- 相關(guān)推薦
高一數(shù)學(xué)教案集錦15篇
作為一名優(yōu)秀的教育工作者,時(shí)常需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那么什么樣的教案才是好的呢?下面是小編收集整理的高一數(shù)學(xué)教案,歡迎閱讀與收藏。
高一數(shù)學(xué)教案1
教材分析:冪函數(shù)作為一類重要的函數(shù)模型,是學(xué)生在系統(tǒng)地學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。本課的教學(xué)重點(diǎn)是掌握常見冪函數(shù)的概念和性質(zhì),難點(diǎn)是根據(jù)冪函數(shù)的單調(diào)性比較兩個同指數(shù)的指數(shù)式的大小。 冪函數(shù)模型在生活中是比較常見的,學(xué)習(xí)時(shí)結(jié)合生活中的具體實(shí)例來引出常見的冪函數(shù) 。
組織學(xué)生畫出他們的圖象,根據(jù)圖象觀察、總結(jié)這幾個常見冪函數(shù)的性質(zhì)。對于冪函數(shù),只需重點(diǎn)掌握 這五個函數(shù)的圖象和性質(zhì)。 學(xué)習(xí)中學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學(xué)生對兩類不同函數(shù)的表達(dá)式進(jìn)行辨析。
學(xué)生已經(jīng)有了學(xué)習(xí)冪函數(shù)和對象函數(shù)的學(xué)習(xí)經(jīng)歷,這為學(xué)習(xí)冪函數(shù)做好了方法上的準(zhǔn)備。因此,學(xué)習(xí)過程中,引入冪函數(shù)的概念之后,嘗試放手讓學(xué)生自己進(jìn)行合作探究學(xué)習(xí)。
教學(xué)目標(biāo):
、逯R和技能
1、了解冪函數(shù)的概念,會畫冪函數(shù) ,的圖象,并能結(jié)合這幾個冪函數(shù)的圖象,了解冪函數(shù)圖象的變化情況和性質(zhì)。
2、了解幾個常見的冪函數(shù)的性質(zhì)。
㈡過程與方法
1、通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。
2、使學(xué)生進(jìn)一步體會數(shù)形結(jié)合的思想。
、缜楦、態(tài)度與價(jià)值觀
1、通過生活實(shí)例引出冪函數(shù)的概念,使學(xué)生體會到生活中處處有數(shù)學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。
2、利用計(jì)算機(jī)等工具,了解冪函數(shù)和指數(shù)函數(shù)的本質(zhì)差別,使學(xué)生充分認(rèn)識到現(xiàn)代技術(shù)在人們認(rèn)識世界的過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。 教學(xué)重點(diǎn) 常見冪函數(shù)的概念和性質(zhì) 教學(xué)難點(diǎn) 冪函數(shù)的單調(diào)性與冪指數(shù)的關(guān)系
教學(xué)過程
一、創(chuàng)設(shè)情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系? (總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。
問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。
問題4:如果正方形場地面積為S,那么正方形的邊長xx,這里a是S的函數(shù)
問題5:如果某人xxs內(nèi)騎車行進(jìn)了xxkm,那么他騎車的速度,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點(diǎn)嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
。ㄒ唬﹥绾瘮(shù)的概念如果設(shè)變量為,函數(shù)值為xx,你能根據(jù)以上的生活實(shí)例得到怎樣的一些具體的函數(shù)式?這里所得到的函數(shù)是冪函數(shù)的幾個典型代表,你能根據(jù)此給出冪函數(shù)的一般式嗎?這就是冪函數(shù)的一般式,你能根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)的定義,給出冪函數(shù)的定義嗎?xx冪函數(shù)的定義:一般地,我們把形如xx的函數(shù)稱為冪函數(shù)(power function),其中xx是自變量,xx是常數(shù)。
【探究一】冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念)
結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別:對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù)對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù)
試一試:判斷下列函數(shù)那些是冪函數(shù)(1)(2)(3)(4)我們已經(jīng)對冪函數(shù)的概念有了比較深刻的認(rèn)識,根據(jù)我們前面學(xué)習(xí)指數(shù)函數(shù)、對數(shù)函數(shù)的學(xué)習(xí)經(jīng)歷,你認(rèn)為我們下面應(yīng)該研究什么呢?(研究圖象和性質(zhì))
(二)幾個常見冪函數(shù)的圖象和性質(zhì) 在初中我們已經(jīng)學(xué)習(xí)了冪函數(shù)x的圖象和性質(zhì),請同學(xué)們在同一坐標(biāo)系中畫出它們的圖象。根據(jù)你的學(xué)習(xí)經(jīng)歷,你能在同一坐標(biāo)系內(nèi)畫出函數(shù)x的圖象嗎?
【探究二】觀察函數(shù)x的圖象,將你發(fā)現(xiàn)的結(jié)論寫在下表內(nèi)。定義域,值域,奇偶性,單調(diào)性,定點(diǎn),圖象范圍
【探究三】根據(jù)上表的內(nèi)容并結(jié)合圖象,試總結(jié)函數(shù):x的共同性質(zhì)。
。1)函數(shù)x的圖象都過點(diǎn)
(2)函數(shù)x在x上單調(diào)遞增;
歸納:冪函數(shù)x圖象的基本特征是,當(dāng)x是,圖象過點(diǎn)x,且在第一象限隨x的增大而上升,函數(shù)在區(qū)間x上是單調(diào)增函數(shù)。(演示幾何畫板制作課件:冪函數(shù)。asp)
請同學(xué)們模仿我們探究冪函數(shù)x圖象的基本特征x的情況探討x時(shí)冪函數(shù)x圖象的基本特征。(利用drawtools軟件作圖研究)
歸納:xx時(shí)冪函數(shù)x圖象的基本特征:過點(diǎn)x,且在第一象限隨x的增大而下降,函數(shù)在區(qū)間x上是單調(diào)減函數(shù),且向右無限接近X軸,向上無限接近Y軸。
。ㄈ├}剖析
【例1】求下列冪函數(shù)的定義域,并指出其奇偶性、單調(diào)性。(1) (2) (3)
分析:根據(jù)你的學(xué)習(xí)經(jīng)歷,你覺得求一個函數(shù)的定義域應(yīng)該從哪些方面來考慮?
方法引導(dǎo):解決有關(guān)函數(shù)求定義域的問題時(shí),可以從以下幾個方面來考慮,列出相應(yīng)不等式或不等式組,解不等式或不等式組即可得到所求函數(shù)的定義域。
。1)若函數(shù)解析式中含有分母,分母不能為0;
(2)若函數(shù)解析式中含有根號,要注意偶次根號下非負(fù);
(3)0的0次冪沒有意義;
。4)若函數(shù)解析式中含有對數(shù)式,要注意對數(shù)的真數(shù)大于0;求函數(shù)的定義域的本質(zhì)是解不等式或不等式組。
結(jié)論:在函數(shù)解析式中含有分?jǐn)?shù)指數(shù)時(shí),可以把它們的解析式化成根式,根據(jù)“偶次根號下非負(fù)”這一條件來求出對應(yīng)函數(shù)的定義域;當(dāng)函數(shù)解析式的冪指數(shù)為負(fù)數(shù)時(shí),根據(jù)負(fù)指數(shù)冪的意義將其轉(zhuǎn)化為分式形式,根據(jù)分式的分母不能為0這一限制條件來求出對應(yīng)函數(shù)的定義域。歸納分析如果判斷冪函數(shù)的單調(diào)性(第一象限利用性質(zhì),其余象限利用函數(shù)奇偶性與單調(diào)性的關(guān)系)
【例2】比較下列各組數(shù)中兩個值的大。ㄔ跈M線上填上“<”或“>”)
(1)________
。2)________
。3)__________
。4)____________
分析:利用考察其相對應(yīng)的冪函數(shù)和指數(shù)函數(shù)來比較大小
三、課堂小結(jié)
1、冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別
2、常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
四、布置作業(yè)
、逭n本第73頁習(xí)題2.4
第1、2、3題
、嫠伎碱}:根據(jù)下列條件對于冪函數(shù)x的有關(guān)性質(zhì)的敘述,分別指出冪函數(shù)x的圖象具有下列特點(diǎn)之一時(shí)的x的值,其中:
。1)圖象過原點(diǎn),且隨x的增大而上升;
。2)圖象不過原點(diǎn),不與坐標(biāo)軸相交,且隨x的增大而下降;
。3)圖象關(guān)于x軸對稱,且與坐標(biāo)軸相交;
。4)圖象關(guān)于x軸對稱,但不與坐標(biāo)軸相交;
(5)圖象關(guān)于原點(diǎn)對稱,且過原點(diǎn);
。6)圖象關(guān)于原點(diǎn)對稱,但不過原點(diǎn);
檢測與反饋
1、下列函數(shù)中,是冪函數(shù)的是( )
A、 B、 C、 D、
2、下列結(jié)論正確的是( )
A、冪函數(shù)的圖象一定過原點(diǎn)
B、當(dāng)xx時(shí),冪函數(shù)x是減函數(shù)
C、當(dāng)xx時(shí),冪函數(shù)x是增函數(shù)
D、函數(shù) 既是二次函數(shù),也是冪函數(shù)
3、下列函數(shù)中,在 是增函數(shù)的是( )
A、 B、 C、 D、
4、函數(shù) 的圖象大致是( )
5、已知某冪函數(shù)的圖象經(jīng)過點(diǎn) ,則這個函數(shù)的解析式為_______________________
6、寫出下列函數(shù)的定義域,并指出它們的單調(diào)性:
同伴評 (優(yōu)、良、中、須努力)
自 評 (優(yōu)、良、中、須努力)
教師評 (優(yōu)、良、中、須努力)
高一數(shù)學(xué)教案2
教材:邏輯聯(lián)結(jié)詞
目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞
二、命題的概念:
例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數(shù)嗎? x5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復(fù)合命題:
1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。
2.例:
(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對角線互相 菱形的對角線互相垂直且菱形的
垂直且平分⑤ 對角線互相平分
(3)0.5非整數(shù)⑥ 非0.5是整數(shù)
觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。
3.其實(shí),有些概念前面已遇到過
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復(fù)合命題的構(gòu)成形式
如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式
高一數(shù)學(xué)教案3
[教學(xué)重、難點(diǎn)]
認(rèn)識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點(diǎn)。
[教學(xué)準(zhǔn)備]
學(xué)生、老師剪下附頁2中的圖2。
[教學(xué)過程]
一、畫一畫,說一說
1、學(xué)生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。
2、教師巡查練習(xí)情況。
3、學(xué)生展示練習(xí),說一說為什么是銳角、直角、鈍角?
二、分一分
1、小組活動;把附頁2中的圖2中的三角形進(jìn)行分類,動手前先觀察這些三角形的特點(diǎn),然后小組討論怎樣分?
2、匯報(bào):分類的標(biāo)準(zhǔn)和方法。可以按角來分,可以按邊來分。
二、按角分類:
1、觀察第一類三角形有什么共同的特點(diǎn),從而歸納出三個角都是銳角的'三角形是銳角三角形。
2、觀察第二類三角形有什么共同的特點(diǎn),從而歸納出有一個角是直角的三角形是直角三角形
3、觀察第三類三角形有什么共同的特點(diǎn),從而歸納出有一個角是鈍角的三角形是鈍角三角形。
三、按邊分類:
1、觀察這類三角形的邊有什么共同的特點(diǎn),引導(dǎo)學(xué)生發(fā)現(xiàn)每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。
2、引導(dǎo)學(xué)生發(fā)現(xiàn)有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?
四、填一填:
24、25頁讓學(xué)生辨認(rèn)各種三角形。
五、練一練:
第1題:通過“猜三角形游戲”讓學(xué)生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。
第2題:在點(diǎn)子圖上畫三角形第3題:剪一剪。
六、完成26頁實(shí)踐活動。
高一數(shù)學(xué)教案4
【摘要】鑒于大家對數(shù)學(xué)網(wǎng)十分關(guān)注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案,供大家參考!
本文題目:空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案
第一課時(shí) 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖
教學(xué)要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.
教學(xué)重點(diǎn):畫出三視圖、識別三視圖.
教學(xué)難點(diǎn):識別三視圖所表示的空間幾何體.
教學(xué)過程:
一、新課導(dǎo)入:
1. 討論:能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計(jì)圖紙?
2. 引入:從不同角度看廬山,有古詩:橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學(xué)幾何體,常用三視圖和直觀圖來畫在紙上.
三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;
直觀圖:觀察者站在某一點(diǎn)觀察幾何體,畫出的空間幾何體的圖形.
用途:工程建設(shè)、機(jī)械制造、日常生活.
二、講授新課:
1. 教學(xué)中心投影與平行投影:
、 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以科學(xué)的抽象,總結(jié)其中的規(guī)律,提出了投影的方法。
② 中心投影:光由一點(diǎn)向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實(shí)形.
、 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.
討論:點(diǎn)、線、三角形在平行投影后的結(jié)果.
2. 教學(xué)柱、錐、臺、球的三視圖:
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖
討論:三視圖與平面圖形的關(guān)系? 畫出長方體的三視圖,并討論所反應(yīng)的長、寬、高
結(jié)合球、圓柱、圓錐的模型,從正面(自前而后)、側(cè)面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結(jié)果. 正視圖、側(cè)視圖、俯視圖.
、 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖. (
、 討論:三視圖,分別反應(yīng)物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長、寬、高)
正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
⑤ 討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀.
(試變化以上的三視圖,說出相應(yīng)幾何體的擺放)
3. 教學(xué)簡單組合體的三視圖:
、 畫出教材P16 圖(2)、(3)、(4)的三視圖.
、 從教材P16思考中三視圖,說出幾何體.
4. 練習(xí):
① 畫出正四棱錐的三視圖.
畫出右圖所示幾何體的三視圖.
、 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.
5. 小結(jié):投影法;三視圖;順與逆
三、鞏固練習(xí): 練習(xí):教材P17 1、2、3、4
第二課時(shí) 1.2.3 空間幾何體的直觀圖
教學(xué)要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.
教學(xué)重點(diǎn):畫出直觀圖.
高一數(shù)學(xué)教案5
學(xué)習(xí)目標(biāo) 1.函數(shù)奇偶性的概念
2.由函數(shù)圖象研究函數(shù)的奇偶性
3.函數(shù)奇偶性的判斷
重點(diǎn):能運(yùn)用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性
難點(diǎn):理解函數(shù)的奇偶性
知識梳理:
1.軸對稱圖形:
2中心對稱圖形:
【概念探究】
1、 畫出函數(shù) ,與 的圖像;并觀察兩個函數(shù)圖像的對稱性。
2、 求出 , 時(shí)的函數(shù)值,寫出 , 。
結(jié)論: 。
3、 奇函數(shù):___________________________________________________
4、 偶函數(shù):______________________________________________________
【概念深化】
(1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。
(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對稱。
5、奇函數(shù)與偶函數(shù)圖像的對稱性:
如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的__________。反之,如果一個函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對稱中心的中心對稱圖形,則這個函數(shù)是___________。
如果一個函數(shù)是偶函數(shù),則這個函數(shù)的圖像是以 軸為對稱軸的__________。反之,如果一個函數(shù)的圖像是關(guān)于 軸對稱,則這個函數(shù)是___________。
6. 根據(jù)函數(shù)的奇偶性,函數(shù)可以分為____________________________________.
題型一:判定函數(shù)的奇偶性。
例1、判斷下列函數(shù)的奇偶性:
(1) (2) (3)
(4) (5)
練習(xí):教材第49頁,練習(xí)A第1題
總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?
題型二:利用奇偶性求函數(shù)解析式
例2:若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng) 時(shí)f(x)的解析式。
練習(xí):若f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。
已知定義在實(shí)數(shù)集 上的奇函數(shù) 滿足:當(dāng)x0時(shí), ,求 的表達(dá)式
題型三:利用奇偶性作函數(shù)圖像
例3 研究函數(shù) 的性質(zhì)并作出它的圖像
練習(xí):教材第49練習(xí)A第3,4,5題,練習(xí)B第1,2題
當(dāng)堂檢測
1 已知 是定義在R上的奇函數(shù),則( D )
A. B. C. D.
2 如果偶函數(shù) 在區(qū)間 上是減函數(shù),且最大值為7,那么 在區(qū)間 上是( B )
A. 增函數(shù)且最小值為-7 B. 增函數(shù)且最大值為7
C. 減函數(shù)且最小值為-7 D. 減函數(shù)且最大值為7
3 函數(shù) 是定義在區(qū)間 上的偶函數(shù),且 ,則下列各式一定成立的是(C )
A. B. C. D.
4 已知函數(shù) 為奇函數(shù),若 ,則 -1
5 若 是偶函數(shù),則 的單調(diào)增區(qū)間是
6 下列函數(shù)中不是偶函數(shù)的是(D )
A B C D
7 設(shè)f(x)是R上的偶函數(shù),切在 上單調(diào)遞減,則f(-2),f(- ),f(3)的大小關(guān)系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函數(shù) 的圖像必經(jīng)過點(diǎn)( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函數(shù) 為偶函數(shù),其圖像與x軸有四個交點(diǎn),則方程f(x)=0的所有實(shí)根之和是( A )
A 0 B 1 C 2 D 4
10 設(shè)f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)= ,則f(-2)=_-5__
11若f(x)在 上是奇函數(shù),且f(3)_f(-1)
12.解答題
用定義判斷函數(shù) 的奇偶性。
13定義證明函數(shù)的奇偶性
已知函數(shù) 在區(qū)間D上是奇函數(shù),函數(shù) 在區(qū)間D上是偶函數(shù),求證: 是奇函數(shù)
14利用函數(shù)的奇偶性求函數(shù)的解析式:
已知分段函數(shù) 是奇函數(shù),當(dāng) 時(shí)的解析式為 ,求這個函數(shù)在區(qū)間 上的解析表達(dá)式。
高一數(shù)學(xué)教案6
知識結(jié)構(gòu)
重難點(diǎn)分析
本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計(jì)算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個方面需要注意:
(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個數(shù)字,單個字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
(第1課時(shí))
一、教學(xué)目標(biāo)
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
二、教學(xué)設(shè)計(jì)
對比、歸納、總結(jié)
三、重點(diǎn)和難點(diǎn)
1.重點(diǎn):理解并掌握二次根式的性質(zhì)
2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
四、課時(shí)安排
1課時(shí)
五、教B具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計(jì)
復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主
七、教學(xué)過程
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
二、新課
計(jì)算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
高一數(shù)學(xué)教案7
學(xué)習(xí)是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對您有所幫助!
教學(xué)目標(biāo)
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個通項(xiàng)公式.
(3)已知一個數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
教學(xué)建議
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的.
上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!
高一數(shù)學(xué)教案8
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個顯著特點(diǎn),只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對函數(shù)概念理解的程度會直接影響其它知識的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識目標(biāo):了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。
(2) 能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動學(xué)生的學(xué)習(xí)熱情與參與意識,運(yùn)用引導(dǎo)對比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個概念的異同,使真正對函數(shù)的概念有很準(zhǔn)確的認(rèn)識。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識函數(shù)概念及函數(shù)符號與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號的運(yùn)用在學(xué)生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個通俗的例子引出通過某個對應(yīng)法則可以將兩個非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個集合,問,通過“找好朋友”這個對應(yīng)法則是否能將這兩個集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學(xué)生熟悉的`數(shù)集的對應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對一,多對一),進(jìn)而給出映射的概念,表示符號f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個從a到b的對應(yīng)是否為映射的關(guān)鍵是看a中的任意一個元素通過對應(yīng)法則f在b中是否有唯一確定的元素與之對應(yīng)。
(2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓更深刻的認(rèn)識到映射可以“一對多,多對一”但不能是“一對多”。
例1. 給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個非空集合,如果按照某種對應(yīng)法則f,使得a中的任何一個元素在集合b中都有唯一的元素與之對應(yīng)則這樣的對應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應(yīng)法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使認(rèn)識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個符號,不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。
66. “f:a→b”表示一個函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0*x+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識函數(shù)的定義。
四.課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書設(shè)計(jì)
書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
高一數(shù)學(xué)教案9
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
。1)通過豐富實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
。3)會求一些簡單函數(shù)的定義域和值域;
。4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;
教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù);
教學(xué)難點(diǎn):符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
。1)炮彈的射高與時(shí)間的變化關(guān)系問題;
。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;
。3)“八五”計(jì)劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題
備用實(shí)例:
我國xxxx年4月份非典疫情統(tǒng)計(jì):
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實(shí)例中兩個變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實(shí)例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
。ㄒ唬┖瘮(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
(2)無窮區(qū)間;
(3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
。ㄓ蓪W(xué)生完成,師生共同分析講評)
。ǘ┑湫屠}
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
○1函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個實(shí)例;
○2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實(shí)數(shù)的集合;
○3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
○1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或?yàn)橥缓瘮?shù))
○2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習(xí):
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?
(1)f(x)=(x-1)0;g(x)=1
。2)f(x)=x;g(x)=
。3)f(x)=x2;f(x)=(x+1)2
。4)f(x)=|x|;g(x)=
。ㄈ┱n堂練習(xí)
求下列函數(shù)的定義域
。1)
。2)
。3)
(4)
。5)
。6)
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
高一數(shù)學(xué)教案10
一、教學(xué)目標(biāo)
知識與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價(jià)值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學(xué)過程
。ㄒ唬⿲(dǎo)入新課
1、回顧角的定義
、俳堑牡谝环N定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
。ǘ┙虒W(xué)新課
1、角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
②角的名稱:
注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角。
⑤練習(xí):請說出角α、β、γ各是多少度?
2、象限角的概念:
、俣x:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高一數(shù)學(xué)教案11
1.1 集合含義及其表示
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1) 全體自然數(shù)0,1,2,3,4,5,
2) 代數(shù)式 .
3) 拋物線 上所有的點(diǎn)
4) 今年本校高一(1)(或(2))班的全體學(xué)生
5) 本校實(shí)驗(yàn)室的所有天平
6) 本班級全體高個子同學(xué)
7) 著名的科學(xué)家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的三個性質(zhì):
1)___________2)___________3)_____________
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______
4)有理數(shù)集______5)實(shí)數(shù)集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、 中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是 ( )
A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑,然后說出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù) 的全體 值的集合;
3)函數(shù) 的全體自變量 的集合;
4)方程組 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)設(shè) , , 則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例6、設(shè)含有三個實(shí)數(shù)的集合既可以表示為 ,也可以表示為 ,則 的值等于___________
例7、已知: ,若 中元素至多只有一個,求 的取值范圍。
思考題:數(shù)集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。
小結(jié):
作業(yè) 班級 姓名 學(xué)號
1. 下列集合中,表示同一個集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .則 ( )
A . B. C. D.
3. 方程組 的解集是____________________.
4. 在(1)難解的題目,(2)方程 在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號是________________.
5. 設(shè)集合 A= , B= ,
C= , D= ,E= 。
其中有限集的個數(shù)是____________.
6. 設(shè) ,則集合 中所有元素的和為
7. 設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將 所有可能的值組成的集合表示為
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,試用列舉法表示集合B=
9. 把下列集合用另一種方法表示出來:
(1) (2)
(3) (4)
10. 設(shè)a,b為整數(shù),把形如a+b 的一切數(shù)構(gòu)成的集合記為M,設(shè) ,試判斷x+y,x-y,xy是否屬于M,說明理由。
11. 已知集合A=
(1) 若A中只有一個元素,求a的值,并求出這個元素;
(2) 若A中至多只有一個元素,求a的取值集合。
12.若-3 ,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來幫助!
高一數(shù)學(xué)教案12
教學(xué)目標(biāo)
會運(yùn)用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。
重 點(diǎn)
函數(shù)單調(diào)性的證明及判斷。
難 點(diǎn)
函數(shù)單調(diào)性證明及其應(yīng)用。
一、復(fù)習(xí)引入
1、函數(shù)的定義域、值域、圖象、表示方法
2、函數(shù)單調(diào)性
(1)單調(diào)增函數(shù)
(2)單調(diào)減函數(shù)
(3)單調(diào)區(qū)間
二、例題分析
例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:
(1) (2) (2)
例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。
例3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。
變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論
變(2)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。
例4、試判斷函數(shù) 在 上的單調(diào)性。
三、隨堂練習(xí)
1、判斷下列說法正確的是 。
(1)若定義在 上的函數(shù) 滿足 ,則函數(shù) 是 上的單調(diào)增函數(shù);
(2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);
(3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);
(4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。
2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點(diǎn) 在直角坐標(biāo)平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。
3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。
4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。
四、回顧小結(jié)
1、函數(shù)單調(diào)性的判斷及證明。
課后作業(yè)
一、基礎(chǔ)題
1、求下列函數(shù)的單調(diào)區(qū)間
(1) (2)
2、畫函數(shù) 的圖象,并寫出單調(diào)區(qū)間。
二、提高題
3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。
4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。
5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。
三、能力題
6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
高一數(shù)學(xué)教案13
第一節(jié) 集合的含義與表示
學(xué)時(shí):1學(xué)時(shí)
[學(xué)習(xí)引導(dǎo)]
一、自主學(xué)習(xí)
1.閱讀課本 .
2.回答問題:
、疟竟(jié)內(nèi)容有哪些概念和知識點(diǎn)?
⑵嘗試說出相關(guān)概念的含義?
3完成 練習(xí)
4小結(jié)
二、方法指導(dǎo)
1、要結(jié)合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。
2、理解集合元素的特性,并會判斷元素與集合的關(guān)系
3、掌握集合的表示方法,并會正確運(yùn)用它們表示一些簡單集合。
4、在學(xué)習(xí)中要特別注意理解空集的意義和記法
[思考引導(dǎo)]
一、提問題
1.集合中的元素有什么特點(diǎn)?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語言表述?
5集合 和 是否相同?
二、變題目
1.下列各組對象不能構(gòu)成集合的是( )
A.北京大學(xué)2008級新生
B.26個英文字母
C.著名的藝術(shù)家
D.2008年北京奧運(yùn)會中所設(shè)定的比賽項(xiàng)目
2.下列語句:①0與 表示同一個集合;
、谟1,2,3組成的集合可表示為 或 ;
③方程 的解集可表示為 ;
、芗 可以用列舉法表示。
其中正確的是( )
A.①和④ B.②和③
C.② D.以上語句都不對
[總結(jié)引導(dǎo)]
1.集合中元素的三特性:
2.集合、元素、及其相互關(guān)系的數(shù)學(xué)符號語言的表示和理解:
3.空集的含義:
[拓展引導(dǎo)]
1.課外作業(yè): 習(xí)題11第 題;
2.若集合 ,求實(shí)數(shù) 的值;
3.若集合 只有一個元素,則實(shí)數(shù) 的值為 ;若 為空集,則 的取值范圍是 .
撰稿:程曉杰 審稿:宋慶
高一數(shù)學(xué)教案14
學(xué)習(xí)目標(biāo):
(1)理解函數(shù)的概念
(2)會用集合與對應(yīng)語言來刻畫函數(shù),
(3)了解構(gòu)成函數(shù)的要素。
重點(diǎn):
函數(shù)概念的理解
難點(diǎn):
函數(shù)符號y=f(x)的理解
知識梳理:
自學(xué)課本P29—P31,填充以下空格。
1、設(shè)集合A是一個非空的實(shí)數(shù)集,對于A內(nèi) ,按照確定的對應(yīng)法則f,都有 與它對應(yīng),則這種對應(yīng)關(guān)系叫做集合A上的一個函數(shù),記作 。
2、對函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個函數(shù)的 ,所有函數(shù)值的集合 叫做這個函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。
3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個函數(shù)只需要
。
4、依函數(shù)定義,要檢驗(yàn)兩個給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):
、 ;② 。
5、設(shè)a, b是兩個實(shí)數(shù),且a
(1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。
(2)滿足不等式a
(3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ;
分別滿足x≥a,x>a,x≤a,x
其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。
完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。
例題解析
題型一:函數(shù)的概念
例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )
練習(xí):設(shè)M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個。
題型二:相同函數(shù)的判斷問題
例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與
、 與 其中表示同一函數(shù)的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )
A. 和 B. 和
C. 和 D. 和
題型三:函數(shù)的定義域和值域問題
例3:求函數(shù)f(x)= 的定義域
練習(xí):課本P33練習(xí)A組 4.
例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。
當(dāng)堂檢測
1、下列各組函數(shù)中,表示同一個函數(shù)的是( A )
A、 B、
C、 D、
2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、給出下列四個命題:
、 函數(shù)就是兩個數(shù)集之間的對應(yīng)關(guān)系;
② 若函數(shù)的定義域只含有一個元素,則值域也只含有一個元素;
、 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);
、 定義域和對應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.
其中正確的有( B )
A. 1 個 B. 2 個 C. 3個 D. 4 個
4、下列函數(shù)完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四個圖形中,不能表示函數(shù)的圖象的是 ( B )
6、設(shè) ,則 等于 ( D )
A. B. C. 1 D.0
7、已知函數(shù) ,求 的值.( )
高一數(shù)學(xué)教案15
學(xué) 習(xí) 目 標(biāo)
1明確空間直角坐標(biāo)系是如何建立;明確空間中任意一點(diǎn)如何表示;
2 能夠在空間直角坐標(biāo)系中求出點(diǎn)坐標(biāo)
教 學(xué) 過 程
一 自 主 學(xué) 習(xí)
1平面直角坐標(biāo)系建立方法,點(diǎn)坐標(biāo)確定過程、表示方法?
2一個點(diǎn)在平面怎么表示?在空間呢?
3關(guān)于一些對稱點(diǎn)坐標(biāo)求法
關(guān)于坐標(biāo)平面 對稱點(diǎn) ;
關(guān)于坐標(biāo)平面 對稱點(diǎn) ;
關(guān)于坐標(biāo)平面 對稱點(diǎn) ;
關(guān)于 軸對稱點(diǎn) ;
關(guān)于 對軸稱點(diǎn) ;
關(guān)于 軸對稱點(diǎn) ;
二 師 生 互動
例1在長方體 中, , 寫出 四點(diǎn)坐標(biāo)
討論:若以 點(diǎn)為原點(diǎn),以射線 方向分別為 軸,建立空間直角坐標(biāo)系,則各頂點(diǎn)坐標(biāo)又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標(biāo)系,并確定各頂點(diǎn)坐標(biāo)
練1 建立適當(dāng)直角坐標(biāo)系,確定棱長為3正四面體各頂點(diǎn)坐標(biāo)
練2 已知 是棱長為2正方體, 分別為 和 中點(diǎn),建立適當(dāng)空間直角坐標(biāo)系,試寫出圖中各中點(diǎn)坐標(biāo)
三 鞏 固 練 習(xí)
1 關(guān)于空間直角坐標(biāo)系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標(biāo)系中點(diǎn)與一個三元有序數(shù)組是一種一一對應(yīng)關(guān)系
C空間直角坐標(biāo)系中三條坐標(biāo)軸把空間分為八個部分
D某點(diǎn)在不同空間直角坐標(biāo)系中坐標(biāo)位置可以相同
2 已知點(diǎn) ,則點(diǎn) 關(guān)于原點(diǎn)對稱點(diǎn)坐標(biāo)為( )
A B C D
3 已知 三個頂點(diǎn)坐標(biāo)分別為 ,則 重心坐標(biāo)為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點(diǎn) 坐標(biāo)
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習(xí)
1 在空間直角坐標(biāo)系中,給定點(diǎn) ,求它分別關(guān)于坐標(biāo)平面,坐標(biāo)軸和原點(diǎn)對稱點(diǎn)坐標(biāo)
2 設(shè)有長方體 ,長、寬、高分別為 是線段 中點(diǎn)分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標(biāo)系
⑴求 坐標(biāo);
、魄 坐標(biāo);
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案12-21
高一數(shù)學(xué)教案06-20
高一數(shù)學(xué)教案07-20
高一必修四數(shù)學(xué)教案04-13
人教版高一數(shù)學(xué)教案12-23
高一必修五數(shù)學(xué)教案04-10
人教版高一數(shù)學(xué)教案07-30
上海高一數(shù)學(xué)教案07-30
最新高一數(shù)學(xué)教案09-27