1. <rp id="zsypk"></rp>

      2. 正弦定理的教學(xué)設(shè)計(jì)

        時(shí)間:2024-11-22 10:26:50 晶敏 教學(xué)設(shè)計(jì) 我要投稿

        正弦定理的教學(xué)設(shè)計(jì)(精選10篇)

          作為一位杰出的老師,常常要寫一份優(yōu)秀的教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可使學(xué)生在單位時(shí)間內(nèi)能夠?qū)W到更多的知識(shí)。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?下面是小編整理的正弦定理的教學(xué)設(shè)計(jì)(精選10篇),僅供參考,希望能夠幫助到大家。

        正弦定理的教學(xué)設(shè)計(jì)(精選10篇)

          正弦定理的教學(xué)設(shè)計(jì) 1

          一、教學(xué)內(nèi)容分析

          本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。

          本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。

          二、學(xué)情分析

          對(duì)高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。

          三、設(shè)計(jì)思想:

          培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的!边@個(gè)觀點(diǎn)從教學(xué)的角度來理解就是:知識(shí)不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。

          四、教學(xué)目標(biāo):

          1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性.

          2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類基本問題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無解三種情況。

          3、通過對(duì)實(shí)際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來源于生活,又服務(wù)與生活。

          五、教學(xué)重點(diǎn)與難點(diǎn)

          教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索與證明。

          突破難點(diǎn)的手段:抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。

          復(fù)習(xí)引入:

          1.在任意三角形行中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系?是否可以把邊、角關(guān)系準(zhǔn)確量化?

          2.在ABC中,角A、B、C的正弦對(duì)邊分別是a,b,c,你能發(fā)現(xiàn)它們之間有什么關(guān)系嗎?

          結(jié)論:

          證明:(向量法)過A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。

          正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。

          本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個(gè)問題需要精心設(shè)計(jì).一個(gè)是問題的.引入,一個(gè)是定理的證明.通過兩個(gè)實(shí)際問題引入,讓學(xué)生體會(huì)為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問題的方法.具體的思路就是從解決課本的實(shí)際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理.因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問題的能力。

          1.在教學(xué)過程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會(huì)數(shù)學(xué)問題是如何解決的,給學(xué)生解決問題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。

          2.在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段.利用《幾何畫板》探究比值的值,由動(dòng)到靜,取得了很好的效果,加深了學(xué)生的印象.

          3.由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時(shí)間的超時(shí),這說明我自己對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過程中時(shí)間的分配不夠適當(dāng),教學(xué)語言不夠精簡(jiǎn),今后我一定避免此類問題,爭(zhēng)取更大的進(jìn)步。

          正弦定理的教學(xué)設(shè)計(jì) 2

          一、教材分析

          “解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn) “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。

          二、學(xué)情分析

          我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。

          三、教學(xué)目標(biāo)

          1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。

          過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

          情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

          2、教學(xué)重點(diǎn)、難點(diǎn)

          教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。

          教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

          四、教學(xué)方法與手段

          為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

          五、教學(xué)過程

          為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:

          (一)創(chuàng)設(shè)情景,揭示課題

          問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?

          1671年兩個(gè)法國天文學(xué)家首次測(cè)出了地月之間的距離大約為 385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?

          問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

          [設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。

          (二)特殊入手,發(fā)現(xiàn)規(guī)律

          問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問題。在rt⊿abc中sina= ,sinb= ,sinc= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來嗎?

          引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理

          (三)類比歸納,嚴(yán)格證明

          問題4:本題屬于初中問題,而且比較簡(jiǎn)單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的rt⊿abc不小心寫成了銳角⊿abc,其它沒有變,你說這個(gè)結(jié)論還成立嗎?

          [設(shè)計(jì)說明]此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

          問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿abc改為角鈍角⊿abc,其它不變,這個(gè)結(jié)論仍然成立?我們光說成立不行,必須有能力進(jìn)行嚴(yán)格的理論證明,你有這個(gè)能力嗎?下面我希望你能用實(shí)力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)

          [設(shè)計(jì)說明] 放手給學(xué)生實(shí)踐的機(jī)會(huì)和時(shí)間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實(shí)踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時(shí),考慮到有部分同學(xué)基礎(chǔ)較差,考個(gè)人或小組可能無法完成探究任務(wù),教師在學(xué)生動(dòng)手的同時(shí),通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時(shí),也讓從無從下手的同學(xué)有個(gè)參考,不至于閑呆著浪費(fèi)時(shí)間。

          問題6:由此,你能否得到一個(gè)更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的'主要內(nèi)容,大名鼎鼎的正弦定理(此時(shí)板書課題并用紅色粉筆標(biāo)示出正弦定理內(nèi)容)

          教師講解:告訴大家,其實(shí)這個(gè)大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細(xì)亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個(gè)證明。也有說正弦定理的證明是13世紀(jì)的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在10XX年以前,人們就發(fā)現(xiàn)了這個(gè)充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個(gè)奇跡。老師希望21世紀(jì)的你能在今后的學(xué)習(xí)中也研究出一個(gè)被后人景仰的某某定理來,到那時(shí)我也就成了數(shù)學(xué)家的老師了。當(dāng)然,老師的希望能否變成現(xiàn)實(shí),就要看大家的了。

          [設(shè)計(jì)說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對(duì)學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識(shí)的熱情。

          (四)強(qiáng)化理解,簡(jiǎn)單應(yīng)用

          下面請(qǐng)大家看我們的教材2-3頁到例題1上邊,并自學(xué)解三角形定義。

          [設(shè)計(jì)說明] 讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時(shí)教師可以利用這段時(shí)間對(duì)個(gè)別學(xué)困生進(jìn)行輔導(dǎo),以減少掉隊(duì)的同學(xué)數(shù)量,同時(shí)培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。

          我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個(gè)簡(jiǎn)單的問題:

          問題7:(教材例題1)⊿abc中,已知a=30,b=75,a=40cm,解三角形。

          (本題簡(jiǎn)單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實(shí)踐中發(fā)現(xiàn)的問題給予必要的講評(píng))

          [設(shè)計(jì)說明] 充分給學(xué)生自己動(dòng)手的時(shí)間和機(jī)會(huì),由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。

          強(qiáng)化練習(xí)。

          讓全體同學(xué)限時(shí)完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。

          問題8:(教材例題2)在⊿abc中a=20cm,b=28cm,a=30,解三角形。

          [設(shè)計(jì)說明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時(shí),引導(dǎo)學(xué)生對(duì)比例題1研究,在什么情況下解三角形有唯一解?為什么?對(duì)學(xué)有余力的同學(xué)鼓勵(lì)他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進(jìn)一步討論》

          (五)小結(jié)歸納,深化拓展

          1、正弦定理

          2、正弦定理的證明方法

          3、正弦定理的應(yīng)用

          4、涉及的數(shù)學(xué)思想和方法。

          [設(shè)計(jì)說明] 師生共同總結(jié)本節(jié)課的收獲的同時(shí),引導(dǎo)學(xué)生學(xué)會(huì)自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會(huì)知識(shí)的形成、發(fā)展、完善的過程。

          (六)布置作業(yè),鞏固提高

          1、教材10頁習(xí)題1.1a組第1題。

          2、學(xué)有余力的同學(xué)探究10頁b組第1題,體會(huì)正弦定理的其他證明方法。

          證明:設(shè)三角形外接圓的半徑是r,則a=2rsina,b=2rsinb, c=2rsinc

          [設(shè)計(jì)說明] 對(duì)不同水平的學(xué)生設(shè)計(jì)不同梯度的作業(yè),尊重學(xué)生的個(gè)性差異,有利于因材施教的教學(xué)原則的貫徹。

          (七)板書設(shè)計(jì):(略)

          正弦定理的教學(xué)設(shè)計(jì) 3

          教材分析

          這是高三一輪復(fù)習(xí),內(nèi)容是必修5第一章解三角形。本章內(nèi)容準(zhǔn)備復(fù)習(xí)兩課時(shí)。本節(jié)課是第一課時(shí)。標(biāo)要求本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后應(yīng)落實(shí)在解三角形的應(yīng)用上。通過本節(jié)學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

         。1)通過對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理解三角形。

          (2)能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法判斷三角形形狀的問題。本章內(nèi)容與三角函數(shù)、向量聯(lián)系密切。

          作為復(fù)習(xí)課一方面將本章知識(shí)作一個(gè)梳理,另一方面通過整理歸納幫助學(xué)生進(jìn)一步達(dá)到相應(yīng)的學(xué)習(xí)目標(biāo)。

          學(xué)情分析

          學(xué)生通過必修5的學(xué)習(xí),對(duì)正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對(duì)于如何靈活運(yùn)用定理解決實(shí)際問題,怎樣合理選擇定理進(jìn)行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問題,學(xué)生還需通過復(fù)習(xí)提點(diǎn)有待進(jìn)一步理解和掌握。

          教學(xué)目標(biāo)知識(shí)目標(biāo):

         。1)學(xué)生通過對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦、余弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正、余弦定理與三角形內(nèi)角和定理,面積公式解斜三角形的兩類基本問題。

          (2)學(xué)生學(xué)會(huì)分析問題,合理選用定理解決三角形綜合問題。

          能力目標(biāo):

          培養(yǎng)學(xué)生提出問題、正確分析問題、獨(dú)立解決問題的能力,培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問題的運(yùn)算能力,培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思維能力。

          情感目標(biāo):

          通過生活實(shí)例探究回顧三角函數(shù)、正余弦定理,體現(xiàn)數(shù)學(xué)來源于生活,并應(yīng)用于生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,在教學(xué)過程中激發(fā)學(xué)生的探索精神。

          教學(xué)方法探究式教學(xué)、講練結(jié)合

          重點(diǎn)難點(diǎn)

          1、正、余弦定理的對(duì)于解解三角形的合理選擇;

          2、正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運(yùn)用。

          教學(xué)策略

          1、重視多種教學(xué)方法有效整合;

          2、重視提出問題、解決問題策略的指導(dǎo)。

          3、重視加強(qiáng)前后知識(shí)的密切聯(lián)系。

          4、重視加強(qiáng)數(shù)學(xué)實(shí)踐能力的培養(yǎng)。

          5、注意避免過于繁瑣的形式化訓(xùn)練

          6、教學(xué)過程體現(xiàn)“實(shí)踐→認(rèn)識(shí)→實(shí)踐”。

          設(shè)計(jì)意圖:

          學(xué)生通過必修5的學(xué)習(xí),對(duì)正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對(duì)于如何靈活運(yùn)用定理解決實(shí)際問題,怎樣合理選擇定理進(jìn)行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問題,學(xué)生還需通過復(fù)習(xí)提點(diǎn)有待進(jìn)一步理解和掌握。作為復(fù)習(xí)課一方面要將本章知識(shí)作一個(gè)梳理,另一方面要通過整理歸納幫助學(xué)生學(xué)會(huì)分析問題,合理選用并熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決三角形綜合問題和實(shí)際應(yīng)用問題。

          數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的'理解和掌握。雖然是復(fù)習(xí)課,但我們不能一味的講題,在教學(xué)中應(yīng)體現(xiàn)以下教學(xué)思想:

         、胖匾暯虒W(xué)各環(huán)節(jié)的合理安排:

          在生活實(shí)踐中提出問題,再引導(dǎo)學(xué)生帶著問題對(duì)新知進(jìn)行探究,然后引導(dǎo)學(xué)生回顧舊知識(shí)與方法,引出課題。激發(fā)學(xué)生繼續(xù)學(xué)習(xí)新知的欲望,使學(xué)生的知識(shí)結(jié)構(gòu)呈一個(gè)螺旋上升的狀態(tài),符合學(xué)生的認(rèn)知規(guī)律。

         、浦匾暥喾N教學(xué)方法有效整合,以講練結(jié)合法、分析引導(dǎo)法、變式訓(xùn)練法等多種方法貫穿整個(gè)教學(xué)過程。

         、侵匾曁岢鰡栴}、解決問題策略的指導(dǎo)。

         、戎匾暭訌(qiáng)前后知識(shí)的密切聯(lián)系。對(duì)于新知識(shí)的探究,必須增加足夠的預(yù)備知識(shí),做好銜接。要對(duì)學(xué)生已有的知識(shí)進(jìn)行分析、整理和篩選,把對(duì)學(xué)生后繼學(xué)習(xí)中有需要的知識(shí)選擇出來,在新知識(shí)介紹之前進(jìn)行復(fù)習(xí)。

         、勺⒁獗苊膺^于繁瑣的形式化訓(xùn)練。從數(shù)學(xué)教學(xué)的傳統(tǒng)上看解三角形內(nèi)容有不少高度技巧化、形式化的問題,我們?cè)诮虒W(xué)過程中應(yīng)該注意盡量避免這一類問題的出現(xiàn)。

          二、實(shí)施教學(xué)過程

         。ㄒ唬﹦(chuàng)設(shè)情境、揭示提出課題

          引例:要測(cè)量南北兩岸a、b兩個(gè)建筑物之間的距離,在南岸選取相距a點(diǎn)km的c點(diǎn),并通過經(jīng)緯儀測(cè)的,你能計(jì)算出a、b之間的距離嗎?若人在南岸要測(cè)量對(duì)岸b、d兩個(gè)建筑物之間的距離,該如何進(jìn)行?

         。ǘ⿵(fù)習(xí)回顧、知識(shí)梳理

          1.正弦定理:

          正弦定理的變形:

          利用正弦定理,可以解決以下兩類有關(guān)三角形的問題。

         。1)已知兩角和任一邊,求其他兩邊和一角;

         。2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角。(從而進(jìn)一步求出其他的邊和角)

          2.余弦定理:

          a2=b2+c2-2bccosa;

          b2=c2+a2-2cacosb;

          c2=a2+b2-2abcosc。

          cosa=;

          cosb=;

          cosc=。

          利用余弦定理,可以解決以下兩類有關(guān)三角形的問題:

         。1)已知三邊,求三個(gè)角;

          (2)已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角。

          3.三角形面積公式:

          (三)自主檢測(cè)、知識(shí)鞏固

         。ㄋ模┑淅龑(dǎo)航、知識(shí)拓展

          【例1】 △abc的三個(gè)內(nèi)角a、b、c的對(duì)邊分別是a、b、c,如果a2=b(b+c),求證:a=2b。

          剖析:研究三角形問題一般有兩種思路。一是邊化角,二是角化邊。

          證明:用正弦定理,a=2rsina,b=2rsinb,c=2rsinc,代入a2=b(b+c)中,得sin2a=sinb(sinb+sinc)sin2a-sin2b=sinbsinc

          因?yàn)閍、b、c為三角形的三內(nèi)角,所以sin(a+b)≠0。所以sin(a-b)=sinb。所以只能有a-b=b,即a=2b。

          評(píng)述:利用正弦定理,將命題中邊的關(guān)系轉(zhuǎn)化為角間關(guān)系,從而全部利用三角公式變換求解。

          思考討論:該題若用余弦定理如何解決?

          【例2】已知a、b、c分別是△abc的三個(gè)內(nèi)角a、b、c所對(duì)的邊,

         。1)若△abc的面積為,c=2,a=600,求邊a,b的值;

         。2)若a=ccosb,且b=csina,試判斷△abc的形狀。

         。ㄎ澹┳兪接(xùn)練、歸納整理

          【例3】已知a、b、c分別是△abc的三個(gè)內(nèi)角a、b、c所對(duì)的邊,若bcosc=(2a—c)cosb

         。1)求角b

         。2)設(shè),求a+c的值。

          剖析:同樣知道三角形中邊角關(guān)系,利用正余弦定理邊化角或角化邊,從而解決問題,此題所變化的是與向量相結(jié)合,利用向量的模與數(shù)量積反映三角形的邊角關(guān)系,把本質(zhì)看清了,問題與例2類似解決。

          此題分析后由學(xué)生自己作答,利用實(shí)物投影集體評(píng)價(jià),再做歸納整理。

         。ń獯鹇裕

          課時(shí)小結(jié)(由學(xué)生歸納總結(jié),教師補(bǔ)充)

          1、解三角形時(shí),找三邊一角之間的關(guān)系常用余弦定理,找兩邊兩角之間的關(guān)系常用正弦定理

          2、根據(jù)所給條件確定三角形的形狀,主要有兩種途徑:①化邊為角;②化角為邊。并常用正余弦定理實(shí)施邊角轉(zhuǎn)化。

          3、用正余弦定理解三角形問題可適當(dāng)應(yīng)用向量的數(shù)量積求三角形內(nèi)角與應(yīng)用向量的模求三角形的邊長(zhǎng)。

          4、應(yīng)用問題可利用圖形將題意理解清楚,然后用數(shù)學(xué)模型解決問題。

          5、正余弦定理與三角函數(shù)、向量、不等式等知識(shí)相結(jié)合,綜合運(yùn)用解決實(shí)際問題。

          課后作業(yè):

          材料三級(jí)跳

          創(chuàng)設(shè)情境,提出實(shí)際應(yīng)用問題,揭示課題

          學(xué)生在探究問題時(shí)發(fā)現(xiàn)是解三角形問題,通過問答將知識(shí)作一梳理。

          學(xué)生通過課前預(yù)熱1、2、3、的快速作答,對(duì)正余弦定理的基本運(yùn)用有了一定的回顧

          學(xué)生探討

          知識(shí)的關(guān)聯(lián)與拓展

          正余弦定理與三角形內(nèi)角和定理,面積公式的綜合運(yùn)用對(duì)學(xué)生來說也是難點(diǎn),尤其是根據(jù)條件判斷三角形形狀。此處列舉例2讓學(xué)生進(jìn)一步體會(huì)如何選擇定理進(jìn)行邊角互化。

          本課是在學(xué)生學(xué)習(xí)了三角函數(shù)、平面幾何、平面向量、正弦和余弦定理的基礎(chǔ)上而設(shè)置的復(fù)習(xí)內(nèi)容,因此本課的教學(xué)有較多的處理辦法。從解三角形的問題出發(fā),對(duì)學(xué)過的知識(shí)進(jìn)行分類,采用的例題是精心準(zhǔn)備的,講解也是至關(guān)重要的。一開始的復(fù)習(xí)回顧學(xué)生能夠很好的回答正弦定理和余弦定理的基本內(nèi)容,但對(duì)于兩個(gè)定理的變形公式不知,也就是說對(duì)于公式的應(yīng)用不熟練。設(shè)計(jì)中的自主檢測(cè)幫助學(xué)生回顧記憶公式,對(duì)學(xué)生更有針對(duì)性的進(jìn)行了訓(xùn)練。學(xué)生還是出現(xiàn)了問題,在遇到第一個(gè)正弦方程時(shí),是只有一組解還是有兩組解,這是難點(diǎn)。例1、例2是常規(guī)題,讓學(xué)生應(yīng)用數(shù)學(xué)知識(shí)求解問題,可用正弦定理,也可用余弦定理,幫助學(xué)生鞏固正弦定理、余弦定理知識(shí)。

          本節(jié)課授課對(duì)象為高三6班的學(xué)生,上課氛圍非;钴S?紤]到這是一節(jié)復(fù)習(xí)課,學(xué)生已經(jīng)知道了定理的內(nèi)容,沒有經(jīng)歷知識(shí)的發(fā)生與推導(dǎo),所以興趣不夠,較沉悶。奧蘇貝爾指出,影響學(xué)習(xí)的最重要因素是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識(shí)狀況去進(jìn)行教學(xué)。因而,在教學(xué)中,教師了解學(xué)生的真實(shí)的思維活動(dòng)是一切教學(xué)工作的實(shí)際出發(fā)點(diǎn)。教師應(yīng)當(dāng)"接受"和"理解"學(xué)生的真實(shí)思想,盡管它可能是錯(cuò)誤的或幼稚的,但卻具有一定的"內(nèi)在的"合理性,教師不應(yīng)簡(jiǎn)單否定,而應(yīng)努力去理解這些思想的產(chǎn)生與性質(zhì)等等,只有真正理解了學(xué)生思維的發(fā)生發(fā)展過程,才能有的放矢地采取適當(dāng)?shù)慕虒W(xué)措施以便幫助學(xué)生不斷改進(jìn)并最終實(shí)現(xiàn)自己的目標(biāo)。由于這種探究課型在平時(shí)的教學(xué)中還不夠深入,有些學(xué)生往往以一種觀賞者的身份參與其中,主動(dòng)探究意識(shí)不強(qiáng),思維水平?jīng)]有達(dá)到足夠的提升。這些都是不足之處,比較遺憾。但相信隨著課改實(shí)驗(yàn)的深入,這種狀況會(huì)逐步改善。畢竟輕松愉快的課堂是學(xué)生思維發(fā)展的天地,是合作交流、探索創(chuàng)新的主陣地,是思想教育的好場(chǎng)所。所以新課標(biāo)下的課堂將會(huì)是學(xué)生和教師共同成長(zhǎng)的舞臺(tái)!

          正弦定理的教學(xué)設(shè)計(jì) 4

          教材地位與作用:

          本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識(shí)非常重要。

          學(xué)情分析:

          作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們?cè)诮鉀Q任意三角形的邊與角問題,就比較困難。

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

          (根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo))

          教學(xué)目標(biāo)分析:

          知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

          能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。

          情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。

          教法學(xué)法分析:

          教法:采用探究式課堂教學(xué)模式,在教師的.啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

          學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動(dòng)手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

          教學(xué)過程

          (一)創(chuàng)設(shè)情境,布疑激趣

          “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠a=47°,∠b=53°,ab長(zhǎng)為1m,想修好這個(gè)零件,但他不知道ac和bc的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

          (二)探尋特例,提出猜想

          1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

          2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

          3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

          在三角形中,角與所對(duì)的邊滿足關(guān)系

          這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

          (三)邏輯推理,證明猜想

          1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

          (四)歸納總結(jié),簡(jiǎn)單應(yīng)用

          1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

          2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

          3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

          (五)講解例題,鞏固定理

          1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.

          例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來解三角形。

          2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.

          例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

          (六)課堂練習(xí),提高鞏固

          1.在△abc中,已知下列條件,解三角形.

          (1)a=45°,c=30°,c=10cm(2)a=60°,b=45°,c=20cm

          2.在△abc中,已知下列條件,解三角形.

          (1)a=20cm,b=11cm,b=30°(2)c=54cm,b=39cm,c=115°

          學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

          (七)小結(jié)反思,提高認(rèn)識(shí)

          通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

          1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

          3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

          (從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

          (八)任務(wù)后延,自主探究

          如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

          (九)作業(yè)布置

          p10習(xí)題1.1a組習(xí)題1。

          正弦定理的教學(xué)設(shè)計(jì) 5

          【教學(xué)課題】

        1.1.1正弦定理(第一課時(shí))

          【教學(xué)背景】

        本節(jié)課所面對(duì)的是普通高中招生中最后的一批學(xué)生,學(xué)習(xí)成績(jī)較差,中考成績(jī)大多在280分左右。自身缺少良好的學(xué)習(xí)習(xí)慣和一定的數(shù)學(xué)學(xué)習(xí)能力。因此在教學(xué)設(shè)計(jì)時(shí),以基礎(chǔ)知識(shí),基本方法的學(xué)習(xí)和應(yīng)用為主。在教學(xué)過程中,采用了以學(xué)生互動(dòng)探究為主的“五二五”教學(xué)模式,以提高學(xué)生的學(xué)習(xí)興趣。

          【教析分析】

        本章是高中數(shù)學(xué)必修5的第一章第一節(jié)內(nèi)容,是初中解直角三角形的拓展和延續(xù),重點(diǎn)揭示了三角形邊、角之間的數(shù)量關(guān)系。運(yùn)用它可以解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題。在高考中也常與三角函數(shù)、平面向量等知識(shí)結(jié)合在一起考考察。

          【學(xué)習(xí)目標(biāo)】

        通過對(duì)任意三角面積的探索,理解正弦定理的內(nèi)容及其推導(dǎo)過程;能夠通過觀察、歸納、猜想,由特殊到一般得到正弦定理,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)與創(chuàng)造的歷程;掌握正弦定理并能夠運(yùn)用正弦定理解決一些簡(jiǎn)單的求邊角問題。

          【學(xué)習(xí)重點(diǎn)】

        正弦定理的幾種形式。

          【學(xué)習(xí)難點(diǎn)】

        正弦定理的推導(dǎo)與證明。

          【學(xué)習(xí)方法】

        自主學(xué)習(xí)、合作探究

          【教學(xué)手段】

        多媒體輔助教學(xué)

          【學(xué)習(xí)過程】

          一、復(fù)習(xí)引入

          在直角三角形中是如何定義邊角關(guān)系?

          任意三角形的高怎么求?

          二、合作探究

         。ㄒ螅簩W(xué)生先獨(dú)立思考,再以小組為單位交流討論結(jié)果,并派代表展示本組的討論結(jié)果。)探究一:在△ABC中,分別以a,b,c為底邊,求出相應(yīng)邊的高,并求出△ABC的面積。

          結(jié)論:對(duì)任意△ABC都有===.探究二:你能利用三角形的面積公式,做適當(dāng)?shù)淖冃,探尋出各角與其對(duì)邊的關(guān)系嗎?

          探究三:正弦定理說明在一個(gè)三角形中,各邊與所對(duì)角的.正弦的比相等,你能想辦法求出這個(gè)比值嗎?

          三、閱讀教材,記憶公式

          我們利用正弦定理可以解決一些怎樣的解三角形問題?

          已知求;

          已知求.四、小組合作,成果展示(要求:一、三、五組先做第一題再做第二題詞,二、四、六組先做第二題再做第一題;每組派兩位同學(xué)到黑板上板書,一位同學(xué)講解。評(píng)價(jià)標(biāo)準(zhǔn):書寫規(guī)范,內(nèi)容準(zhǔn)確,聲音洪亮,思路清晰。)

          1、在中,a=3,b=3 ,B=60,求a邊所對(duì)角的正弦值。

          2、在中,A=60,B=75,a=10,求邊c。

          五、課堂小結(jié)

         。▽W(xué)生小結(jié),相互補(bǔ)充。)

          六、能力提升

          在ABC中,已知A450,a2,b2,求B。

          七、檢測(cè)評(píng)價(jià)

          長(zhǎng)江作業(yè)本2,3,4,5題。

          【教學(xué)反思】

          本節(jié)課較好的完成了教學(xué)任務(wù),實(shí)現(xiàn)了教學(xué)目標(biāo)。在教學(xué)過程設(shè)計(jì)上充分考慮了學(xué)生的實(shí)際情況,從復(fù)習(xí)初中所學(xué)的直角三角形的邊角關(guān)系引入,為學(xué)生接下來探究三角形的面積做好鋪墊和引導(dǎo)。而不會(huì)讓學(xué)生感到很突兀,不知道從哪個(gè)角度入手。我的這個(gè)引入設(shè)計(jì)看上去很簡(jiǎn)單,但卻是有心之作,是以學(xué)生為中心的一個(gè)設(shè)計(jì)。從后面對(duì)三角形面積的探究來看,這一個(gè)引入做的還是很成功的。

          本節(jié)課的第一個(gè)探究環(huán)節(jié)是對(duì)三角形面積公式的研究推導(dǎo),學(xué)生先獨(dú)立思考再小組交流討論,讓他們有了一定的結(jié)論和方法之后再交流討論,很好的保護(hù)了學(xué)生自主學(xué)習(xí)的空間,又給予了他們展示自己解決問題能力的機(jī)會(huì),同時(shí)學(xué)會(huì)了傾聽別人的想法,讓基礎(chǔ)較差的同學(xué)在交流中得到點(diǎn)撥,成績(jī)較好的同學(xué)在爭(zhēng)論中加深了自己對(duì)問題的理解和思考。最后由學(xué)生展示探究結(jié)果,教師給予適當(dāng)?shù)脑u(píng)價(jià)和鼓勵(lì),讓學(xué)生有學(xué)習(xí)的成就感,讓他們有了繼續(xù)學(xué)習(xí)的動(dòng)力和興趣。

          本節(jié)課的第二個(gè)探究環(huán)節(jié)是由三角形的面積公式變形推導(dǎo)出正弦定理,這一環(huán)節(jié)比較簡(jiǎn)單,操作性強(qiáng),學(xué)生一點(diǎn)就通。正弦定理的證明方法有很多,比如利用三角形全等、三角形的外接圓、向量法等,本節(jié)課我對(duì)教材做了改編,利用三角形的面積公式來推導(dǎo)正弦定理,思路自然,目標(biāo)明確,易于學(xué)生接受和探究。在具體推導(dǎo)時(shí),要注重學(xué)生思維的發(fā)展過程,這是數(shù)學(xué)的靈魂。

          在完成了正弦定理的推導(dǎo)之后,設(shè)計(jì)了兩個(gè)簡(jiǎn)單的求邊角問題。讓學(xué)生進(jìn)一步熟悉正弦定理的形式和結(jié)構(gòu)特征。并讓學(xué)生在每組的黑板上板書并講解,即促使學(xué)生養(yǎng)成規(guī)范答題的習(xí)慣,又提升了數(shù)學(xué)語言的表達(dá)能力,還反饋了本節(jié)課的學(xué)習(xí)效果。

          總的來說,本節(jié)課是以學(xué)生自己學(xué)、小組學(xué)、集體學(xué)為主要學(xué)習(xí)模式的課,充分調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性,每一位學(xué)生都動(dòng)了起來,都有所收獲。數(shù)學(xué)知識(shí)也在歡樂和諧的氛圍中主動(dòng)的進(jìn)入了學(xué)生的大腦。

          正弦定理的教學(xué)設(shè)計(jì) 6

          一、說教材

          正弦定理是高中新教材人教A版必修五第一章1.1.1的內(nèi)容,是學(xué)生在已有知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形的邊長(zhǎng)與角度之間的數(shù)量關(guān)系。提出兩個(gè)實(shí)際問題,并指出解決問題的關(guān)鍵在于研究三角形的邊、角關(guān)系,從而引導(dǎo)學(xué)生產(chǎn)生探索愿望,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)過程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對(duì)一般三角形進(jìn)行推導(dǎo),并引導(dǎo)學(xué)生分析正弦定理可以解決兩類關(guān)于解三角形的問題:

          (1)已知兩角和一邊,解三角形;

          (2)已知兩邊和其中一邊的對(duì)角,解三角形。

          二、說學(xué)情

          本節(jié)授課對(duì)象是高二學(xué)生,是在學(xué)生學(xué)習(xí)了必修四基本初等函數(shù)和三角恒等變換的基礎(chǔ)上,由實(shí)際問題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。高二學(xué)生對(duì)生產(chǎn)生活問題比較感興趣,由實(shí)際問題出發(fā)可以激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生產(chǎn)生探索研究的愿望。

          三、說教學(xué)目標(biāo)

          【知識(shí)與技能目標(biāo)】

          能準(zhǔn)確寫出正弦定理的`符號(hào)表達(dá)式,能夠運(yùn)用正弦定理理解三角形、初步解決某些測(cè)量和幾何計(jì)算有關(guān)的簡(jiǎn)單的實(shí)際問題。

          【過程與方法目標(biāo)】

          通過對(duì)定理的證明和應(yīng)用,鍛煉獨(dú)立解決問題的能力和體會(huì)分類討論和數(shù)形結(jié)合的思想方法。

          【情感態(tài)度價(jià)值觀目標(biāo)】

          通過對(duì)三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動(dòng)的過程,體會(huì)由特殊到一般再由一般到特殊的認(rèn)識(shí)事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識(shí)。

          四、教學(xué)重難點(diǎn)

          【重點(diǎn)】

          正弦定理及其推導(dǎo)。

          【難點(diǎn)】

          正弦定理的推導(dǎo)與正弦定理的運(yùn)用。

          五、說教學(xué)方法

          運(yùn)用“發(fā)現(xiàn)問題——自主探究——嘗試指導(dǎo)——合作交流”的教學(xué)方式,整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出:師生互動(dòng)、共同探索,教師指導(dǎo)、循序漸進(jìn)。

          新課引入——提出問題,激發(fā)學(xué)生的求知欲。掌握正弦定理的推導(dǎo)證明——分類討論,數(shù)形結(jié)合動(dòng)腦思考,由一般到特殊,組織學(xué)生自主探索,獲得正弦定理及證明過程。

          例題處理——始終由問題出發(fā),層層設(shè)疑,讓他們?cè)谔剿髦械玫街R(shí)。鞏固練習(xí),深化對(duì)正弦定理的理解。

          六、說教學(xué)過程

          (一)導(dǎo)入新課

          我采用的是設(shè)疑導(dǎo)入,進(jìn)行口頭提問:

          (1)在我國古代就有嫦娥奔月的神話故事,明月高懸,我們仰望星空,會(huì)有無限遐想,不禁會(huì)問,月亮離我們地球有多遠(yuǎn)呢?科學(xué)家們是怎樣測(cè)出來的呢?

          (2)設(shè)A,B兩點(diǎn)在河的兩岸,只給你米尺和量角設(shè)備,不過河你可以測(cè)出它們之間的距離嗎?

          設(shè)計(jì)意圖:通過生活中的知識(shí)引入,激發(fā)學(xué)生學(xué)習(xí)需要和學(xué)習(xí)期待,以問題引起學(xué)生學(xué)習(xí)熱情和探索新知的欲望。讓學(xué)生積極主動(dòng)的參與到課堂里面來,更好的調(diào)動(dòng)學(xué)習(xí)氛圍。

          (二)新課教學(xué)

          1.復(fù)習(xí)舊知

          帶動(dòng)學(xué)生回憶以前學(xué)過的知識(shí),并設(shè)置如下問題引導(dǎo)學(xué)生思考,減少學(xué)生對(duì)新知識(shí)的陌生感。

          教師提問:

          (1)請(qǐng)同學(xué)們回憶一下,直角三角形中的各個(gè)角的正弦是怎樣表示的?這三個(gè)式子可以用同一個(gè)量聯(lián)系起來嗎?

          (2)在一般三角形中,該式是否也成立呢?

          這樣的設(shè)置是層層遞進(jìn),符合學(xué)生的認(rèn)知特點(diǎn),由易到難,從表象到實(shí)質(zhì)的規(guī)律,并且為后面的原因的探究奠定了基礎(chǔ)。

          2.定理的推導(dǎo)

          定理的推導(dǎo)是數(shù)學(xué)學(xué)習(xí)必不可少的一種能力,因此進(jìn)行了如下推導(dǎo)過程。教師通過提示給出銳角三角形、鈍角三角形圖形設(shè)置一系列層層遞進(jìn)的問題,用問題牽引著學(xué)生去探究。并且將學(xué)生分成小組去討論該如何推導(dǎo)證明該定理。

          教師設(shè)問如下:

         、佼(dāng)△ABC是銳角三角形時(shí),結(jié)論是否還成立呢?

          ②在直角三角形中我們找的中間變量是直角三角形的斜邊,那么,此時(shí)我們應(yīng)該找一個(gè)什么樣的中間變量呢?

         、凼裁戳靠梢耘c三角形的邊與正弦值聯(lián)系起來呢?

          在得出結(jié)果之后接著設(shè)問:當(dāng)△ABC是鈍角三角形時(shí),結(jié)論是否還成立呢?通過這樣一個(gè)問題,不僅讓學(xué)生知道數(shù)學(xué)問題需要分類討論所有可能出現(xiàn)的情況,更能真正培養(yǎng)學(xué)生分析問題的能力與知識(shí)遷移能力,將在銳角三角形中的證明方法運(yùn)用到鈍角三角形中來。

          學(xué)生小組討論,小組代表發(fā)表自己的組內(nèi)的意見,得出結(jié)論。

          最后師生共同歸納定理的數(shù)學(xué)語言與文字語言。

          正弦定理的教學(xué)設(shè)計(jì) 7

          教學(xué)目標(biāo)

          【知識(shí)與技能】

          掌握正弦定理及推導(dǎo)過程,會(huì)利用正弦定理證明簡(jiǎn)單三角形以及求解三角形邊角問題。

          【過程與方法】

          通過三角函數(shù),向量數(shù)量積等多處知識(shí)間聯(lián)系來體現(xiàn)事物之間普遍聯(lián)系與辯證統(tǒng)一。

          【情感態(tài)度與價(jià)值觀】

          問題分析解決過程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。

          教學(xué)重難點(diǎn)

          【重點(diǎn)】

          正弦定理證明及應(yīng)用。

          【難點(diǎn)】

          正弦定理的證明,正弦定理在解三角形應(yīng)用思路。

          教學(xué)過程

         。ㄒ唬⿲(dǎo)入新課

          提出問題:在初中已經(jīng)學(xué)習(xí)過解直角三角形,已會(huì)根據(jù)直角三角形中已知的邊與角,求出未知的邊與角,直角三角形存在如下邊角關(guān)系,在一個(gè)三角形中各邊和他所對(duì)角的正弦之比相等,帶領(lǐng)學(xué)生猜測(cè)對(duì)任意三角形都成立?這就是這一節(jié)課主要研究的課題。

          板書課題,正弦定理。

          (二)生成新知

          提問:驗(yàn)證任意三角形成立?還需要驗(yàn)證哪些三角形結(jié)論成立?

          預(yù)設(shè)學(xué)生回答銳角三角形,鈍角三角形。

          提問:如何驗(yàn)證銳角三角形,鈍角三角形上述結(jié)論成立?能不能轉(zhuǎn)化成直角三角形研究邊角關(guān)系

          思考:嘗試用其他方法證明正弦定理。

          提問:觀察正弦定理的`結(jié)構(gòu),這個(gè)式子包含了哪些等式,每個(gè)等式有幾個(gè)量?

          學(xué)生小組討論總結(jié),三個(gè)等式,每個(gè)式子有四個(gè)量,如果知道其中三個(gè)可以求出第四個(gè)。

         。ㄈ╈柟烫岣

          課本例一,例二,思考利用正弦定理,可以解決斜三角形哪些類型的問題。

          小組討論,師生共同總結(jié)正弦定理解決的兩類斜三角形問題。

         。ㄋ模┬〗Y(jié)作業(yè)

          小結(jié):提問學(xué)生本節(jié)課有什么收獲,闡述正弦定理公式,及解決的問題。

          作業(yè):思考嘗試用其他方法證明正弦定理。

          正弦定理的教學(xué)設(shè)計(jì) 8

          一、教學(xué)目標(biāo):

          掌握正弦定理的基本概念及其應(yīng)用;

          理解正弦定理在三角形中的作用;

          掌握利用正弦定理解決實(shí)際問題的方法。

          二、教學(xué)重點(diǎn):

          掌握正弦定理的基本概念及其應(yīng)用;

          理解正弦定理在三角形中的作用;

          掌握利用正弦定理解決實(shí)際問題的方法。

          三、教學(xué)難點(diǎn):

          掌握利用正弦定理解決實(shí)際問題的方法;

          理解正弦定理在三角形中的作用。

          四、教學(xué)方法:

          講授法;

          示范法;

          練習(xí)法。

          五、教學(xué)過程:

          導(dǎo)入(5分鐘)

          通過觀察實(shí)物或圖片,讓學(xué)生回想起在三角形中哪些數(shù)學(xué)知識(shí)點(diǎn)。然后簡(jiǎn)單介紹正弦定理,引導(dǎo)學(xué)生理解正弦定理在三角形中的作用。

          新知講解(20分鐘)

          (1)什么是正弦定理?

          正弦定理是指在任意三角形中,任意一邊上的正弦值與另外兩邊的正弦值之比相等。具體表達(dá)式為:a/sin A=b/sin B=c/sin C。

         。2)正弦定理的應(yīng)用

          利用正弦定理可以解決三角形的任意邊的長(zhǎng)度問題,包括已知一邊、一角、一對(duì)相鄰邊的長(zhǎng)度,求第三邊的長(zhǎng)度;已知兩邊、一個(gè)角的正弦值和第三邊的長(zhǎng)度,求第二邊的長(zhǎng)度。

         。3)正弦定理的證明

          正弦定理的證明可以采用反證法。首先,根據(jù)余弦定理,我們可以得到以下方程:a^2=b^2+c^2-2bc*cos A。然后,我們可以根據(jù)反證法證明這個(gè)方程的兩邊與sin A成比例,即a/sin A=b/sin B=c/sin C。

          練習(xí)(20分鐘)

          解答學(xué)生的練習(xí)題(20分鐘)

          老師應(yīng)該針對(duì)學(xué)生的錯(cuò)誤答案進(jìn)行解答,并給予正確的指導(dǎo)和糾正。對(duì)于學(xué)生做對(duì)的題目,可以給予表揚(yáng)和鼓勵(lì)。同時(shí),也要引導(dǎo)學(xué)生自己總結(jié)歸納,以便在今后的學(xué)習(xí)中能夠更好地應(yīng)用正弦定理。

          歸納總結(jié)(10分鐘)

          老師可以讓學(xué)生簡(jiǎn)單總結(jié)一下今天的課程內(nèi)容,以便學(xué)生更好地理解和掌握正弦定理。可以強(qiáng)調(diào)正弦定理的.應(yīng)用場(chǎng)景和方法,并鼓勵(lì)學(xué)生在今后的學(xué)習(xí)和生活中多多應(yīng)用。

          布置作業(yè)(5分鐘)

          老師可以根據(jù)今天的課程內(nèi)容布置相應(yīng)的作業(yè),讓學(xué)生在家中進(jìn)行練習(xí)和鞏固。同時(shí),也可以讓學(xué)生回家后和家長(zhǎng)一起討論今天所學(xué)的內(nèi)容,以便更好地加深理解。

          結(jié)束語(5分鐘)

          老師可以簡(jiǎn)單總結(jié)一下今天的課程內(nèi)容,并強(qiáng)調(diào)正弦定理在解決實(shí)際問題中的重要性和應(yīng)用價(jià)值。同時(shí),也可以鼓勵(lì)學(xué)生在今后的學(xué)習(xí)中多多應(yīng)用正弦定理,提高自己的數(shù)學(xué)素養(yǎng)和能力。

          正弦定理的教學(xué)設(shè)計(jì) 9

          一、說教材分析

          1、教材地位和作用

          在初中,學(xué)生已經(jīng)學(xué)習(xí)了三角形的邊和角的基本關(guān)系;同時(shí)在必修4,學(xué)生也學(xué)習(xí)了三角函數(shù)、平面向量等內(nèi)容。這些為學(xué)生學(xué)習(xí)正弦定理提供了堅(jiān)實(shí)的基礎(chǔ)。正弦定理是初中解直角三角形的延伸,是揭示三角形邊、角之間數(shù)量關(guān)系的重要公式,本節(jié)內(nèi)容同時(shí)又是學(xué)生學(xué)習(xí)解三角形,幾何計(jì)算等后續(xù)知識(shí)的基礎(chǔ),而且在物理學(xué)等其它學(xué)科、工業(yè)生產(chǎn)以及日常生活等常常涉及解三角形的問題。依據(jù)教材的上述地位和作用,我確定如下教學(xué)目標(biāo)和重難點(diǎn)

          2、教學(xué)目標(biāo)

         。1)知識(shí)目標(biāo):

         、僖龑(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,探索證明正弦定理的方法;

         、诤(jiǎn)單運(yùn)用正弦定理解三角形、初步解決某些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題。

          (2)能力目標(biāo):

         、偻ㄟ^對(duì)直角三角形邊角數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理,體驗(yàn)用特殊到一般的思想方法發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程。

         、谠诶谜叶ɡ韥斫馊切蔚倪^程中,逐步培養(yǎng)應(yīng)用數(shù)學(xué)知識(shí)來解決社會(huì)實(shí)際問題的能力。

         。3)情感目標(biāo):通過設(shè)立問題情境,激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī)和好奇心理,使其主動(dòng)參與雙邊交流活動(dòng)。通過對(duì)問題的提出、思考、解決培養(yǎng)學(xué)生自信、自立的優(yōu)良心理品質(zhì)。通過教師對(duì)例題的講解培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣及科學(xué)的學(xué)習(xí)態(tài)度。

          3、教學(xué)的重﹑難點(diǎn)

          教學(xué)重點(diǎn):

          正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用;

          教學(xué)難點(diǎn):正弦定理的探索及證明;

          教學(xué)中為了達(dá)到上述目標(biāo),突破上述重難點(diǎn),我將采用如下的教學(xué)方法與手段

          二、說教學(xué)方法與手段

          1、教學(xué)方法

          教學(xué)過程中以教師為主導(dǎo),學(xué)生為主體,創(chuàng)設(shè)和諧、愉悅教學(xué)環(huán)境。根據(jù)本節(jié)課內(nèi)容和學(xué)生認(rèn)知水平,我主要采用啟導(dǎo)法、感性體驗(yàn)法、多媒體輔助教學(xué)。

          2、學(xué)法指導(dǎo)

          學(xué)情調(diào)動(dòng):學(xué)生在初中已獲得了直角三角形邊角關(guān)系的'初步知識(shí),正因如此學(xué)生在心理上會(huì)提出如何解決斜三角形邊角關(guān)系的疑問。

          學(xué)法指導(dǎo):指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,讓學(xué)生在問題情景中學(xué)習(xí),再通過對(duì)實(shí)例進(jìn)行具體分析,進(jìn)而觀察歸納、演練鞏固,由具體到抽象,逐步實(shí)現(xiàn)對(duì)新知識(shí)的理解深化。

          3、教學(xué)手段

          利用多媒體展示圖片,極大的吸引學(xué)生的注意力,活躍課堂氣氛,調(diào)動(dòng)學(xué)生參與解決問題的積極性。為了提高課堂效率,便于學(xué)生動(dòng)手練習(xí),我把本節(jié)課的例題、課堂練習(xí)制作成一張習(xí)題紙,課前發(fā)給學(xué)生。

          下面我講解如何運(yùn)用上述教學(xué)方法和手段開展教學(xué)過程

          三、說教學(xué)過程設(shè)計(jì)

          教學(xué)流程:

          引出課題

          引出新知

          歸納方法

          鞏固新知

          布置作業(yè)

          四、說總結(jié)分析:

          現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的性質(zhì)概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上的,因此我在教學(xué)設(shè)計(jì)過程中注意了:

         、逶趯W(xué)生已有知識(shí)結(jié)構(gòu)和新性質(zhì)概念間尋找“最近發(fā)展區(qū)”。

         、嬉龑(dǎo)學(xué)生通過同化,順應(yīng)掌握新概念。

          ㈢設(shè)法走出“性質(zhì)概念一帶而過,演習(xí)作業(yè)鋪天蓋地”的誤區(qū),促使自己與學(xué)生一起走進(jìn)“重視探究、重視交流、重視過程”的新天地。

          我認(rèn)為本節(jié)課的設(shè)計(jì)應(yīng)遵循教學(xué)的基本原則;注重對(duì)學(xué)生思維的發(fā)展;貫徹教師對(duì)本節(jié)內(nèi)容的理解;體現(xiàn)“學(xué)思結(jié)合﹑學(xué)用結(jié)合”原則。希望對(duì)學(xué)生的思維品質(zhì)的培養(yǎng)﹑數(shù)學(xué)思想的建立﹑心理品質(zhì)的優(yōu)化起到良好的作用。

          設(shè)計(jì)意圖:我的板書設(shè)計(jì)的指導(dǎo)原則:簡(jiǎn)明直觀,重點(diǎn)突出。本節(jié)課的板書教學(xué)重點(diǎn)放在黑板的正中間,為了能加深學(xué)生對(duì)正弦定理以及其應(yīng)用的認(rèn)識(shí),把例題放在中間,以期全班同學(xué)都能看得到。

          正弦定理的教學(xué)設(shè)計(jì) 10

          大家好,今天我說課的題目是《正弦定理》。

          新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。

          一、說教材

          教師對(duì)教材的掌握程度,是評(píng)判一位教師是否能上好一堂課的基本標(biāo)準(zhǔn)。在正式內(nèi)容開始之前,我要先談一談對(duì)教材的理解。

          《正弦定理》是人教A版必修5第一章第一節(jié)的內(nèi)容,其主要內(nèi)容是正弦定理及其應(yīng)用。此前學(xué)習(xí)了三角函數(shù)的相關(guān)知識(shí),且積累很多的證明、推導(dǎo)的經(jīng)驗(yàn),為本節(jié)課的學(xué)習(xí)都起到了一定的鋪墊作用。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。

          二、說學(xué)情

          合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實(shí)際情況。

          這一階段的學(xué)生已經(jīng)具備了一定的分析問題、解決問題的能力,且在知識(shí)方面也有了一定的積累。所以,教學(xué)中,利用學(xué)生的特點(diǎn)以及原有經(jīng)驗(yàn)進(jìn)行教學(xué),增強(qiáng)學(xué)生的課堂參與度。

          三、說教學(xué)目標(biāo)

          根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

          (一)知識(shí)與技能

          能證明正弦定理,并能利用正弦定理解決實(shí)際問題。

          (二)過程與方法

          通過正弦定理的'推導(dǎo)過程,提高分析問題、解決問題的能力。

          (三)情感、態(tài)度與價(jià)值觀

          在正弦定理的推導(dǎo)過程中,感受數(shù)學(xué)的嚴(yán)謹(jǐn),提升對(duì)數(shù)學(xué)的興趣。

          四、說教學(xué)重難點(diǎn)

          我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)為:正弦定理。難點(diǎn):正弦定理的證明。

          五、說教法和學(xué)法

          現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習(xí)法、小組合作、自主探究等教學(xué)方法。

          六、說教學(xué)過程

          在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項(xiàng)活動(dòng)的安排也注重互動(dòng)、交流,最大限度的調(diào)動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。

          (一)導(dǎo)入新課

          首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。

          復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的邊和角存在什么樣的關(guān)系。在學(xué)生回顧之后,再提問:能否得到這個(gè)邊、角關(guān)系準(zhǔn)確量化的表示?引出本節(jié)課學(xué)習(xí)的內(nèi)容——正弦定理。

          通過溫故知新的導(dǎo)入方式,能為本節(jié)課的后續(xù)的教學(xué)做好鋪墊。

          (二)講解新知

          接下來是新課講授環(huán)節(jié),我將分為四部分,分別為在直角三角形中推導(dǎo)正弦定理、在銳角三角形中推導(dǎo)正弦定理、在鈍角三角形中推導(dǎo)正弦定理以及正弦定理的應(yīng)用。

          素的過程叫做解三角形。

          在介紹完正弦定理后,接下來介紹正弦定理的應(yīng)用。通過提問:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?總結(jié):如果已知三角形的任意兩個(gè)角與一邊,由三角形內(nèi)角和定理,可以計(jì)算出三角形的另一角,并由正弦定理計(jì)算出三角形的另兩邊;如果已知三角形的任意兩邊與其中一邊的對(duì)角,應(yīng)用正弦定理,可以計(jì)算出另一邊的對(duì)角的正弦值,進(jìn)而確定這個(gè)角和三角形其他的邊和角。

          整節(jié)課,本著學(xué)生為主體,教師為主導(dǎo)的設(shè)計(jì)理念,結(jié)合教學(xué)內(nèi)容和學(xué)生的特點(diǎn),利用學(xué)生已有的知識(shí)經(jīng)驗(yàn),采用層次性的問題,一步步引導(dǎo)學(xué)生思考交流、發(fā)現(xiàn)知識(shí)。并且在整個(gè)過程中,講授法、引導(dǎo)法、合作探究等多種教學(xué)方法的使用,不但讓學(xué)生學(xué)會(huì)知識(shí),也培養(yǎng)學(xué)生的學(xué)習(xí)能力。通過這樣的設(shè)計(jì),提升學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,提高學(xué)習(xí)數(shù)學(xué)的興趣。

         

        【正弦定理的教學(xué)設(shè)計(jì)】相關(guān)文章:

        《正弦定理》教學(xué)設(shè)計(jì)(精選11篇)10-24

        正弦定理教學(xué)設(shè)計(jì)(精選5篇)02-09

        正弦定理教學(xué)反思05-21

        正弦定理教學(xué)反思范文10-20

        正弦定理課后的教學(xué)反思10-17

        正弦定理說課稿05-20

        《正弦定理》說課稿10-19

        正弦定理說課稿07-12

        《正弦定理》教學(xué)反思(精選10篇)04-11

        正弦定理教學(xué)反思4篇05-24

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>