1. <rp id="zsypk"></rp>

      2. 高中數(shù)學(xué)教案

        時(shí)間:2022-12-31 11:27:14 教案 我要投稿
        • 相關(guān)推薦

        高中數(shù)學(xué)教案【熱門】

          作為一位杰出的教職工,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案應(yīng)該怎么寫(xiě)才好呢?下面是小編整理的高中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

        高中數(shù)學(xué)教案【熱門】

        高中數(shù)學(xué)教案1

          一、什么是教學(xué)案例

          教學(xué)案例是真實(shí)而又典型且含有問(wèn)題的事件。簡(jiǎn)單地說(shuō),一個(gè)教學(xué)案例就是一個(gè)包含有疑難問(wèn)題的實(shí)際情境的描述,是一個(gè)教學(xué)實(shí)踐過(guò)程中的故事,描述的是教學(xué)過(guò)程中“意料之外,情理之中的事”。

          這可以從以下幾個(gè)層次來(lái)理解:

          教學(xué)案例是事件:教學(xué)案例是對(duì)教學(xué)過(guò)程中的一個(gè)實(shí)際情境的描述。它講述的是一個(gè)故事,敘述的是這個(gè)教學(xué)故事的產(chǎn)生、發(fā)展的歷程,它是對(duì)教學(xué)現(xiàn)象的動(dòng)態(tài)性的把握。

          教學(xué)案例是含有問(wèn)題的事件:事件只是案例的基本素材,并不是所有的教學(xué)事件都可以成為案例。能夠成為案例的事件,必須包含有問(wèn)題或疑難情境在內(nèi),并且也可能包含有解決問(wèn)題的方法在內(nèi)。正因?yàn)檫@一點(diǎn),案例才成為一種獨(dú)特的研究成果的表現(xiàn)形式。

          案例是真實(shí)而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來(lái)一定的啟示和體會(huì)。案例與故事之間的根本區(qū)別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發(fā)生的事件,是教學(xué)事件的真實(shí)再現(xiàn)。是對(duì)“當(dāng)前”課堂中真實(shí)發(fā)生的實(shí)踐情景的描述。它不能用“搖擺椅子上杜撰的事實(shí)來(lái)替代”,也不能從抽象的、概括化的理論中演繹的事實(shí)來(lái)替代。

          二、如何進(jìn)行教學(xué)案例研究

          教學(xué)案例是教師教學(xué)行為真實(shí)、典型的記錄,也是教師教學(xué)理念和教學(xué)思想的真實(shí)體現(xiàn)。因此它是教育教學(xué)研究的寶貴資源,也是教師之間交流的重要媒介。進(jìn)行教學(xué)案例的研究是教師不斷反思、改進(jìn)自己教學(xué)的一種方法,能促使教師更為深刻地認(rèn)識(shí)到自己工作中的重點(diǎn)和難點(diǎn)。這個(gè)過(guò)程就是教師自我教育和成長(zhǎng)的過(guò)程。

          那么如何進(jìn)行教學(xué)案例研究呢?一般情況下,案例研究的程序基本有以下兩個(gè)環(huán)節(jié):案例研究的準(zhǔn)備及實(shí)施、案例研究報(bào)告的撰寫(xiě)與反思。

          (一)案例研究的準(zhǔn)備與實(shí)施

          1.研究主題的選擇

          案例研究都要有研究的重點(diǎn)和主題,這個(gè)主題常與教學(xué)改革的核心理念、常見(jiàn)的疑難問(wèn)題和困惑事件相關(guān),一般來(lái)說(shuō)可以從教學(xué)的各個(gè)方面確定研究的主題,如從教師教學(xué)行為確定主題——教學(xué)材料的選擇、教學(xué)中的提問(wèn)、教學(xué)媒體的使用、教學(xué)評(píng)價(jià)語(yǔ)言、課堂教學(xué)調(diào)控行為等;也可以從學(xué)生的學(xué)習(xí)方式確定主題——探究性學(xué)習(xí)、問(wèn)題解決學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐性活動(dòng)等。另外從學(xué)科特點(diǎn)、教學(xué)內(nèi)容等都可以確定研究的主題。

          研究者要了解當(dāng)前教學(xué)的大背景,教改的大方向,要熟悉相關(guān)的《課程標(biāo)準(zhǔn)》和有針對(duì)性地作一些理論準(zhǔn)備。還要通過(guò)有關(guān)的調(diào)查,搜集詳盡的材料(如閱讀教師的教學(xué)設(shè)計(jì),進(jìn)行訪談等),同時(shí)初步確定案例研究的方向、研究任務(wù),即初步確定案例的內(nèi)容是關(guān)于教學(xué)策略、學(xué)生行為或是教學(xué)技能的研究。

          一般來(lái)說(shuō),案例研究主題的確定往往需要思考下面一些問(wèn)題:即研究的事件是否對(duì)于自我發(fā)現(xiàn)更有潛力?選擇的事件對(duì)學(xué)生是否有較大的情感影響(心靈是否受到震撼)?關(guān)鍵事件再現(xiàn)了前人(或自己)過(guò)去成功的行為嗎?事件呈現(xiàn)的是一個(gè)你不能確定怎樣解決的問(wèn)題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺(jué)不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個(gè)與道德或道義上相關(guān)的問(wèn)題嗎?研究的主題如果反映以上的一些內(nèi)容,那么這樣的案例研究在自我學(xué)習(xí)、內(nèi)省和深層次理解方面就可能更加富有成效。

          高中數(shù)學(xué)教學(xué)案例研究的主題內(nèi)容主要集中在三方面:(1)學(xué)科特點(diǎn)的體現(xiàn):如數(shù)學(xué)思想方法的教學(xué)、數(shù)學(xué)思維品質(zhì)的培養(yǎng)、本質(zhì)屬性的抽象、數(shù)學(xué)結(jié)論的推廣等;(2)學(xué)生數(shù)學(xué)學(xué)習(xí)規(guī)律的探究:如數(shù)學(xué)學(xué)習(xí)習(xí)慣、解決問(wèn)題的思維方式、獨(dú)立思考與合作學(xué)習(xí)等;(3)教師專業(yè)知識(shí)的提升:如數(shù)學(xué)板書(shū)與電子屏幕的展示對(duì)學(xué)生思維的影響、數(shù)學(xué)語(yǔ)言的訓(xùn)練對(duì)人們思維的影響、數(shù)學(xué)知識(shí)模式化教學(xué)的優(yōu)劣等。

          2.案例研究的基本方法

          (1)課堂觀察。觀察方法是指研究者按照一定的目的和計(jì)劃,在課堂教學(xué)活動(dòng)的自然狀態(tài)下,用自己的感官和輔助工具對(duì)研究對(duì)象進(jìn)行觀察研究的一種方法。它可以是教師自己對(duì)教學(xué)對(duì)象——學(xué)生,在課堂活動(dòng)中的片斷進(jìn)行觀察,也可以由其他教師來(lái)實(shí)施觀察,這兩種觀察的目的都是為了掌握課堂教學(xué)中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽(tīng)手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對(duì)觀察的資料,可以逐字逐句整理成課堂教學(xué)實(shí)錄、教學(xué)程序表、提問(wèn)技巧水平檢核表、提問(wèn)行為類型頻次表、課堂教學(xué)時(shí)間分配表等,以便以后繼續(xù)分析案例提供翔實(shí)的原始材料。

          (2)訪談與調(diào)查。對(duì)一些課堂教學(xué)不能觀察到的師生內(nèi)心活動(dòng),如教師教學(xué)的目的、教學(xué)程序的意圖、教學(xué)手段的運(yùn)用以及教學(xué)達(dá)標(biāo)的成效等一些需要進(jìn)一步了解的問(wèn)題,可以通過(guò)與執(zhí)教教師的交談以及和學(xué)生的座談,以豐富和充實(shí)課堂教學(xué)觀察的材料;對(duì)學(xué)生在課堂教學(xué)活動(dòng)中回答問(wèn)題的心理狀態(tài)、解題思路等問(wèn)題,也可以在課后做一些問(wèn)卷調(diào)查;對(duì)學(xué)生達(dá)標(biāo)的成度、效度,也可以作一些測(cè)試調(diào)查。從這些訪談、調(diào)查的材料中,再分析課堂教學(xué)的現(xiàn)象,不難發(fā)現(xiàn)造成各種課堂現(xiàn)象與教師教學(xué)行為之間的因果關(guān)系,然后再具體尋找在哪個(gè)教學(xué)環(huán)節(jié)中出現(xiàn)問(wèn)題,從中提煉出解決問(wèn)題的對(duì)策。

          (3)文獻(xiàn)分析。文獻(xiàn)分析是通過(guò)查閱文獻(xiàn)資料,從過(guò)去和現(xiàn)在的有關(guān)研究成果中受到啟發(fā),從中找到課堂教學(xué)現(xiàn)象的理論依據(jù),從而增強(qiáng)案例分析的說(shuō)服力。當(dāng)然,對(duì)廣大第一線教師而言,這里所運(yùn)用的文獻(xiàn)分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現(xiàn)象,而是通過(guò)有關(guān)教育理論文獻(xiàn)的查閱,去進(jìn)一步解讀課堂教學(xué)的活動(dòng),挖掘案例中的教育思想。如在數(shù)學(xué)教學(xué)中,我們常常通過(guò)學(xué)生的動(dòng)手操作來(lái)獲得有關(guān)的數(shù)學(xué)概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問(wèn)題,查閱、分析有關(guān)文獻(xiàn)資料,從學(xué)習(xí)中提高研究者自身的理論水平。

          (二)案例研究報(bào)告的撰寫(xiě)

          1.常見(jiàn)的案例報(bào)告格式

          撰寫(xiě)教學(xué)案例,結(jié)構(gòu)可以靈活多樣,并非要千篇一律、一個(gè)模式,而是可以有不同的表現(xiàn)形式,如“案例背景——案例描述——案例分析”、“案例過(guò)程——案例反思”、“課例——問(wèn)題——分析”、“主題與背景——情景描述——問(wèn)題討論——詮釋與研究”等。當(dāng)前,國(guó)內(nèi)外課堂教學(xué)案例編寫(xiě)的格式有多種多樣。但不管何種編寫(xiě)格式,它們都有兩個(gè)共同的特點(diǎn):一是對(duì)案例的客觀描述;二是對(duì)案例中所述問(wèn)題、關(guān)鍵教學(xué)事件等的分析。

          下面介紹兩種常用的案例編寫(xiě)的格式:

          (1)“描述+分析”式

          此格式的特點(diǎn)是將整個(gè)案例分為兩大部分,前半部分主要為描述課堂教學(xué)活動(dòng)的情景,后半部分主要針對(duì)情景中的一個(gè)問(wèn)題進(jìn)行理論分析并獲得結(jié)論。案例的描述一般是把課堂教學(xué)活動(dòng)中的某一片斷像講故事一樣原原本本地、具體生動(dòng)地描繪出來(lái)。描述的形式可以是一串問(wèn)答式的課堂對(duì)話,也可以概括式地?cái)⑹,主要是提供一個(gè)或一連串課堂教學(xué)疑難的問(wèn)題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對(duì)描述的情景發(fā)表個(gè)人或多人的感受,同時(shí)加以理論的分析與說(shuō)明。分析方法可以是對(duì)描述中提出的一個(gè)問(wèn)題,從幾個(gè)方面加以分析:也可以是對(duì)描述中的幾個(gè)問(wèn)題,集中從一個(gè)方面加以分析。分析的目的是要從描述的情景中提煉問(wèn)題的本質(zhì),講述理論的解釋,明確正確的方法,最終獲得對(duì)關(guān)鍵教學(xué)事件的正確把握。

          (2)“背景+描述+問(wèn)題+詮釋”式

          此格式是一種要求比較高的編寫(xiě)格式,而且,它在實(shí)際教學(xué)中的作用也更大。通常它將整個(gè)案例分為四個(gè)部分:

          A.主題與背景

          主題是關(guān)鍵教學(xué)事件中所反映的案例主要觀點(diǎn),也是整篇案例的核心思想。背景主要敘述案例發(fā)生的地點(diǎn)、時(shí)間、人物的一些基本情況。當(dāng)然,這部分的內(nèi)容不宜很長(zhǎng),只需提綱挈領(lǐng)敘述清楚即可。

          B.情景描述

          與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學(xué)活動(dòng)。

          C.問(wèn)題討論

          這是根據(jù)主題要求與情景描述,進(jìn)行的分析、歸納、總結(jié)與提煉,包括學(xué)科知識(shí)的要點(diǎn)、教學(xué)法和情景特點(diǎn)以及案例的說(shuō)明與注意事項(xiàng)。這部分內(nèi)容主要是為案例教學(xué)服務(wù)的,目的是提高教師的認(rèn)識(shí)水平與學(xué)生主動(dòng)學(xué)習(xí)的能力。不同的教學(xué)觀念,不同的教學(xué)手段,所提出的問(wèn)題也不同。對(duì)案例中所提出的主題以及情景描述中提出的問(wèn)題闡述自己的見(jiàn)解。

          D.詮釋與研究

          這部分主要是用教育理論對(duì)案例情景作多角度的解讀。它包括對(duì)課堂教學(xué)行為的技術(shù)資料、課堂教學(xué)實(shí)錄以及教學(xué)活動(dòng)背后的故事等作理論上的分析。例如,在課堂教學(xué)中,我們常看到這樣的現(xiàn)象,課堂教學(xué)的效果高于預(yù)期的目標(biāo),反之教師期望的目標(biāo)學(xué)生沒(méi)有達(dá)到或有所偏離,教學(xué)內(nèi)容呈現(xiàn)的先后與學(xué)生理解的程度、教學(xué)方法運(yùn)用與學(xué)生內(nèi)在動(dòng)機(jī)的激發(fā)等環(huán)節(jié)存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過(guò)詮釋,挖掘這些事件背后的內(nèi)在思想,揭示其教育規(guī)律就顯得十分的必要。

          2.案例報(bào)告撰寫(xiě)的關(guān)鍵

          (1)掌握四個(gè)原則。要寫(xiě)好教學(xué)案例,除了平時(shí)多積累素材,學(xué)習(xí)他人的案例作品以提高寫(xiě)作技巧外,還應(yīng)把握以下四點(diǎn):

          A.主題性原則:要有捕捉關(guān)鍵教學(xué)事件的意識(shí),以此確定案例研究的主題。為此要注意了解新的課程改革的動(dòng)向、把握適合時(shí)代要求的數(shù)學(xué)教育方式、明確學(xué)生數(shù)學(xué)學(xué)習(xí)的難點(diǎn)和重點(diǎn),尋找數(shù)學(xué)教師專業(yè)發(fā)展的途徑與規(guī)律。報(bào)告圍繞主題進(jìn)行情景描述和獲得解決問(wèn)題的策略。這種描述不是簡(jiǎn)單的教學(xué)活動(dòng)實(shí)錄,要反映事件發(fā)生的過(guò)程,重點(diǎn)描述反映關(guān)鍵教學(xué)事件的變化和戲劇化的情境,猶如記敘文寫(xiě)作,突出主題,詳寫(xiě)重點(diǎn),雕刻高潮。

          案例鮮明的主題通常關(guān)系到教學(xué)的核心理念、常見(jiàn)問(wèn)題、處理方法等等,可以說(shuō),主題就是案例的靈魂。而主題的最佳表現(xiàn)形式就是文題直接體現(xiàn)主題。因此,設(shè)計(jì)主題就要有新意、有時(shí)代感,通俗地說(shuō)就是與眾不同,要有獨(dú)特見(jiàn)解、獨(dú)家發(fā)現(xiàn)。來(lái)源于實(shí)踐的教學(xué)案例并非都有同等價(jià)值,關(guān)鍵要看撰寫(xiě)者對(duì)實(shí)踐的發(fā)展與理論的升華程度,包括對(duì)題目的推敲。如有的教學(xué)案例重點(diǎn)描述了有戲劇性的情節(jié),用了“細(xì)節(jié)決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創(chuàng)意的題目《“導(dǎo)之有方”方能“導(dǎo)之有效”》、《跳出數(shù)學(xué)教數(shù)學(xué)》、《在數(shù)學(xué)的疑難處悟成長(zhǎng)》、《捕捉資源因勢(shì)利導(dǎo)》等等,讓人一看題目就有閱讀的欲望。實(shí)踐證明,在寫(xiě)作案例時(shí),選擇有感悟、有新意的內(nèi)容,在明確主題,恰當(dāng)擬題后再動(dòng)筆,才能寫(xiě)出高質(zhì)量的案例。

          B.理論性原則:解決問(wèn)題的策略中應(yīng)當(dāng)蘊(yùn)含一定的教育基本原理和教育思想。實(shí)際是將自己對(duì)教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學(xué)生做了什么,參與程度,投入程度如何,教師如何引導(dǎo)點(diǎn)撥,師生心理、行為變化情況等,無(wú)不體現(xiàn)教師的教學(xué)思想和教育基本原理。

          C.敘事性原則:案例報(bào)告的書(shū)寫(xiě)方式是敘事式,它不同于論述式。敘事方式必須以課堂教學(xué)生動(dòng)的事實(shí)為主要情節(jié),可以?shī)A敘夾議,也可以選擇情景片段,可以是一節(jié)課中的情景,也可以是圍繞一個(gè)主題的幾節(jié)課的情景片段。

          D.學(xué)科性原則:數(shù)學(xué)案例報(bào)告一定要體現(xiàn)學(xué)科的特征,要有較深刻的理性思考,要反映數(shù)學(xué)的基本思想與方法,要符合課程標(biāo)準(zhǔn),滿足教材內(nèi)容的呈現(xiàn)方法,積極培養(yǎng)良好的思維習(xí)慣。就是撰寫(xiě)者的教育思想和教育理念在教學(xué)實(shí)踐中具體體現(xiàn)。

          (2)用好四種表述。教學(xué)案例的表述方法很多,可以歸納為以下四種方法:

          A.故事式陳述法:就是教學(xué)全程或某一精彩教學(xué)片段實(shí)錄,包括教師和學(xué)生的一言一行。陳述時(shí),根據(jù)操作程序作一點(diǎn)“簡(jiǎn)評(píng)”,最后作“總評(píng)”。

          B.以案說(shuō)理:對(duì)教學(xué)過(guò)程進(jìn)行陳述時(shí),舍去與文題不相關(guān)或不重要的部分,并強(qiáng)化與主題相關(guān)的重要情節(jié),尤其是引發(fā)高潮的關(guān)鍵行為,然后有較長(zhǎng)篇幅的理性思考。

          C.圖表展示法:用圖表進(jìn)行統(tǒng)計(jì)的形式體現(xiàn)撰寫(xiě)者的教育思想,給人以一目了然的感覺(jué),幫助讀者迅速了解撰寫(xiě)者的寫(xiě)作意圖,是常用的一種案例撰寫(xiě)方法。比如,描述學(xué)生的參與人數(shù),投入程度,解決問(wèn)題的質(zhì)量等多個(gè)問(wèn)題,都可以在一張或數(shù)張圖表上用百分比或個(gè)(次)數(shù)進(jìn)行統(tǒng)計(jì)。在每一張圖表后,應(yīng)有一段“分析”或“結(jié)論”,將撰寫(xiě)者的教學(xué)理念進(jìn)行理性闡述,亦可在圖表展示后,總的提出自己對(duì)案例的分析和建議。

          D.分析討論法:在撰寫(xiě)時(shí),應(yīng)汲取分析討論中最精彩的部分做深入、細(xì)致的全面記錄,最后撰寫(xiě)者還必須對(duì)討論情況做一分析,或提出一些值得今后進(jìn)一步思考的問(wèn)題。

          3.優(yōu)秀案例的特征

          (1)時(shí)代性:一個(gè)好的案例描述的是現(xiàn)實(shí)生活場(chǎng)景——案例的敘述要把事件置于一個(gè)時(shí)空框架之中,應(yīng)該以關(guān)注今天所面臨的疑難問(wèn)題為著眼點(diǎn),至少應(yīng)該是近年發(fā)生的事情,展示的整個(gè)事實(shí)材料應(yīng)該與整個(gè)時(shí)代及教學(xué)背景相照應(yīng),這樣的案例讀者更愿意接觸。一個(gè)好的案例可以使讀者有身臨其境的感覺(jué),并對(duì)案例所涉及的人產(chǎn)生移情作用。

          (2)真實(shí)性:一個(gè)好的案例應(yīng)該包括從案例所反映的對(duì)象那里引述的材料——案例寫(xiě)作必須持一種客觀的態(tài)度,因此可引述一些口頭的或書(shū)面的、正式的或非正式的材料,如對(duì)話、筆記、信函等,以增強(qiáng)案例的真實(shí)感和可讀性。重要的事實(shí)性材料應(yīng)注明資料來(lái)源。

          (3)適用性:一個(gè)好的案例需要針對(duì)面臨的疑難問(wèn)題提出解決辦法——案例不能只是提出問(wèn)題,它必須提出解決問(wèn)題的主要思路、具體措施,并包含著解決問(wèn)題的詳細(xì)過(guò)程,這應(yīng)該是案例寫(xiě)作的重點(diǎn)。如果一個(gè)問(wèn)題可以提出多種解決辦法的話,那么最為適宜的方案,就應(yīng)該是與特定的背景材料相關(guān)最密切的那一個(gè)。如果有包治百病、普遍適用的解決問(wèn)題的辦法,那么案例這種形式就不必要存在了。

          (4)反思性:一個(gè)好的案例需要有對(duì)已經(jīng)做出的解決問(wèn)題的決策的評(píng)價(jià)——評(píng)價(jià)是為了給新的決策提供參考點(diǎn)?稍诎咐拈_(kāi)頭或結(jié)尾寫(xiě)下案例作者對(duì)自己解決問(wèn)題策略的評(píng)論,以點(diǎn)明案例的基本論點(diǎn)及其價(jià)值。

          三、案例研究過(guò)程中需注意的問(wèn)題

          1.選材面過(guò)窄。從內(nèi)容上看,多數(shù)案例是關(guān)于課堂教學(xué)甚至局限于一節(jié)課的研究,往往不能說(shuō)明問(wèn)題,或者在一節(jié)課中,也只會(huì)從簡(jiǎn)單的對(duì)話分析問(wèn)題,做不到全方位、多角度。這說(shuō)明教師對(duì)教學(xué)情境的豐富性、復(fù)雜性和聯(lián)系性認(rèn)識(shí)不夠。

          2.缺乏典型性。有的案例對(duì)教學(xué)實(shí)踐沒(méi)有挖掘與反思,隨意摘取一些教學(xué)片段泛泛而談、人云亦云,沒(méi)有實(shí)用價(jià)值。不能夠通過(guò)對(duì)某一事件現(xiàn)象的分析、處理、詮釋,達(dá)到舉一反三的效果,這樣的案例對(duì)他人沒(méi)什么借鑒作用。

          3.主題不明確。主要體現(xiàn)為:

          (1)主題渙散。有的案例象記流水帳,沒(méi)有根據(jù)需要進(jìn)行恰當(dāng)?shù)娜∩,看不出作者要反映、探討什么?wèn)題,缺乏指導(dǎo)性、創(chuàng)新性和參考性。

          (2)定題過(guò)于隨意。有的案例直接用案例研究依據(jù)的文題為題目,如《“三角函數(shù)”教學(xué)案例》、《“拋物線”教學(xué)案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。

          4.結(jié)構(gòu)不合理。案例作為一種文體,有它自己的寫(xiě)作結(jié)構(gòu),只有優(yōu)化案例的結(jié)構(gòu),才能增強(qiáng)案例的可讀性和指導(dǎo)性。如寫(xiě)成一般的教學(xué)設(shè)計(jì),一般包括“備課思路、教學(xué)目標(biāo)、教學(xué)重點(diǎn)、教學(xué)方法、課前準(zhǔn)備、教學(xué)內(nèi)容、教學(xué)過(guò)程”等內(nèi)容;寫(xiě)成教學(xué)實(shí)錄,把一堂課從頭到尾詳盡地記錄下來(lái),再寫(xiě)上作者的看法;重記錄輕分析,過(guò)程描述多,評(píng)析少等等。沒(méi)有創(chuàng)新,平淡無(wú)趣,看不出案例研究和反映的問(wèn)題。

          5.描述與分析脫節(jié)。有的案例描述與分析矛盾,讓人不知所云;有時(shí)反映的是一種觀點(diǎn),分析闡明的是另一種觀點(diǎn),雖然不矛盾,但聯(lián)系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無(wú)物。

        高中數(shù)學(xué)教案2

          三維目標(biāo):

          1、知識(shí)與技能:正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;

          2、過(guò)程與方法:

          (1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;

          (2)在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣的方法從總體中抽取樣本。

          3、情感態(tài)度與價(jià)值觀:通過(guò)對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問(wèn)題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性。

          4、重點(diǎn)與難點(diǎn):正確理解簡(jiǎn)單隨機(jī)抽樣的概念,掌握抽簽法及隨機(jī)數(shù)法的步驟,并能靈活應(yīng)用相關(guān)知識(shí)從總體中抽取樣本。

          教學(xué)方法:

          講練結(jié)合法

          教學(xué)用具:

          多媒體

          課時(shí)安排:

          1課時(shí)

          教學(xué)過(guò)程:

          一、問(wèn)題情境

          假設(shè)你作為一名食品衛(wèi)生工作人員,要對(duì)某食品店內(nèi)的一批小包裝餅干進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗(yàn),你準(zhǔn)備怎樣做?顯然,你只能從中抽取一定數(shù)量的餅干作為檢驗(yàn)的樣本。(為什么?)那么,應(yīng)當(dāng)怎樣獲取樣本呢?

          二、探究新知

          1、統(tǒng)計(jì)的有關(guān)概念:總體:在統(tǒng)計(jì)學(xué)中,所有考察對(duì)象的全體叫做總體、個(gè)體:每一個(gè)考察的對(duì)象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數(shù)目叫做樣本的容量、統(tǒng)計(jì)的基本思想:用樣本去估計(jì)總體、

          2、簡(jiǎn)單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣,這樣抽取的樣本,叫做簡(jiǎn)單隨機(jī)樣本。

          下列抽樣的方式是否屬于簡(jiǎn)單隨機(jī)抽樣?為什么?

          (1)從無(wú)限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。

          (2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗(yàn),在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗(yàn)后,再把它放回箱子。

          (3)從8臺(tái)電腦中,不放回地隨機(jī)抽取2臺(tái)進(jìn)行質(zhì)量檢查(假設(shè)8臺(tái)電腦已編好號(hào),對(duì)編號(hào)隨機(jī)抽取)

          3、常用的簡(jiǎn)單隨機(jī)抽樣方法有:

          (1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫(xiě)在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

          思考?你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當(dāng)總體中的個(gè)體數(shù)很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現(xiàn)要抽取8位同學(xué)出來(lái)做游戲,請(qǐng)?jiān)O(shè)計(jì)一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機(jī)會(huì)相等。

          分析:可以把57位同學(xué)的學(xué)號(hào)分別寫(xiě)在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分?jǐn)嚢韬,在從中個(gè)抽出8張紙片,再選出紙片上的學(xué)號(hào)對(duì)應(yīng)的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號(hào);第二步:準(zhǔn)備N個(gè)號(hào)簽分別標(biāo)上這些編號(hào),將號(hào)簽放在容器中攪拌均勻后每次抽取一個(gè)號(hào)簽,不放回地連續(xù)取n次;第三步:將取出的n個(gè)號(hào)簽上的號(hào)碼所對(duì)應(yīng)的n個(gè)個(gè)體作為樣本。

          (2)隨機(jī)數(shù)法的定義:利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣,叫隨機(jī)數(shù)表法,這里僅介紹隨機(jī)數(shù)表法。怎樣利用隨機(jī)數(shù)表產(chǎn)生樣本呢?下面通過(guò)例子來(lái)說(shuō)明,假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號(hào),可以編為000,001,799。

          第二步,在隨機(jī)數(shù)表中任選一個(gè)數(shù),例如選出第8行第7列的數(shù)7(為了便于說(shuō)明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數(shù)7開(kāi)始向右讀(讀數(shù)的方向也可以是向左、向上、向下等),得到一個(gè)三位數(shù)785,由于785<799,說(shuō)明號(hào)碼785在總體內(nèi),將它取出;

          繼續(xù)向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續(xù)向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號(hào)碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。

          三、課堂練習(xí)

          四、課堂小結(jié)

          1、簡(jiǎn)單隨機(jī)抽樣的概念一般地,設(shè)一個(gè)總體的個(gè)體數(shù)為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡(jiǎn)單隨機(jī)抽樣。

          2、簡(jiǎn)單隨機(jī)抽樣的方法:抽簽法隨機(jī)數(shù)表法

          五、課后作業(yè)

          P57練習(xí)1、2

          六、板書(shū)設(shè)計(jì)

          1、統(tǒng)計(jì)的有關(guān)概念

          2、簡(jiǎn)單隨機(jī)抽樣的概念

          3、常用的簡(jiǎn)單隨機(jī)抽樣方法有:(1)抽簽法(2)隨機(jī)數(shù)表法

          4、課堂練習(xí)

        高中數(shù)學(xué)教案3

          教學(xué)準(zhǔn)備

          教學(xué)目標(biāo)

          熟悉兩角和與差的正、余公式的推導(dǎo)過(guò)程,提高邏輯推理能力。

          掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問(wèn)題。

          教學(xué)重難點(diǎn)

          熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

          教學(xué)過(guò)程

          復(fù)習(xí)

          兩角差的余弦公式

          用- B代替B看看有什么結(jié)果?

        高中數(shù)學(xué)教案4

          教學(xué)目標(biāo)

         。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

          (2)理解直線與二元一次方程的關(guān)系及其證明

         。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).

          教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.

          教學(xué)用具:計(jì)算機(jī)

          教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

          教學(xué)過(guò)程

          下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

          教學(xué)設(shè)計(jì)思路

         。ㄒ唬┮氲脑O(shè)計(jì)

          前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:

          問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

          答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

          肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:

          問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?

          答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

          肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.

          啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.

          學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

          【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”

          (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

          這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.

          學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

          經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

          思路一:…

          思路二:…

          ……

          教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

          按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

          當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

          當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

          學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

          平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

          綜合兩種情況,我們得出如下結(jié)論:

          在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.

          至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.

          同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

          學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

          這樣上邊的結(jié)論可以表述如下:

          在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程.

          啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?

          【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?

          不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?

          師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

          回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對(duì)應(yīng)斜率 是否存在,即

         。1)當(dāng) 時(shí),方程可化為

          這是表示斜率為 、在 軸上的截距為 的直線.

         。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

          這表示一條與 軸垂直的直線.

          因此,得到結(jié)論:

          在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線.

          為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.

          【動(dòng)畫(huà)演示】

          演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

          至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.

          (三)練習(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

          略

        高中數(shù)學(xué)教案5

          教學(xué)目標(biāo):

          1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.

          2.會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù).

          3.在嘗試、探索求反函數(shù)的過(guò)程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí).

          4.進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問(wèn)題,培養(yǎng)抽象、概括的能力.

          教學(xué)重點(diǎn):求反函數(shù)的方法.

          教學(xué)難點(diǎn):反函數(shù)的概念.

          教學(xué)過(guò)程

          教學(xué)活動(dòng)

          設(shè)計(jì)意圖一、創(chuàng)設(shè)情境,引入新課

          1.復(fù)習(xí)提問(wèn)

         、俸瘮(shù)的概念

         、趛=f(x)中各變量的意義

          2.同學(xué)們?cè)谖锢碚n學(xué)過(guò)勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù).在這種情況下,我們說(shuō)t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.

          3.板書(shū)課題

          由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.

          二、實(shí)例分析,組織探究

          1.問(wèn)題組一:

          (用投影給出函數(shù)與;與()的圖象)

          (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱.是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算.同樣,與()也互為逆運(yùn)算.)

          (2)由,已知y能否求x?

          (3)是否是一個(gè)函數(shù)?它與有何關(guān)系?

          (4)與有何聯(lián)系?

          2.問(wèn)題組二:

          (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

          (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

          (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

          3.滲透反函數(shù)的概念.

          (教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn))

          從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力.

          通過(guò)這兩組問(wèn)題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問(wèn)題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ).

          三、師生互動(dòng),歸納定義

          1.(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義)

          函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域?yàn)?C.我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來(lái),得到 x = j (y) .如果對(duì)于y在C中的任何一個(gè)值,通過(guò)x = j (y),x在A中都有的值和它對(duì)應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫(xiě)成.

          2.引導(dǎo)分析:

          1)反函數(shù)也是函數(shù);

          2)對(duì)應(yīng)法則為互逆運(yùn)算;

          3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來(lái)說(shuō)不一定有反函數(shù);

          4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

          5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

          6)要理解好符號(hào)f;

          7)交換變量x、y的原因.

          3.兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系

          (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的)

          4.函數(shù)與其反函數(shù)的關(guān)系

          函數(shù)y=f(x)

          函數(shù)

          定義域

          A

          C

          值 域

          C

          A

          四、應(yīng)用解題,總結(jié)步驟

          1.(投影例題)

          【例1】求下列函數(shù)的反函數(shù)

          (1)y=3x-1 (2)y=x 1

          【例2】求函數(shù)的反函數(shù).

          (教師板書(shū)例題過(guò)程后,由學(xué)生總結(jié)求反函數(shù)步驟.)

          2.總結(jié)求函數(shù)反函數(shù)的步驟:

          1° 由y=f(x)反解出x=f(y).

          2° 把x=f(y)中 x與y互換得.

          3° 寫(xiě)出反函數(shù)的定義域.

          (簡(jiǎn)記為:反解、互換、寫(xiě)出反函數(shù)的定義域)【例3】(1)有沒(méi)有反函數(shù)?

          (2)的反函數(shù)是________.

          (3)(x<0)的反函數(shù)是__________.

          在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù).在剖析定義的過(guò)程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語(yǔ)言有更好的把握.

          通過(guò)動(dòng)畫(huà)演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解.

          通過(guò)對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.

          題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn).并體現(xiàn)了對(duì)定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.

          五、鞏固強(qiáng)化,評(píng)價(jià)反饋

          1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

          (1)y=-2x 3(xR) (2)y=-(xR,且x)

          ( 3 ) y=(xR,且x)

          2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.

          五、反思小結(jié),再度設(shè)疑

          本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究.

          (讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥)

          進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度.具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性."問(wèn)題是數(shù)學(xué)的心臟"學(xué)生帶著問(wèn)題走進(jìn)課堂又帶著新的問(wèn)題走出課堂.

          六、作業(yè)

          習(xí)題2.4第1題,第2題

          進(jìn)一步鞏固所學(xué)的知識(shí).

          教學(xué)設(shè)計(jì)說(shuō)明

          "問(wèn)題是數(shù)學(xué)的心臟".一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過(guò)具體到抽象,感性到理性的過(guò)程.本節(jié)教案通過(guò)一個(gè)物理學(xué)中的具體實(shí)例引入反函數(shù),進(jìn)而又通過(guò)若干函數(shù)的圖象進(jìn)一步加以誘導(dǎo)剖析,最終形成概念.

          反函數(shù)的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過(guò)兩次代換,又采用了抽象的符號(hào).由于沒(méi)有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)系預(yù)先揭示,進(jìn)而探究原因,尋找規(guī)律,程序是從問(wèn)題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對(duì)概念的剖析以及習(xí)題的配備也很精當(dāng),通過(guò)不同層次的問(wèn)題,滿足學(xué)生多層次需要,起到評(píng)價(jià)反饋的作用.通過(guò)對(duì)函數(shù)與方程的分析,互逆探索,動(dòng)畫(huà)演示,表格對(duì)照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動(dòng)了學(xué)生的探求欲,在探究與剖析的過(guò)程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。

        高中數(shù)學(xué)教案6

          教學(xué)目的:

          (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

          (2)使學(xué)生初步了解“屬于”關(guān)系的意義

         。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

          教學(xué)重點(diǎn):集合的基本概念及表示方法

          教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

          授課類型:新授課

          課時(shí)安排:1課時(shí)

          教 具:多媒體、實(shí)物投影儀

          內(nèi)容分析:

          集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯。

          本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子。

          這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書(shū)給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 ”這句話,只是對(duì)集合概念的描述性說(shuō)明。

          教學(xué)過(guò)程:

          一、復(fù)習(xí)引入:

          1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

          2、教材中的章頭引言;

          3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);

          4.“物以類聚”,“人以群分”;

          5.教材中例子(P4)

          二、講解新課:

          閱讀教材第一部分,問(wèn)題如下:

         。1)有那些概念?是如何定義的?

          (2)有那些符號(hào)?是如何表示的?

         。3)集合中元素的特性是什么?

         。ㄒ唬┘系挠嘘P(guān)概念:

          由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

          定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.

          1、集合的概念

         。1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)

          (2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

          2、常用數(shù)集及記法

         。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

         。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+

         。3)整數(shù)集:全體整數(shù)的集合 記作Z ,

         。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

         。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R

          注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0

         。2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

          3、元素對(duì)于集合的隸屬關(guān)系

         。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A

         。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作

          4、集合中元素的特性

         。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

         。2)互異性:集合中的元素沒(méi)有重復(fù)

         。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p>

          5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……

         、啤啊省钡拈_(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)

          三、練習(xí)題:

          1、教材P5練習(xí)1、2

          2、下列各組對(duì)象能確定一個(gè)集合嗎?

         。1)所有很大的實(shí)數(shù) (不確定)

         。2)好心的人 (不確定)

         。3)1,2,2,3,4,5.(有重復(fù))

          3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__

          4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )

         。ˋ)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

          5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

         。1) 當(dāng)x∈N時(shí), x∈G;

         。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

          證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

          證明(2):∵x∈G,y∈G,

          ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

          ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

          ∵a∈Z, b∈Z,c∈Z, d∈Z

          ∴(a+c) ∈Z, (b+d) ∈Z

          ∴x+y =(a+c)+(b+d) ∈G,

          又∵ =且 不一定都是整數(shù),

          ∴ = 不一定屬于集合G

          四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

          2、集合元素的性質(zhì):確定性,互異性,無(wú)序性

          3、常用數(shù)集的定義及記法

        高中數(shù)學(xué)教案7

          教學(xué)目的:

          掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問(wèn)題

          教學(xué)重點(diǎn):

          圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

          教學(xué)難點(diǎn):

          標(biāo)準(zhǔn)方程的靈活運(yùn)用

          教學(xué)過(guò)程:

          一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

          二、掌握知識(shí),鞏固練習(xí)

          練習(xí):

         、闭f(shuō)出下列圓的方程

         、艌A心(3,-2)半徑為5

          ⑵圓心(0,3)半徑為3

          ⒉指出下列圓的圓心和半徑

         、(x-2)2+(y+3)2=3

         、苮2+y2=2

          ⑶x2+y2-6x+4y+12=0

         、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系

         、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

          三、引伸提高,講解例題

          例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

          練習(xí):

          1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。

          2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。

          例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。

          例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)

          四、小結(jié)練習(xí)P771,2,3,4

          五、作業(yè)P811,2,3,4

        高中數(shù)學(xué)教案8

          [學(xué)習(xí)目標(biāo)]

          (1)會(huì)用坐標(biāo)法及距離公式證明Cα+β;

         。2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

         。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡(jiǎn)單的三角變換,解決求值、化簡(jiǎn)三角式、證明三角恒等式等問(wèn)題。

          [學(xué)習(xí)重點(diǎn)]

          兩角和與差的正弦、余弦、正切公式

          [學(xué)習(xí)難點(diǎn)]

          余弦和角公式的推導(dǎo)

          [知識(shí)結(jié)構(gòu)]

          1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過(guò)程見(jiàn)課本)

          2、通過(guò)下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

          3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

          4、關(guān)于公式的正用、逆用及變用

        高中數(shù)學(xué)教案9

          高中數(shù)學(xué)趣味競(jìng)賽題(共10題)

          1 、撒謊的有幾人

          5個(gè)高中生有,她們面對(duì)學(xué)校的新聞采訪說(shuō)了如下的話:

          愛(ài):“我還沒(méi)有談過(guò)戀愛(ài)。” 靜香:“愛(ài)撒謊了。”

          瑪麗:“我曾經(jīng)去過(guò)昆明! 惠美:“瑪麗在撒謊!

          千葉子:“瑪麗和惠美都在撒謊! 那么,這5個(gè)人之中到底有幾個(gè)人在撒謊呢?

          2、她們到底是誰(shuí)

          有天使、惡魔、人三者,天使時(shí)刻都說(shuō)真話,惡魔時(shí)時(shí)刻刻都說(shuō)假話,人呢,有時(shí)候說(shuō)真話,有時(shí)候說(shuō)假話。

          穿黑色衣服的女子說(shuō):“我不是天使! 穿藍(lán)色衣服的女子說(shuō):“我不是人! 穿白色衣服的女子說(shuō):“我不是惡魔!蹦敲矗@三人到底分別是誰(shuí)呢?

          3、半只小貓

          聽(tīng)說(shuō)祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來(lái)到祖父家?墒牵皇O1只小貓了。

          “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的`這只小貓給你。附近的寵物店聽(tīng)說(shuō)以后,馬上來(lái)買走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無(wú)論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?

          4、被蟲(chóng)子吃掉的算式

          一只愛(ài)吃墨水的蟲(chóng)子把下圖的算式中的數(shù)字全部吃掉了。當(dāng)然,沒(méi)有數(shù)字的部分它沒(méi)有吃(因?yàn)闆](méi)有墨水)。

          那么,請(qǐng)問(wèn)原來(lái)的算式是什么樣子的呢?

          5、巧動(dòng)火柴

          用16根火柴擺成5個(gè)正方形。請(qǐng)移動(dòng)2根火柴,

          使

          正形變成4。

          6、折過(guò)來(lái)的角

          把正三角形的紙如圖那樣折過(guò)來(lái)時(shí),角?的度數(shù)是多少度?

          7、星形角之和

          求星形尖端的角度之和。

          8、啊!雙胞胎?

          丈夫臨死前,給有身孕的妻子留下遺言說(shuō),生的是男孩就給他財(cái)產(chǎn)的 2/3 、如果生的是女孩就給他財(cái)產(chǎn)的 2/5 、剩下的給妻子。

          結(jié)果,生出來(lái)的是孿生兄妹——雙胞胎。這可難壞了妻子,3個(gè)人怎么分財(cái)產(chǎn)好呢?

          9、贈(zèng)送和降價(jià)哪個(gè)更好?

          1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?

          10、折成15度

          用折紙做成45度很簡(jiǎn)單是吧。那么,請(qǐng)折成15度,你會(huì)嗎?

        高中數(shù)學(xué)教案10

          一、教學(xué)目標(biāo)

          【知識(shí)與技能】

          在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

          【過(guò)程與方法】

          通過(guò)對(duì)方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力得到提高。

          【情感態(tài)度與價(jià)值觀】

          滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

          二、教學(xué)重難點(diǎn)

          【重點(diǎn)】

          掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。

          【難點(diǎn)】

          二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

          三、教學(xué)過(guò)程

         。ㄒ唬⿵(fù)習(xí)舊知,引出課題

          1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

          2、提問(wèn)1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

        高中數(shù)學(xué)教案11

          教學(xué)目標(biāo):

          1。理解并掌握瞬時(shí)速度的定義;

          2。會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;

          3。理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力。

          教學(xué)重點(diǎn):

          會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。

          教學(xué)難點(diǎn):

          理解瞬時(shí)速度和瞬時(shí)加速度的定義。

          教學(xué)過(guò)程:

          一、問(wèn)題情境

          1。問(wèn)題情境。

          平均速度:物體的運(yùn)動(dòng)位移與所用時(shí)間的比稱為平均速度。

          問(wèn)題一平均速度反映物體在某一段時(shí)間段內(nèi)運(yùn)動(dòng)的快慢程度。那么如何刻畫(huà)物體在某一時(shí)刻運(yùn)動(dòng)的快慢程度?

          問(wèn)題二跳水運(yùn)動(dòng)員從10m高跳臺(tái)騰空到入水的過(guò)程中,不同時(shí)刻的速度是不同的。假設(shè)t秒后運(yùn)動(dòng)員相對(duì)于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運(yùn)動(dòng)員的速度.

          2。探究活動(dòng):

          (1)計(jì)算運(yùn)動(dòng)員在2s到2.1s(t∈)內(nèi)的平均速度。

          (2)計(jì)算運(yùn)動(dòng)員在2s到(2+?t)s(t∈)內(nèi)的平均速度。

          (3)如何計(jì)算運(yùn)動(dòng)員在更短時(shí)間內(nèi)的平均速度。

          探究結(jié)論:

          時(shí)間區(qū)間

          t

          平均速度

          0.1

          -13.59

          0.01

          -13.149

          0.001

          -13.1049

          0.0001

          -13.10049

          0.00001

          -13.100049

          0.000001

          -13.1000049

          當(dāng)?t?0時(shí),?-13.1,

          該常數(shù)可作為運(yùn)動(dòng)員在2s時(shí)的瞬時(shí)速度。

          即t=2s時(shí),高度對(duì)于時(shí)間的瞬時(shí)變化率。

          二、建構(gòu)數(shù)學(xué)

          1。平均速度。

          設(shè)物體作直線運(yùn)動(dòng)所經(jīng)過(guò)的路程為,以為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為。

          可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。

          三、數(shù)學(xué)運(yùn)用

          例1物體作自由落體運(yùn)動(dòng),運(yùn)動(dòng)方程為,其中位移單位是m,時(shí)

          間單位是s,,求:

         。1)物體在時(shí)間區(qū)間s上的平均速度;

         。2)物體在時(shí)間區(qū)間上的平均速度;

          (3)物體在t=2s時(shí)的瞬時(shí)速度。

          分析

          解

          (1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

          (2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

         。3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:

          例2設(shè)一輛轎車在公路上作直線運(yùn)動(dòng),假設(shè)時(shí)的速度為,

          求當(dāng)時(shí)轎車的瞬時(shí)加速度。

          解

          ∴當(dāng)?t無(wú)限趨于0時(shí),無(wú)限趨于,即=。

          練習(xí)

          課本P12—1,2。

          四、回顧小結(jié)

          問(wèn)題1本節(jié)課你學(xué)到了什么?

          1理解瞬時(shí)速度和瞬時(shí)加速度的定義;

          2實(shí)際應(yīng)用問(wèn)題中瞬時(shí)速度和瞬時(shí)加速度的求解;

          問(wèn)題2解決瞬時(shí)速度和瞬時(shí)加速度問(wèn)題需要注意什么?

          注意當(dāng)?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。

          問(wèn)題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?

          2極限的思想方法。

          3特殊到一般、從具體到抽象的推理方法。

          五、課外作業(yè)

        高中數(shù)學(xué)教案12

          1.課題

          填寫(xiě)課題名稱(高中代數(shù)類課題)

          2.教學(xué)目標(biāo)

          (1)知識(shí)與技能:

          通過(guò)本節(jié)課的學(xué)習(xí),掌握......知識(shí),提高學(xué)生解決實(shí)際問(wèn)題的能力;

          (2)過(guò)程與方法:

          通過(guò)......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

          (3)情感態(tài)度與價(jià)值觀:

          通過(guò)本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實(shí)際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。

          3.教學(xué)重難點(diǎn)

          (1)教學(xué)重點(diǎn):本節(jié)課的知識(shí)重點(diǎn)

          (2)教學(xué)難點(diǎn):易錯(cuò)點(diǎn)、難以理解的知識(shí)點(diǎn)

          4.教學(xué)方法(一般從中選擇3個(gè)就可以了)

          (1)討論法

          (2)情景教學(xué)法

          (3)問(wèn)答法

          (4)發(fā)現(xiàn)法

          (5)講授法

          5.教學(xué)過(guò)程

          (1)導(dǎo)入

          簡(jiǎn)單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)

          (2)新授課程(一般分為三個(gè)小步驟)

         、俸(jiǎn)單講解本節(jié)課基礎(chǔ)知識(shí)點(diǎn)(例:奇函數(shù)的定義)。

         、跉w納總結(jié)該課題中的重點(diǎn)知識(shí)內(nèi)容,尤其對(duì)該注意的一些情況設(shè)置易錯(cuò)點(diǎn),進(jìn)行強(qiáng)調(diào)?梢栽O(shè)計(jì)分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點(diǎn)。設(shè)置定義域不關(guān)于原點(diǎn)對(duì)稱的函數(shù)是否為奇函數(shù)的易錯(cuò)點(diǎn))。

         、弁卣寡由欤瑢⑺鶎W(xué)知識(shí)拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問(wèn)題。

         。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過(guò)詳細(xì)。)

          (3)課堂小結(jié)

          教師提問(wèn),學(xué)生回答本節(jié)課的收獲。

          (4)作業(yè)提高

          布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng)新)。

          6.教學(xué)板書(shū)

          2.高中數(shù)學(xué)教案格式

          一.課題(說(shuō)明本課名稱)

          二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說(shuō)明本課所要完成的教學(xué)任務(wù))

          三.課型(說(shuō)明屬新授課,還是復(fù)習(xí)課)

          四.課時(shí)(說(shuō)明屬第幾課時(shí))

          五.教學(xué)重點(diǎn)(說(shuō)明本課所必須解決的關(guān)鍵性問(wèn)題)

          六.教學(xué)難點(diǎn)(說(shuō)明本課的學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識(shí)傳授與能力培養(yǎng)點(diǎn))

          七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維

          八.教學(xué)過(guò)程(或稱課堂結(jié)構(gòu),說(shuō)明教學(xué)進(jìn)行的內(nèi)容、方法步驟)

          九.作業(yè)處理(說(shuō)明如何布置書(shū)面或口頭作業(yè))

          十.板書(shū)設(shè)計(jì)(說(shuō)明上課時(shí)準(zhǔn)備寫(xiě)在黑板上的內(nèi)容)

          十一.教具(或稱教具準(zhǔn)備,說(shuō)明輔助教學(xué)手段使用的工具)

          十二.教學(xué)反思:(教者對(duì)該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)

          3.高中數(shù)學(xué)教案范文

          【教學(xué)目標(biāo)】

          1.知識(shí)與技能

          (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

          (2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過(guò)程:

          (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問(wèn)題。

          2.過(guò)程與方法

          在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過(guò)程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

          3.情感、態(tài)度與價(jià)值觀

          通過(guò)教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

          【教學(xué)重點(diǎn)】

         、俚炔顢(shù)列的概念;

          ②等差數(shù)列的通項(xiàng)公式

          【教學(xué)難點(diǎn)】

         、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;

          ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程.

          【學(xué)情分析】

          我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

          【設(shè)計(jì)思路】

          1、教法

         、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

         、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性.

         、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

          2、學(xué)法

          引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

          【教學(xué)過(guò)程】

          一、創(chuàng)設(shè)情境,引入新課

          1、從0開(kāi)始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

          2、水庫(kù)管理人員為了保證優(yōu)質(zhì)魚(yú)類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚(yú).如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?

          3、我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

          教師:以上三個(gè)問(wèn)題中的數(shù)蘊(yùn)涵著三列數(shù).

          學(xué)生:

         、0,5,10,15,20,25,….

         、18,15.5,13,10.5,8,5.5.

         、10072,10144,10216,10288,10360.

          (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

          二、觀察歸納,形成定義

         、0,5,10,15,20,25,….

         、18,15.5,13,10.5,8,5.5.

         、10072,10144,10216,10288,10360.

          思考1上述數(shù)列有什么共同特點(diǎn)?

          思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

          思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?

          教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

          學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

          教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

          (設(shè)計(jì)意圖:通過(guò)對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開(kāi)始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

          三、舉一反三,鞏固定義

          1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

          (1)1,1,1,1,1;

          (2)1,0,1,0,1;

          (3)2,1,0,-1,-2;

          (4)4,7,10,13,16.

          教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問(wèn)題.

          注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.

          (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

          2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

          (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

          四、利用定義,導(dǎo)出通項(xiàng)

          1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

          2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

          教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問(wèn)題的常用方法.

          (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

          五、應(yīng)用通項(xiàng),解決問(wèn)題

          1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

          2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

          3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)

          教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

          學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

          (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問(wèn)題.)

          六、反饋練習(xí):教材13頁(yè)練習(xí)1

          七、歸納總結(jié):

          1、一個(gè)定義:

          等差數(shù)列的定義及定義表達(dá)式

          2、一個(gè)公式:

          等差數(shù)列的通項(xiàng)公式

          3、二個(gè)應(yīng)用:

          定義和通項(xiàng)公式的應(yīng)用

          教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充

          (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

          【設(shè)計(jì)反思】

          本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

        高中數(shù)學(xué)教案13

          猴子搬香蕉

          一個(gè)小猴子邊上有100根香蕉,它要走過(guò)50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請(qǐng)問(wèn)它最多能把多少根香蕉搬到家里?

          解答:

          100只香蕉分兩次,一次運(yùn)50只,走1米,再回去搬另外50只,這樣走了1米的時(shí)候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時(shí)候剩下46+48只;...到16米的時(shí)候剩下(50-2×16)+(50-16)=18+34只;17米的時(shí)候剩下16+33只,共49只;然后把剩下的這49只一次運(yùn)回去,要走剩下的33米,每米吃一個(gè),到家還有16個(gè)香蕉。

          河岸的距離

          兩艘輪船在同一時(shí)刻駛離河的兩岸,一艘從A駛往B,另一艘從B開(kāi)往A,其中一艘開(kāi)得比另一艘快些,因此它們?cè)诰嚯x較近的岸500公里處相遇。到達(dá)預(yù)定地點(diǎn)后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問(wèn)河有多寬?

          解答:

          當(dāng)兩艘渡輪在x點(diǎn)相遇時(shí),它們距A岸500公里,此時(shí)它們走過(guò)的距離總和等于河的寬度。當(dāng)它們雙方抵達(dá)對(duì)岸時(shí),走過(guò)的總長(zhǎng)度

          等于河寬的兩倍。在返航中,它們?cè)趜點(diǎn)相遇,這時(shí)兩船走過(guò)的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應(yīng)該等于它們第一次相遇時(shí)所走的距離的三倍。在兩船第一次相遇時(shí),有一艘渡輪走了500公里,所以當(dāng)它到達(dá)z點(diǎn)時(shí),已經(jīng)走了三倍的距離,即1500公里,這個(gè)距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時(shí)間對(duì)答案毫無(wú)影響。

          變量交換

          不使用任何其他變量,交換a,b變量的值?

          分析與解答

          a = a+b

          b = a-b

          a= a-b

          步行時(shí)間

          某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個(gè)小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機(jī)總是在同一時(shí)刻從家里開(kāi)出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準(zhǔn)時(shí),因此,火車與轎車每次都是在同一時(shí)刻到站。

          有一次,司機(jī)比以往遲了半個(gè)小時(shí)出發(fā)。溫斯頓到站后,找不到

          他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風(fēng)馳電掣而來(lái),立即招手示意停車,跳上車子后也顧不上罵司機(jī),命其馬上掉頭往回開(kāi);氐郊抑,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長(zhǎng)時(shí)間?

          解答:

          假如溫斯頓一直在車站等候,那么由于司機(jī)比以往晚了半小時(shí)出發(fā),因此,也將晚半小時(shí)到達(dá)車站。也就是說(shuō),溫斯頓將在車站空等半小時(shí),等他的轎車到達(dá)后坐車回家,從而他將比以往晚半小時(shí)到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來(lái)的8分鐘是如果總裁在火車站死等的話,司機(jī)本來(lái)要花在從現(xiàn)在遇到溫斯頓總裁的地點(diǎn)到火車站再回到這個(gè)地點(diǎn)上的時(shí)間。這意味著,如果司機(jī)開(kāi)車從現(xiàn)在遇到總裁的地點(diǎn)趕到火車站,單程所花的時(shí)間將為4分鐘。因此,如果溫斯頓等在火車站,再過(guò)4分鐘,他的轎車也到了。也就是說(shuō),他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒(méi)有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

          因此,溫斯頓步行了26分鐘。

          付清欠款

          有四個(gè)人借錢的數(shù)目分別是這樣的:阿伊庫(kù)向貝爾借了10美元;

          貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫(kù)借了40美元。碰巧四個(gè)人都在場(chǎng),決定結(jié)個(gè)賬,請(qǐng)問(wèn)最少只需要?jiǎng)佑枚嗌倜澜鹁涂梢詫⑺星房钜淮胃肚澹?/p>

          解答:

          貝爾、查理、迪克各自拿出10美元給阿伊庫(kù)就可解決問(wèn)題了。這樣的話只動(dòng)用了30美元。最笨的辦法就是用100美元來(lái)一一付清。

          貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫(kù)則要收回借出的30美元。再?gòu)?fù)雜的問(wèn)題只要有條理地分析就會(huì)很簡(jiǎn)單。養(yǎng)成經(jīng)常性地歸納整理、摸索實(shí)質(zhì)的好習(xí)慣。

          一美元紙幣

          注:美國(guó)貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

          一家小店剛開(kāi)始營(yíng)業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時(shí)站起來(lái)付帳的時(shí)候,出現(xiàn)了以下的情況:

          (1)這四個(gè)人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

         。2)這四人中沒(méi)有一人能夠兌開(kāi)任何一枚硬幣。

         。3)一個(gè)叫盧的男士要付的賬單款額最大,一位叫莫的男士要

          付的帳單款額其次,一個(gè)叫內(nèi)德的男士要付的賬單款額最小。

         。4)每個(gè)男士無(wú)論怎樣用手中所持的硬幣付賬,女店主都無(wú)法找清零錢。

          (5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個(gè)人都可以付清自己的賬單而無(wú)需找零。

          (6)當(dāng)這三位男士進(jìn)行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒(méi)有一枚面值相同。

          (7)隨著事情的進(jìn)一步發(fā)展,又出現(xiàn)如下的情況:

         。8)在付清了賬單而且有兩位男士離開(kāi)以后,留下的男士又買了一些糖果。這位男士本來(lái)可以用他手中剩下的硬幣付款,可是女店主卻無(wú)法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。

          現(xiàn)在,請(qǐng)你不要管那天女店主怎么會(huì)在找零上屢屢遇到麻煩,這三位男士中誰(shuí)用1美元的紙幣付了糖果錢?

          解答:

          對(duì)題意的以下兩點(diǎn)這樣理解:

         。2)中不能換開(kāi)任何一個(gè)硬幣,指的是如果任何一個(gè)人不能有2個(gè)5分,否則他能換1個(gè)10分硬幣。

         。6)中指如果A,B換過(guò),并且A,C換過(guò),這就是兩次交換。

        高中數(shù)學(xué)教案14

          教學(xué)目標(biāo)

         。1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;

         。2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

         。3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;

          教學(xué)重點(diǎn)難點(diǎn)

          重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

          難點(diǎn)是解組合的應(yīng)用題.

          教學(xué)過(guò)程設(shè)計(jì)

          (-)導(dǎo)入新課

          (教師活動(dòng))提出下列思考問(wèn)題,打出字幕.

          [字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?

         。▽W(xué)生活動(dòng))討論并回答.

          答案提示:(1)排列;(2)組合.

         。墼u(píng)述]問(wèn)題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.

          設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的.上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.

          (二)新課講授

         。厶岢鰡(wèn)題 創(chuàng)設(shè)情境]

         。ń處熁顒(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.

          [字幕]1.排列的定義是什么?

          2.舉例說(shuō)明一個(gè)組合是什么?

          3.一個(gè)組合與一個(gè)排列有何區(qū)別?

          (學(xué)生活動(dòng))閱讀回答.

         。ń處熁顒(dòng))對(duì)照課文,逐一評(píng)析.

          設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.

          【歸納概括 建立新知】

         。ń處熁顒(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).

         。圩帜唬菽P停簭 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

          組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

         。墼u(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.

          (學(xué)生活動(dòng))傾聽(tīng)、思索、記錄.

         。ń處熁顒(dòng))提出思考問(wèn)題.

         。弁队埃 與 的關(guān)系如何?

         。◣熒顒(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

          第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

          第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .

          根據(jù)分步計(jì)數(shù)原理,得到

          [字幕]公式1:

          公式2:

         。▽W(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

          設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.

          (三)小結(jié)

         。◣熒顒(dòng))共同小結(jié).

          本節(jié)主要內(nèi)容有

          1.組合概念.

          2.組合數(shù)計(jì)算的兩個(gè)公式.

          (四)布置作業(yè)

          1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

          2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

          3.研究性題:

          在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

          (五)課后點(diǎn)評(píng)

          在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

          作業(yè)參考答案

          2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

          3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.

          探究活動(dòng)

          同室四人各寫(xiě)一張賀年卡,先集中起來(lái),然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬(wàn)式可有多少種?

          解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來(lái)解.

          解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

          甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

          甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

          甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

          由加法原理得,賀卡分配方法有3+3+3=9種.

          解法二 可從利用排列數(shù)和組合數(shù)公式角度來(lái)考慮.這時(shí)還存在正向與逆向兩種思考途徑.

          正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

          逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

        高中數(shù)學(xué)教案15

          教學(xué)目標(biāo):

          (1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;

          (2)了解全集、空集的意義。

          (3)掌握有關(guān)子集、全集、補(bǔ)集的符號(hào)及表示方法,會(huì)用它們正確表示一些簡(jiǎn)單的集合,培養(yǎng)學(xué)生的符號(hào)表示的能力;

          (4)會(huì)求已知集合的子集、真子集,會(huì)求全集中子集在全集中的補(bǔ)集;

          (5)能判斷兩集合間的包含、相等關(guān)系,并會(huì)用符號(hào)及圖形(文氏圖)準(zhǔn)確地表示出來(lái),培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

          (6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問(wèn)題、解決問(wèn)題的能力。

          教學(xué)重點(diǎn):

          子集、補(bǔ)集的概念

          教學(xué)難點(diǎn):

          弄清元素與子集、屬于與包含之間的區(qū)別

          教學(xué)用具:

          幻燈機(jī)

          教學(xué)過(guò)程設(shè)計(jì)

          (一)導(dǎo)入新課

          上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識(shí)。

          【提出問(wèn)題】(投影打出)

          已知xx,xx,xx,問(wèn):

          1、哪些集合表示方法是列舉法。

          2、哪些集合表示方法是描述法。

          3、將集M、集從集P用圖示法表示。

          4、分別說(shuō)出各集合中的元素。

          5、將每個(gè)集合中的元素與該集合的關(guān)系用符號(hào)表示出來(lái)、將集N中元素3與集M的關(guān)系用符號(hào)表示出來(lái)。

          6、集M中元素與集N有何關(guān)系、集M中元素與集P有何關(guān)系。

          【找學(xué)生回答】

          1、集合M和集合N;(口答)

          2、集合P;(口答)

          3、(筆練結(jié)合板演)

          4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

          5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結(jié)合板演)

          6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

          【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會(huì)經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題、

          (二)新授知識(shí)

          1、子集

          (1)子集定義:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。

          記作:xx讀作:A包含于B或B包含A

          當(dāng)集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:AxxB或BxxA、

          性質(zhì):①xx(任何一個(gè)集合是它本身的子集)

         、趚x(空集是任何集合的子集)

          【置疑】能否把子集說(shuō)成是由原來(lái)集合中的部分元素組成的集合?

          【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

          因?yàn)锽的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的空集也是B的子集,而這個(gè)集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

          (2)集合相等:一般地,對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。

          例:xx,可見(jiàn),集合x(chóng)x,是指A、B的所有元素完全相同。

          (3)真子集:對(duì)于兩個(gè)集合A與B,如果xx,并且xx,我們就說(shuō)集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

          【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A,那么集合A叫做集合B的真子集!

          集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合A,B。

          【提問(wèn)】

          (1)xx寫(xiě)出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

          (2)xx判斷下列寫(xiě)法是否正確

         、賦xAxx②xxAxx③xx④AxxA

          性質(zhì):

          (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

          (2)如果xx,xx,則xx。

          例1xx寫(xiě)出集合x(chóng)x的所有子集,并指出其中哪些是它的真子集、

          解:集合x(chóng)x的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

          【注意】(1)子集與真子集符號(hào)的方向。

          (2)易混符號(hào)

         、佟皒x”與“xx”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如xxR,{1}xx{1,2,3}

          ②{0}與xx:{0}是含有一個(gè)元素0的集合,xx是不含任何元素的集合。

          如:xx{0}。不能寫(xiě)成xx={0},xx∈{0}

          例2xx見(jiàn)教材P8(解略)

          例3xx判斷下列說(shuō)法是否正確,如果不正確,請(qǐng)加以改正、

          (1)xx表示空集;

          (2)空集是任何集合的真子集;

          (3)xx不是xx;

          (4)xx的所有子集是xx;

          (5)如果xx且xx,那么B必是A的真子集;

          (6)xx與xx不能同時(shí)成立、

          解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

          (2)不正確、空集是任何非空集合的真子集;

          (3)不正確、xx與xx表示同一集合;

          (4)不正確、xx的所有子集是xx;

          (5)正確

          (6)不正確、當(dāng)xx時(shí),xx與xx能同時(shí)成立、

          例4xx用適當(dāng)?shù)姆?hào)(xx,xx)填空:

          (1)xx;xx;xx;

          (2)xx;xx;

          (3)xx;

          (4)設(shè)xx,xx,xx,則AxxBxxC、

          解:(1)0xx0xx;

          (2)xx=xx,xx;

          (3)xx,xx∴xx;

          (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、

          【練習(xí)】教材P9

          用適當(dāng)?shù)姆?hào)(xx,xx)填空:

          (1)xx;xx(5)xx;

          (2)xx;xx(6)xx;

          (3)xx;xx(7)xx;

          (4)xx;xx(8)xx、

          解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

          提問(wèn):見(jiàn)教材P9例子

          (二)xx全集與補(bǔ)集

          1、補(bǔ)集:一般地,設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集),記作xx,即

          、

          A在S中的補(bǔ)集xx可用右圖中陰影部分表示、

          性質(zhì):xxS(xxSA)=A

          如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

          (2)若A={0},則xxNA=N;

          (3)xxRQ是無(wú)理數(shù)集。

          2、全集:

          如果集合S中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用xx表示。

          注:xx是對(duì)于給定的全集xx而言的,當(dāng)全集不同時(shí),補(bǔ)集也會(huì)不同。

          例如:若xx,當(dāng)xx時(shí),xx;當(dāng)xx時(shí),則xx。

          例5xx設(shè)全集xx,xx,xx,判斷xx與xx之間的關(guān)系。

          解:

          練習(xí):見(jiàn)教材P10練習(xí)

          1、填空:

          xx,xx,那么xx,xx。

          解:xx,

          2、填空:

          (1)如果全集xx,那么N的補(bǔ)集xx;

          (2)如果全集,xx,那么xx的補(bǔ)集xx(xx)=xx、

          解:(1)xx;(2)xx。

          (三)小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1、五個(gè)概念(子集、集合相等、真子集、補(bǔ)集、全集,其中子集、補(bǔ)集為重點(diǎn))

          2、五條性質(zhì)

          (1)空集是任何集合的子集。ΦxxA

          (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

          (3)任何一個(gè)集合是它本身的子集。

          (4)如果xx,xx,則xx、

          (5)xxS(xxSA)=A

          3、兩組易混符號(hào):(1)“xx”與“xx”:(2){0}與

          (四)課后作業(yè):見(jiàn)教材P10習(xí)題1、2

        【高中數(shù)學(xué)教案】相關(guān)文章:

        高中數(shù)學(xué)教案07-11

        高中數(shù)學(xué)教案12-29

        高中數(shù)學(xué)教案07-20

        高中數(shù)學(xué)教案模板11-18

        高中數(shù)學(xué)教案范文07-20

        高中數(shù)學(xué)教案【熱】12-29

        【精】高中數(shù)學(xué)教案12-29

        【熱】高中數(shù)學(xué)教案12-29

        【薦】高中數(shù)學(xué)教案12-29

        【熱門】高中數(shù)學(xué)教案12-29

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>