個規(guī)律呢?
生回答:一個分數的分子分母同時擴大相同的倍數,它們分數的大小不變。
請一至二名同學回答。
師板書:分數的分子分母同時乘相同的數,分數的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發(fā)現什么呢?
請一同學回答,
生:我們發(fā)現了8分之四的分子與分母同時除以2得了四分之二,四分之二的.分子與分母同時除以2得到了二分之一。
師:嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據這個式子再總結出一句話呢?
生:分數的分子分母同時除以相同的數,分數的大小不變。 (二名學生重復)
師板書:或者除以
師:你能根據剛才總結的規(guī)律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流
師指著板書說明:我們說分子分母同時乘或除以相同的數,分數的大小不變,那是不是包括所有的數呢?我們一起來看這樣一個分數。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)
生:不成立,
師:為什么
生:因為0不能作除數,
師:0不能作除數,所以這個式子是錯誤的。(畫叉)
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)
生:不成立,因為在分數當中分母相當于除數,除數不能為0。
師:對,大家都知道0不能作除數,所以這兩個式子都是不成立的?(畫叉)我們剛才總結的分數的分子分母同時乘或者除以相同的數,不是所有的數需要加上一句什么話
生:0除外
師板書0除外
師:到現在為止這個規(guī)律我們就總結完了,那在這個規(guī)律里你覺得什么地方需要我們注意一下呢?
生:同時和相同的數
師:“同時”和“相同的數”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數的基本性質。(師板書課題)
師:我相信如果當時豬八戒會這個分數的基本性質,那就不會出現這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數的基本性質邊讀邊記。
生齊讀二遍。
師:這個分數的基本性質特別有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數。
任務二
任務呈現
課本76頁的例2,請一同學讀題。
自主學習
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流
每題請二名同學回答,(集體訂正答案)
檢測導結
1、目標練習
76頁“做一做”
練習十四的1、2、6、7題
2、結果反饋
生做完后同桌交流,再指名說說結果。
3、反思總結
今天這節(jié)課你都學會了哪些知識?請大家談談學習了分數的基本性質的收獲。
三、輔助設計
教具課件設計
小黑板正方形紙數塊
板書設計
分數的基本性質
練習和作業(yè)設計
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結:這節(jié)課我們學習了分數基本性質,而且我們還學會了根據分數的基本性質把一個分數轉化成和它相等的另外一個分數,其實生活當中還有許多的數學知識,如果你留心觀察,你就能夠發(fā)現,我希望大家都能做一個在學習上面的有心人。
分數的基本性質教學設計 7
教學目標:
1、知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結協作的良好品德。
教學準備:
長方形紙片、彩筆、各種分數卡片。
教學過程
一、創(chuàng)設情境,激發(fā)興趣
1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。
【六一節(jié)到了,猴山上張燈結彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊!庇谑牵锿跤职训谌龎K餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多。”】
“同學們,猴王真的分得不公平嗎?”
二、動手操作、導入新課
同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。
任選一小組的同學臺前展示實驗報告,并匯報結論。
教師根據學生匯報板書:14=28=312
2.組織討論。
。1)通過操作我們發(fā)現三只猴子分得的餅同樣多,表示它們分得餅的分數是相等關系。那么,這三個分數什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?學生通過觀察演示得出結論教師板書:34=68=912。
3.引入新課:黑板上二組相等的分數有什么共同的特點?學生回答后板書:分數的分子和分母, 分數的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。
三、比較歸納,揭示規(guī)律。
請每組拿出探究報告,任意選擇黑板上的二組相等分數中的一組,共同討論、探究,并完成探究報告。
1.課件出示探究報告。
2.分組匯報,歸納性質。
。1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
(根據學生回答板書:同時乘上 相同的數)
。2)從右往左看,分數的分子和分母又是按照什么規(guī)律變化的?
。ǜ鶕䦟W生的回答板書:除以 )
(3)有與這一組探究的分數不一樣的嗎?你們得出的規(guī)律是什么?
。4)綜合剛才的探究,你發(fā)現什么規(guī)律?
根據學生的回答,揭示課題,
(……這叫做板書:分數的基本性質)
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質中要規(guī)定“零除外”?
。t筆板書:零除外)
。5)齊讀分數的基本性質。在分數的基本性質中,你認為要提醒大家注意些什么?(同時、相同的數、0除外)。為什么?你能舉例說明嗎?教師則根據學生回答,在相應的字下面點上著重號。
師生共同讀出黑板上板書的分數基本性質(要求關鍵的字詞要重讀)。
3、智慧眼(下列的式子是否正確?為什么?)
(1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數的.大小改變。)
。2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數的大小不同,分數的大小也不同)
(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數的大小不相等。)
。4)25=2×x5×x=2x5x (生:x在這里代表任何數,當x=0時,分數的大小改變。)
4、示課件討論:現在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數表示為?如果要五塊呢?
三、回歸書本,探源獲知
1、瀏覽課本第107—108頁的內容。
2、看了書,你又有什么收獲?還有什么疑問嗎?
3、師生答疑。
你會運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質嗎?
4、自主學習并完成例2,請二名學生說出思路。
四、多層練習,鞏固深化。
1、熱身房。35=3×()5×()=9()
824=8÷()24÷()=()3
學生口答后,要求說出是怎樣想的?
分數的基本性質教學設計 8
一、學習目標:
1、學生能理解和掌握分數的基本性質,知道分數的基本性質與整數除法中商不變的規(guī)律之間的聯系。
2、學生能運用分數的基本性質把一個分數化成分母不同而大小相等的分數。
3、培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,滲透“事物之間是相互聯系的”辨證唯物主義觀點。
二、重、難點:
理解和掌握分數的基本性質。
三、學習過程:
一、導入
。1)3張同樣的正方形或長方形紙片,(如下圖)平均分成2份、4份、8份,涂上顏色,分別用分數表示涂色部分。
。2)你發(fā)現了什么?
二、學習新知
1、師板書 = =
2、觀察三組分數,它們的分子和分母是怎樣變化的?
分小組討論,并填寫
1 ( ) 2 1 ( ) 4
2 ( ) 4 2 ( ) 8
4 ( ) 2 2 ( ) 1
8 ( ) 4 4 ( ) 2
總結:分數的分子和分母同時 或 相同的數,分數的大小
3、應用
根據分數的基本性質,我們可以寫出很多相等的分數
、诺姆肿雍头帜竿瑫r乘2,等于( );同時乘4,等于( );
同時乘5,等于( );同時乘7,等于( )
總結: =( )=( )=( )= ( )
、= 說出你這樣填的理由
= 說出你的理由
4、鞏固練習
、诺80頁 (直接做在課本上)
、疲谙旅娴睦ㄌ柪锾钌线m當的數。
在下面的()里填上適當的數,在○里填上“×”號或“÷”,使等式成立
⑶請你當法官(說明理由)
、认旅娴姆謹祷煞帜甘12,而大小不變的分數
、上旅娴姆謹祷煞肿邮6,而大小不變的分數
5、拓展練習
判斷
1、分數的分子和分母同時加上或者減去相同的`數,分數的大小不變。( )
2、把 的分子增加1,分母增加3,分數的大小不變。( )
3、把 的分子擴大2倍,分母縮小2倍,分數的大小不變。( )
思考:一個分數的分母不變,分子乘以3,這個分數的大小有什么變化嗎?如果分子不變,分母除以5呢?
分數的基本性質教學設計 9
一、教學目標
1、使學生理解和掌握分數的基本性質,能應用分數的基本性質把一個分數化成指定分母而大小不變的分數。
2、學生通過觀察、比較、發(fā)現、歸納、應用等過程,經歷探究分數的基本性質的過程,初步學習歸納概括的方法。
3、激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。
二、教學重點
1、理解、掌握分數的基本性質,能正確應用分數的基本性質。
2、自主探究出分數的基本性質。
三、教學準備
課件、正方形的紙
四、教學設計過程
。ㄒ唬┻w移舊知.提出猜想
1、回憶舊知
根據“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數÷除數=()
說一說你是根據什么算的?引導學生回憶商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學習提示。
學習提示
A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。
B、驗證結束后,把你的.驗證方法和結論與小組同學交流。
3、匯報交流
指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。
C、總結規(guī)律
1、師:請同學們看黑板上的兩組分數,說說它們的分子和分母分別是按什么規(guī)律變化的。指名回答,教師板書。
2、總結:對于任何一個分數,只要滿足:分數的分子和分母同時乘或除以相同的數,分數的大小就不會發(fā)生變化。
3、強調0除外。哪位同學將分數的分子和分母同時乘或除以0進行驗證的?
如果有,問他是否驗證出猜想,驗證過程中出現了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規(guī)律:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
教師以3/4為例說明分數的分子和分母同時乘或除以0是沒有意義的。
師:再次出示分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。(板書課題)
D教學例2
把2/3和10/24都化為分母為12而大小不變的分數。
學生獨立完成,集體訂正。
。ㄈ┚毩暽A
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數寫在同一個圈里。
4、老師給出一個分數,同學們迅速說出和它相等的分數。
。ㄋ模┳鳂I(yè)
教材59頁第9題。
(五)思維拓展
。┛偨Y延伸
師:這節(jié)課你有什么收獲?
五、板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
分數的基本性質教學設計 10
教學要求
、偈箤W生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
、谂囵B(yǎng)學生觀察、分析和抽象概括能力。
、蹪B透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點理解分數的基本性質。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創(chuàng)設情境
1.120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2.說一說:
。1)商不變的性質是什么?
。2)分數與除法的關系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
讓學生大膽猜測:在除法里有商不變的性質,在分數里會不會也有類似的性質存在呢?這個性質是什么呢?
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1.動手操作,驗證性質。
。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數表示出來。
。2)觀察比較后引導學生得出:
。3)從左往右看:
由變成,平均分的份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
。4)從右往左看:
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
。5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
。6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2.分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3.學習把分數化成指定分母而大小不變的分數。
。1)出示例2,幫助學生理解題意。
。2)啟發(fā):要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
。3)讓學生在書上填空,請一名學生口答。教師板書:
4.練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1.這節(jié)課我們學習了什么內容?
2.什么是分數的基本性質?
六、課堂作業(yè)
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
教學反思:
“分數的基本性質”是西師版小學數學五年級下冊的內容,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點課。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數學基本知識,更重要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。目的是讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。
這節(jié)課是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,我是這樣設計教學的:
1、通過商不變的性質、除法與分數的關系的'復習,幫助學生意識到商不變的變規(guī)律與新知識的聯系,為新知識的學習做好必要的準備。讓學生根據商不變的性質大膽猜想,分數的基本性質是什么?說出自己的想法。
2、充分發(fā)揮學生主體作用,引導學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數表示,從而培養(yǎng)學生的動手能力,以及觀察問題、解決問題的能力。
3、運用知識,解決實際問題。為了把知識轉化為能力,練習的設計注意了典型性、多樣性、深刻性、靈活性。歸納總結出分數的基本性質后,先進行基本練習,深化對分數的基本性質認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應用拓展,使學生加深對分數的基本性質的理解,并培養(yǎng)學生運用所學的知識解決實際問題的能力。
4、0除外的環(huán)節(jié)設計。在學生歸納出分數的基不性質后,缺少0除外這個難點,我設計了判斷一個分數的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數,在分數中分母不能為0,引出:分子和分母同時乘或除以相同的數,必須0除外,突破難點。
分數的基本性質教學設計 11
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:
理解掌握分數的基本性質。
教學難點:
歸納分數的性質。
學生準備:
長方形紙片。
一、創(chuàng)設故事情境,激發(fā)學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創(chuàng)設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的'基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規(guī)律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續(xù)對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規(guī)律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
。3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規(guī)律嗎?請同學們四人為一組,討論這兩個問題
。4)通過從左到右的觀察、比較、分析,你發(fā)現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】
3引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變?yōu)榕c它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規(guī)律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規(guī)律?
4、歸納規(guī)律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
6、小結
同學們在這節(jié)課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續(xù)學習和探究的欲望,將學生的學習興趣延伸到了下節(jié)課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業(yè):
在上這課之前,認真?zhèn)湔n,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創(chuàng)設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發(fā)言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規(guī)律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規(guī)律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業(yè)。最后,讓學生輕松愉快地應用著這節(jié)課所學的知識進行找朋友的游戲。
分數的基本性質教學設計 12
教學目標:
1、通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
2、培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
3、讓學生在學習過程中養(yǎng)成互相幫助、團結協作的良好品德。
重點難點:
從相等的分數中看出變與不變,觀察、發(fā)現、概括其中的規(guī)律。理解分數的基本性質。
教具學具:
課件,每人一張白紙,一張圓紙片,彩筆
教學時間:
1課時
教學流程:
一、復習引入
1、120÷30的商是多少?被除數和除數同時擴大3倍,商是多少?被除數和除數同時縮小10倍,商是多少?
120÷30=4
。120×3)÷(30×3)
=360÷90
=4
120÷30=4
。120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除數和除數同時擴大(或縮。┫嗤谋稊担愠猓,商不變。
除法與分數之間有什么聯系?
被除數÷ 除數=被除數/除數
教師板書:分數的基本性質
二、動手操作
。1)用分數表示涂色部分。
。 )
( ) )
( ) )
、僬埓蠹夷贸1張長方形紙片,現在我們把它對折平均分成4份,涂出其中的3份,寫上分數。
②把它繼續(xù)對折平均分成8份,看看原來的3/4現在成了?(6/8)
、劾^續(xù)折成16份,看看原來的3/4現在又成了?(12/16)
(2)小結:原來,這張紙的3/4 、6/8、 和它的12/16同樣大!看來不管選擇哪種折法,分到的數都一樣多!
。ń處熾S機板書 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
。2)用分數表示涂色部分。
( ) )
( ) )
( ) )
根據上面的過程,你能得到一組相等的分數嗎?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、發(fā)現規(guī)律
1、請大家觀察每個等式中的兩個分數,它們的分子。分母是怎樣變化的?
學生觀察、思考,完成上面的圖形,再在小組內交流。
學生交流后,教師集中指導觀察,板書這組數字,說出其中的規(guī)律。
3/4=6/8=12/16 8/12=4/6=2/3
從這些數字中可以得出:
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。(相同的數,這個數能不能是0 ?)
教師舉例說明:3/4,8/12分子和分母分別乘以零,分數大小怎么樣?
得出分數基本性質: 分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。
在除法中,被除數和除數同時擴大(或縮。┫嗤谋稊担愠猓,商不變。這叫做商不變性質。
3、課件出一組分數讓學生練習填
2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、練一練(課件出示)
1、判斷.(手勢表示。)
。1)分數的分子、分母都乘或除以相同的數,分數的大小不變。()
。2)把 15 /20 的分子縮小5倍,分母也同時縮小5倍,分數的大小不變。()
。3) 3 /4 的分子乘3,分母除以3,分數的大小不變。 ( )
。 4)把3/5的分子加上4,要使分數的大小不變,分母加4。 ( )
2、把5 /6和1/4都化成分母是12大小不變的分數。(課件出示 )
3、數學游戲(課件出示)
說出相等的.分數 1/4和2/8
。1)你能根據分數的基本性質,再寫出一組相等的分數?
所寫的分數是否相等?你是怎樣想的?
。2)根據分數與除法的關系,你能用商不變的規(guī)律來說明分數的基本性質嗎?
五、課本練習中的第1,2題。
六、課堂總結
這節(jié)課你學到了什么?什么是分數的基本性質?你是怎樣理解的分數的基本性質要注意什么?我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
七、板書設計:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。這叫做分數基本性質。
分數的基本性質教學設計 13
教學目標:
知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小不變的分數;培養(yǎng)學生觀察比較、抽象概括及動手實踐的能力,進一步發(fā)展學生的思維。
過程與方法:經歷探究分數基本性質的過程,感受“變與不變”,“轉化”等數學思想方法。情感態(tài)度與價值觀:激發(fā)學生積極主動的情感狀態(tài),養(yǎng)成注意傾聽的習慣,體驗互助合作的樂趣。
教學重點:
理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:
自主探究出分數的基本性質
教學準備:
PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。
講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?
生發(fā)表見解。
二、自主合作探索規(guī)律
1、反饋引導:1/2=2/4=4/8!叭齻徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數等式的分子分母相同么?但是它們的`大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發(fā)現分數的分子分母改變了,什么卻沒有變?師貼板帖分數可真與眾不同呵!
2、提出探究任務:那如果我讓們動手做或者聯系生活實際想,像這樣大小相等的分數,只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:
。1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
。2)思考:在寫分數的過程中你們發(fā)現了什么規(guī)律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發(fā)現規(guī)律把每組數從左往右或者從右向左仔細觀察你能發(fā)現分子分母的怎樣的變化規(guī)律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的基本性質打出幻燈
5、反思規(guī)律看書對照找出關鍵詞要求重讀共同讀
6、引證規(guī)律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數的正確性并由此發(fā)現了分數的基本性質那你能否利用分數與除法的關系以及整數除法中商不變性質,再一次說明分數的基本性質。
三、自學例題運用規(guī)律
過渡:同學們剛剛的精彩表現展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”,F在開始
生自學
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結課堂作業(yè)
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節(jié)課我們就上到這兒。
作業(yè):余下來的時間請完成課本97頁練習十八的1-3題,做在書上。
分數的基本性質教學設計 14
預設目標:
1、使學生經歷探索分數基本性質的過程,初步理解和掌握分數的基本性質,知道它與商不變規(guī)律之間的聯系。
2、使學生能應用分數的基本性質,把一個分數化成指定分母或分子而大小不變的分數。
3、使學生在觀察、操作、思考和交流等活動中,培養(yǎng)分析、綜合和抽象、概括能力,體驗數學學習的樂趣。
教學重點:
探索、發(fā)現、歸納和理解分數的基本性質。
教學過程:
一、導入
猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。
二、學習新知
1、提供例證
。1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據是什么?你能接著往下再寫一個除法算式嗎?
板書:1/3=2/6=3/9(得出三個相等的分數)
。2)學生折紙找與1/2相等的分數。
你能先對折,涂色表示它的1/2嗎?你能通過繼續(xù)對折,找出和1/2相等的其他分數嗎?
展示與1/2相等的分數,并逐步板書:1/2=2/4=4/8=8/16
2、誘導探索
提問:這些分數的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規(guī)律呢?分數的分子、分母怎樣變化分數的大小不變呢?
3、探究新知
。1)獨立思考或小組交流。
(2)探究驗證。
你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數中任意選一組具體說說分數的分子、分母怎樣變化以后,分數的大小不變?
教師根據學生的回答進行板書。
4、揭示結論:出示分數的基本性質的內容,并揭示課題。
5、深究結論:
。1)在分數的基本性質中,你認為哪些字詞比較重要,為什么?
。2)齊讀并理解記憶分數的基本性質。
三、多層練習
1、填一填。(在○里填運算符號,在□里填數或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判斷。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、課堂作業(yè):
1、第62頁“練一練”2。
2、第63頁第3題。
3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?
反思
“分數的基本性質”在分數教學中占有重要的地位,它是約分、通分的依據,對于以后學習比的基本性質也有很大的幫助,所以分數的基本性質是本單元的教學重點。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數學知識,更主要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感,讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,這節(jié)課我是這樣設計教學的:
1、通過商不變的性質、除法與分數的關系的復習,幫助學生意識到商不變的變規(guī)律與新知識的聯系,為新知識的學習做好必要的準備。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發(fā)學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的`學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。每一步教學,都強調學生自主參與,通過規(guī)律讓學生自主發(fā)現、方法讓學生自主尋找、問題讓學生自主解決,使學生獲得成功的體驗,增強學習的自信心。
3、讓學生在多層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3、4題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題是開放題,加深學生對分數的基本性質的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
分數的基本性質教學設計 15
1.教材簡析
《分數的基本性質》是蘇教版小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規(guī)律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發(fā)現規(guī)律。
2.教材處理
以前,教師通常把《分數的基本性質》看作一種靜態(tài)的數學知識,教學時先用幾個例子讓學生較快地概括出規(guī)律,然后更多地通過精心設計的練習鞏固應用規(guī)律,著眼于規(guī)律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法”。根據這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現分數的基本性質,從而體驗發(fā)現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法;谝陨纤伎迹乙宰寣W生探究發(fā)現分數基本性質的過程為教學重點,創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。
設計意圖:
本課主要本著遵循小學數學課程標準“創(chuàng)設問題情境提出問題解決問題建立數學模型解釋數學模型運用數學模型拓展數學模型”的指導思想而設計的。
1、通過故事創(chuàng)設問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。
2、從故事情境中提出問題,體現數學來源于生活。
3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。
4、從幾組分數中分析,找到分數的基本性質,從而初步建立數學模型。
5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。
6、在游戲活動中對數學知識進行拓展運用。
教學目標
1.知識與技能
。1)經歷探索分數的基本性質的過程,理解分數的基本性質。
。2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2.過程與方法
(1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質作出簡要的、合理的說明。
(2) 培養(yǎng)學生的觀察、比較、歸納、總結概括能力。
。3)能根據解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。
3.情感態(tài)度與價值觀
。1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。
。2)體驗數學與日常生活密切相關。
教學重點
理解分數的基本性質
教學難點
能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數
教學準備
師:電腦課件 學生:圓紙片 長方形紙
教學步驟:
一、故事引人,揭示課題。
1.教師講故事。
話說唐僧師徒四人去西天去取經,這天走在路上,唐僧感覺餓了,就叫孫悟空去化齋,孫悟空答應了聲駕起筋斗云走了,不一會,他就帶回了三塊一樣大的餅,唐僧說:三塊餅,我們四個人怎么吃呢?孫悟空說:“你分給我一塊餅的四分之一就行了” 唐僧就把第一塊餅平均分成四塊,給了一塊給孫悟空。沙僧說:“我想要兩塊”
唐僧把第二塊餅平均分成八塊,給了2塊給沙僧。豬八戒比較貪心,他說:“我要三塊,我要三塊”,于是唐僧把第三塊餅又平均分成12塊,給了豬八戒3塊。同學們,你知道孫悟空、豬八戒、沙僧三人誰分的'多嗎?
[ 一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2.組織討論,動手操作。
(1)小組討論,誰分的多
。2)拿出三張紙,分別涂出它們的1/4、2/8、3/12。
(3)比較涂色部分的大小,有什么發(fā)現,得出什么結論。
既然他們三個分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,1/4=2/8=3/12,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(4)教師演示
3.教學例1
。1)引導比較。
師問:這四個分數,為什么分母不同呢?前兩個分數的分子為什么都是1?
你知道其中哪些分數是相等的嗎?
根據學生回答板書:1/3=2/6=3/9
師追問:你是怎么知道這三個分數相等的?(圖中觀察出來的)
(2)師演示驗證大小。
。3)完成“練一練”第1題
學生先涂色表示已知分數,再在右圖中涂出相等部分。
完成填空后,說說怎么想的。
4.教學例2。
。1)組織操作。
師:取出正方形紙,先對折,用涂色部分表示它的1/2。
學生完成折紙、涂色。
師問:你能通過繼續(xù)對折,找出和1/2相等的其它分數嗎?
學生在小組中操作,教師巡視指導。
學生展開折法并匯報,可能出現的方法有:
連續(xù)對折兩次,平均分成4份。如圖:
1/2=1/4
、谶B續(xù)對折三次,平均分成8份。如圖:
1/2=4/8
、圻B續(xù)對折四次,平均分成16份。
師追問:每次對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數表示?
得到的這些分數與1/2相等嗎?能不能再寫一些與1/2相等的數?
板書:1/2=2/4=4/8=8/16=16/32……
(2)發(fā)現規(guī)律。
師:你有什么發(fā)現?(如學生觀察有困難,可進行以下提示)
、佟淖笸铱,它們的分子、分母是怎樣變化的?你有什么發(fā)現?
學生觀察、思考,在小組中交流。
師問:觀察例1中的1/3=2/6=3/9,有這樣的規(guī)律嗎?
分數的基本性質教學設計 16
教材分析
1.分數基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數基本性質顯得尤為重要。而分數與除法的關系以及除法中的商不變規(guī)律,與這部分知識緊密聯系,是學習這部分內容的基礎。
2.教材安排了兩個學習活動,讓學生尋找相等的分數,通過活動使學生初步體驗分數的大小相等關系,為觀察發(fā)現分數的基本性質提供的豐富的學習資料,然后引導學生分別觀察這兩組相等的分數,尋找每組分數的分子、分母的變化規(guī)律,并展開充分的交流討論,在此基礎上歸納出:分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變。
學情分析
學生已明確商不變規(guī)律,分數與除法的關系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經初步養(yǎng)成了合作學習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導下完成“質疑—探索——釋疑——應用”這一完整的學習過程。
因此在教學中,我主要采用引導學生探索以及小組合作學習相結合的方法,讓學生探索出分數的基本性質,并會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,能有效地提高教學效率。
教學目標
經歷探索分數基本性質的過程,理解分數基本性質。
能運用分數基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點和難點
理解分數基本性質,能運用分數基本性質轉化分數。
教學過程
一、復習導入
二、探究新知
實踐操作,探究規(guī)律
觀察發(fā)現:初步概括分數基本性質
括歸納分數基本性質
三、課堂練習
四、課堂小結
出示復習題口答卡片, 復習商不變的規(guī)律、分數與除法的關系。
1、 講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”
提出問題: 這些分數都相等嗎?
觀察這組相等的分數,你發(fā)現了什么?把你的發(fā)現說給同伴聽。
分子、分母都乘或除以一個數,這個數可以是0嗎?為什么?
1、課本P43的“試一試”
2、數學游戲:說出相等的分數
3、課本P44的.“練一練”第1~2.4
通過這節(jié)課的學習、你學會了那些知識
口答
小組討論
拿出準備好的圓形紙片,折一折,畫一畫、涂一涂
小組討論、交流
小組討論、交流
做練習,完成后集體交流。
說說,讀分數基本性質
復習舊知,為學習新知識作鋪墊。
將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續(xù)探究營造良好氛圍。
讓學生通過實踐操作,激發(fā)學生參與學習探究的興趣,通過合作探究,初步感知有些分數的分子、分母不同,但分數的大小卻相等。
引導學生通過不同形式的觀察,逐步總結出存在的規(guī)律,這樣由淺入深,循序漸進,有利于學生探究學習知識。
在學生初步發(fā)現規(guī)律的基礎上,進一步理解分數的基本性質,并對分數的基本性質進行全面概括。
讓學生利用分數的基本性質解決問題,使學生對分數的基本性質理解的更深刻,同時體驗解決問題的樂趣。
對本節(jié)課的所學知識的回顧,及所學知識點的總結。
板書設計(需要一直留在黑板上主板書)分數基本性質被除數和除數同時擴大或縮小相同的倍數(零除外),商不變,這就是商不變的規(guī)律分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變,這叫做分數基本性質。
教學反思:
分數的基本性質在小學階段是數運算的又一次質的飛躍與擴展,是重要的一個環(huán)節(jié)。我在引導學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數的分子、分母是按一定的規(guī)律變化而分數大小不變。體現了理解與掌握數與數之間聯系、變化的觀點。
在本節(jié)課中,由于我對學困生關注度不高,使得他們在分數基本性質應用的過程中產生了困難。小組合作探究中的小組學習亦要不斷地完善。
分數的基本性質教學設計 17
教學目標:
1、理解分數的基本性質,并了解它與除法中商不變的規(guī)律之間的聯系。
2、理解和掌握分數的基本性質。
3、較好的實現知識教育與思想教育的有效結合。
教學重點:
理解和掌握分數的基本性質。
教學難點:
能熟練、靈活地運用分數的基本性質。
教學過程:
一、創(chuàng)設情景
師:學校為了豐富同學們的`科技知識,特別準備了三塊科普展板,內容涵蓋了科技領域的各個方面。同學們認真觀察后,你們有什么問題想要提出來呢?趕快分享一下吧!
師:猜想對解決問題很重要,它們到底相不相等?下面以小組為單位,想辦法來驗證一下。
二、新授
師:同學們想了很多好的方法,哪個小組愿意匯報一下?
生1:我們組是用繪圖的方式驗證的。我們首先繪制了三個相同大小的正方形,代表三塊展板,然后將它們分別均勻地劃分為2份、4份和8份,接著我們分別選擇其中的1份、2份和4份進行涂色(展示學生繪制的圖)。通過比較我們發(fā)現,涂色部分的大小是相等的,因此我們得出結論:
生2:我們小組采用了折紙的方法來驗證問題。我們首先取了三根相同長度的紙條,然后通過對折將它們分別平均分成2份、4份和8份,并用不同顏色標示每一份(展示學生的折紙情況)。通過折紙的過程,我們小組也發(fā)現了(學生在小組中討論、驗證)。
師:我們發(fā)現的這個規(guī)律,就是分數的基本性質。
同學們現在小組內總結一下,什么是分數的基本性質?
(學生認真討論)
師:同學們匯報一下你們的討論結果。
三、自主練習鞏固提高
課本第80頁1、2、3、題。
其中,第1題引導學生通過涂色和比較,加深對分數基本性質的直觀感受。
第2題二生爬黑板板演,第3、4題學生自做。師巡視指導。
課堂小結:
一生小結,他生補充,教師評判。
分數的基本性質教學設計 18
教學目標
1、通過教學,使學生歸納概括出分數的基本性質,并能理解分數基本性質,運用分數基本性質解題。
2、培養(yǎng)學生的遷移類推能力、抽象概括能力和觀察能力。
3、讓學生體會到數學知識間的內在聯系,感受學習數學知識的價值。
重點
分數的基本性質
難點
理解分數的基本性質
教具 3 張同樣的正方形或長方形紙片
教法 引導探究
教學設計流程
(一)導入
1. 直接口答下面各題的商,說說是怎樣想的?根據什么知識?
120 ÷20 = ( 12O×3 )÷(30 ×3 ) = ( 120 ÷10 )÷(30 ÷10 ) =
(二)教學實施
1、教學教材第75 頁的例1 。
拿3 張同樣的正方形或長方形紙片,分別對折一次、兩次、四次,平均分成2 份、4 份、8 份,涂上顏色,分別用分數表示涂色部分。
觀察它們的'分子、分母各是按照什么規(guī)律變化的?
學生以小組為單位討論
2、你還能舉出這樣的例子嗎?
3.觀察以上例子,你得出什么結論?
學生討論,匯報。
板書:分數的分子和分母同時乘或者除以相同的數(0 除外),分數的大小不變。
思考:
(1)為什么0要除外?
(2)能不能根據分數與除法的關系和商不變的性質來說明分數的基本性質?
(三)思維訓練
一個分數的分母不變,分子乘3 ,這個分數的大小有什么變化嗎?如果分子不變,分母除以5 呢?
(四)課堂小結
板書設計: 分數的基本性質
分數的分子和分母同時乘或者除以相同的數(0 除外),分數的大小不變。
教學后記: 教學效果和預設效果相一致。學生具體應用時出現錯誤原因:
1、分子和分母一乘一除。
2、分子和分母乘除倍數不一致。
3、學生習慣做乘法,不習慣做除法。
重新設計需要改進的地方:
1、多練習些分子、分母同時除以一個數的練習題。
2、教學分數基本性質時,強調:同時、相同的數、0除外。
分數的基本性質教學設計 19
教學目的:
理解分數的基本性質,并了解它與除法中商不變的規(guī)律之間的聯系。
2.理解和掌握分數的基本性質。
3.較好實現知識教育與思想教育的有效結合。
教學難點:
理解和掌握分數的基本性質,并運用分數的基本性質解決問題,進一步加深分數與除法之間的關系。
教學準備:
板書有關習題的`幻燈片。
教學過程:
一、復習
1.出示
在括號里填上適當的數:
指名說一說結果,并說一說你是根據什么填的?
二、課堂練習:
1.自主練習第4題。
學生先獨立做,教師巡視,并個別指導,集體訂正。
教師板書題目中的線段,指名讓學生板演。
在直線那些分數用同一個點表示是什么意思?(就是問哪幾個分數相等。)
怎樣找出相等的分數?
讓學生自己找。集體訂正是要求學生說一說你是根據什么找出相等的分數的?
然后要求學生在書上把這幾個相應的點找出來。指名板演。
2.自主練習第5題。
先讓學生獨立做,教師巡視。個別指導。
指名說一說你的結果,并說一說你是根據什么填的。重點要求學生說清楚利用分數的基本性質來進行填空。
教師根據學生的回答選擇幾個題目進行板書。
3.自主練習第6題。
先讓學生獨立做。教師巡視并個別指導。注意差生中出現的問題。
集體訂正。指名說一說自己的計算過程和結果。
教師根據學生的回答選擇幾個題目進行板書。
4.自主練習第7題。
學生獨立做。教師要求有困難的學生分組討論,教師個別指導。
集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據和理由。
5.自主練習第8題。
學生先獨立做。
集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數的大?哪種方法最好?
分數的基本性質教學設計 20
設計說明
1.注重情境創(chuàng)設,激發(fā)學生的學習興趣。
偉大的科學家愛因斯坦說過:“興趣是最好的老師!币簿褪钦f一個人一旦對某個事物產生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產生愉快的情緒,因此教學時要重視興趣在智力開發(fā)中的作用。本課時的教學通過分餅這一故事情境來創(chuàng)設一種和諧、愉悅的氣氛,激發(fā)學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的。接著教師提問設疑,導入新課。
2.突出學生的主體地位,在實踐操作中掌握新知。
學生是學習的主體,教師要時刻關注學生的主體地位。在探究分數的基本性質的過程中,給予學生充分的學習空間,讓學生自主探究,經歷折一折、畫一畫、剪一剪、比一比的過程,得出分數的基本性質,體驗成功的快樂。
課前準備
教師準備
PPT課件
學生準備
若干張同樣大小的圓形紙片 彩筆
教學過程
⊙故事引入
1.教師講故事。
師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們三兄弟吃,媽媽先把第一張餅平均分成兩份,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份。”媽媽點點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份。”媽媽又點點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。
大毛、二毛、三毛都滿意地笑了,媽媽也笑了。
設計意圖:借助故事給學生創(chuàng)設一個溫馨的學習情境,自然導入新課,迅速吸引學生的注意力,激發(fā)學生的學習興趣。
2.探究驗證。
(1)提出猜想。
師:同學們,你們知道三兄弟之間到底誰分得的餅多嗎?
生:同樣多。
師:這只是大家的猜想,大家的'猜想對不對呢?下面就讓我們當一次小數學家,一起來驗證這個猜想吧!
(2)驗證猜想。
請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。
、僬垡徽郏喊衙繌垐A形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。
、谕恳煌浚涸谡酆玫膱A形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數表示出來。
、奂粢患簦喊褕A形紙片中的涂色部分剪下來。
、鼙纫槐龋喊鸭粝碌耐可糠种丿B,比一比。
師:通過比較,結果是怎樣的?
生:同樣大。
設計意圖:通過自主猜想、自主驗證、自主發(fā)現,讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態(tài)的知識轉化為動態(tài)的求知過程,經歷分數的基本性質的形成過程。
3.揭示課題。
師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內容:分數的基本性質。(師板書,生齊讀課題)
⊙探究新知
1.觀察比較,探究規(guī)律。
(1)請同學們觀察,比較三個分數的大小。
師:三兄弟分得的餅同樣多,那么這三個分數的大小是怎樣的呢?(相等)
師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。
(2)請同學們仔細觀察,這三個分數什么變了,什么沒變?(分子、分母變了,大小沒變)
師:這三個分數的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?
(課件出示:比較它們的分子和分母)
、購淖笸铱矗前凑帐裁匆(guī)律變化的?
、趶挠彝罂,又是按照什么規(guī)律變化的?小組內討論,交流一下你們的發(fā)現。
師:我們從左往右看,誰愿意說一說自己的發(fā)現?(分數的分子和分母同時乘相同的數,分數的大小不變)
師:我們從右往左看,誰愿意說一說自己的發(fā)現?[分數的分子和分母同時除以相同的數(0除外),分數的大小不變]
師:你們能把這兩個發(fā)現合并成一句話嗎?[分數的分子和分母同時乘或者除以相同的數(0除外),分數的大小不變]
師:請同學們思考一下,這個數為什么不能是0?同桌之間討論。(因為在分數中,分母不能為0,并且在除法里,0不能作除數,所以這個數不能是0)
(3)教師總結分數的基本性質。(板書)
【分數的基本性質教學設計】相關文章:
分數基本性質教學設計02-15
《分數的基本性質》教學設計09-23
《分數的基本性質》教學設計05-24
分數的基本性質教學設計04-05
分數的基本性質教學設計08-11
分數的基本性質教學設計優(yōu)秀10-30
蘇教版分數的基本性質教學設計10-03
《分數的基本性質》教學設計優(yōu)秀05-09
分數基本性質教學設計(15篇)04-04
《分數基本性質》教學設計(精選15篇)04-02