1. <rp id="zsypk"></rp>

      2. 二次根式教案

        時間:2022-10-30 16:51:16 教案 我要投稿

        【熱門】二次根式教案4篇

          作為一名教職工,總歸要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。那么寫教案需要注意哪些問題呢?以下是小編整理的二次根式教案4篇,歡迎閱讀與收藏。

        【熱門】二次根式教案4篇

        二次根式教案 篇1

          一、內(nèi)容解析

          本節(jié)教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

          對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據(jù)算術平方根的意義,就具體數(shù)字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節(jié)課的教學重點為:理解二次根式的性質.

          二、目標和目標解析

          1.教學目標

         。1)經(jīng)歷探索二次根式的性質的過程,并理解其意義;

          (2)會運用二次根式的性質進行二次根式的化簡;

         。3)了解代數(shù)式的概念.

          2.目標解析

         。1)學生能根據(jù)具體數(shù)字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

         。2)學生能靈活運用二次根式的性質進行二次根式的化簡;

         。3)學生能從已學過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

          三、教學問題診斷分析

          二次根式的性質是二次根式化簡和運算的重要基礎.學生根據(jù)二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養(yǎng)其靈活運用的能力.

          本節(jié)課的教學難點為:二次根式性質的靈活運用.

          四、教學過程設計

          1.探究性質1

          問題1 你能解釋下列式子的含義嗎?

          師生活動:教師引導學生說出每一個式子的含義.

          【設計意圖】讓學生初步感知,這些式子都表示一個非負數(shù)的算術平方根的平方.

          問題2 根據(jù)算術平方根的意義填空,并說出得到結論的依據(jù).

          師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據(jù).

          【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

          問題3 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

          師生活動:引導學生歸納得出二次根式的性質: ( ≥0).

          【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質1,培養(yǎng)學生抽象概括的能力.

          例2 計算

          (1)

         。2)

          師生活動:學生獨立完成,集體訂正.

          【設計意圖】鞏固二次根式的性質1,學會靈活運用.

          2.探究性質2

          問題4 你能解釋下列式子的含義嗎?

          師生活動:教師引導學生說出每一個式子的含義.

          【設計意圖】讓學生初步感知,這些式子都表示一個數(shù)的平方的算術平方根.

          問題5 根據(jù)算術平方根的意義填空,并說出得到結論的依據(jù).

          師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據(jù).

          【設計意圖】學生通過計算或根據(jù)算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

          問題6 從以上的結論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

          師生活動:引導學生歸納得出二次根式的性質: ( ≥0)

          【設計意圖】讓學生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質2,培養(yǎng)學生抽象概括的能力.

          例3 計算

         。1)

         。2)

          師生活動:學生獨立完成,集體訂正.

          【設計意圖】鞏固二次根式的性質2,學會靈活運用.

          3.歸納代數(shù)式的概念

          問題7 回顧我們學過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?

          師生活動:學生概括式子的共同特征,得得出代數(shù)式的概念.

          【設計意圖】學生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學生的概括能力.

          4.綜合運用

          (1)算一算:

          【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

          (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

          【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

         。3)談一談你對 與 的認識.

          【設計意圖】加深學生對二次根式性質的理解.

          5.總結反思

          (1)你知道了二次根式的哪些性質?

         。2)運用二次根式性質進行化簡需要注意什么?

         。3)請談談發(fā)現(xiàn)二次根式性質的思考過程?

         。4)想一想,到現(xiàn)在為止,你學習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

          6.布置作業(yè):教科書習題16.1第2,4題.

        二次根式教案 篇2

          教學目的

          1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

          2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

          教學重點

          最簡二次根式的定義。

          教學難點

          一個二次根式化成最簡二次根式的方法。

          教學過程

          一、復習引入

          1.把下列各根式化簡,并說出化簡的根據(jù):

          2.引導學生觀察考慮:

          化簡前后的根式,被開方數(shù)有什么不同?

          化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

          3.啟發(fā)學生回答:

          二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

          二、講解新課

          1.總結學生回答的內(nèi)容后,給出最簡二次根式定義:

          滿足下列兩個條件的二次根式叫做最簡二次根式:

          (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

          (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

          最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。

          2.練習:

          下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

          3.例題:

          例1 把下列各式化成最簡二次根式:

          例2 把下列各式化成最簡二次根式:

          4.總結

          把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?

          當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。

          當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的性質化去分母。

          此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

          三、鞏固練習

          1.把下列各式化成最簡二次根式:

          2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

        二次根式教案 篇3

          教學目標

          課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎,根據(jù)教學大綱和新課標的要求,根據(jù)教材內(nèi)容和學生的特點我確定了本節(jié)課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質,經(jīng)歷觀察、比較、總結二次根式的基本性質的過程,發(fā)展學生的歸納概括能力。 3、通過對二次根式的概念和性質的探究,提高數(shù)學探究能力和歸納表達能力。 4、學生經(jīng)歷觀察、比較、總結和應用等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應用的意識。

          教學重點:二次根式的概念和基本性質

          教學難點:二次根式的基本性質的靈活運用

          教法和學法

          教學活動的本質是一種合作,一種交流。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者,本節(jié)課主要采用自主學習,合作探究,引領提升的方式展開教學。依據(jù)學生的年齡特點和已有的知識基礎,本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學習打下堅實的基礎,例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養(yǎng)成聯(lián)系和發(fā)展的觀點學習數(shù)學的習慣。

          教學過程

          活動一:根據(jù)學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設置問題情境,讓學生感受到研究二次根式來源于生活又服務于生活。 思考:用帶有根號的式子填空,看看寫出的結果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應為 cm

          (2)面積為S的正方形的邊長為

          (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

          (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關系h=5t2.如果用含有h的式子表示t,則t= 學生發(fā)現(xiàn)所填結果都表示一個數(shù)的算術平方根,教師引導學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發(fā)學生回憶已學平方根的性質讓學生總結出a這一條件。在此基礎上總結出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓練,讓學生體會二次根式概念的初步應用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉化的思想解決問題,總結出解題規(guī)律:求未知數(shù)的取值范圍即轉化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

          活動二:探究二次根式的性質1 1.探究(a)與0的關系 學生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質:雙重非負性。培養(yǎng)學生的分類討論和概括能力。例2:,則變式:,

          活動三:探究二次根式的性質2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質,首先讓學生通過探究活動感受這條結論,然后再從算術平方根的意義出發(fā),結合具體例子對這條結論進行分析,引導學生由具體到抽象,得出一般的結論,并發(fā)現(xiàn)開平方運算與平方運算的關系,培養(yǎng)學生由特殊到一般的思維方式,提高歸納、總結的`能力。前兩題學生口述教師板書,后面的兩題由學生板演引導學生分析(2)(4)實質是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內(nèi)分解因式

          活動四:探究二次根式的性質3 3.探究 在活動三的基礎上出示課本第4頁的探究: 引導學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質。培養(yǎng)學生觀察、對比的能力和意識。 此時引導學生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結果看:()2=a(a),(a為任意數(shù)

        二次根式教案 篇4

          教材分析:

          本節(jié)內(nèi)容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

          學生分析:

          本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎差、自學能力差,因此要提供賞識性評價教學策略,給予個別關照、心理暗示以及適當?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務。

          設計理念:

          新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉變?yōu)閷W生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向實際的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

          教學目標知識與技能目標:

          會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

          過程與方法目標:

          通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。

          情感態(tài)度與價值觀:

          通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣.

          重點、難點:重點:

          合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

          難點:

          二次根式加減法的實際應用。

          關鍵問題 :

          了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

          教學方法:.

          1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結論,掌握規(guī)律。

          2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

          3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

        【二次根式教案】相關文章:

        二次根式的教案10-19

        關于二次根式教案08-27

        《二次根式的運算》的教案06-20

        《二次根式的運算》的教案09-07

        【精選】二次根式教案3篇08-13

        二次根式教案4篇07-21

        【精選】二次根式教案4篇07-02

        二次根式教案九篇02-06

        關于二次根式教案4篇05-18

        【熱門】二次根式教案四篇10-28

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>