1. <rp id="zsypk"></rp>

      2. 《圓柱的體積》數(shù)學(xué)教案

        時間:2021-12-12 19:16:54 教案 我要投稿

        《圓柱的體積》數(shù)學(xué)教案

          作為一位杰出的老師,常常需要準(zhǔn)備教案,借助教案可以更好地組織教學(xué)活動。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家收集的《圓柱的體積》數(shù)學(xué)教案,希望對大家有所幫助。

        《圓柱的體積》數(shù)學(xué)教案

        《圓柱的體積》數(shù)學(xué)教案1

          教學(xué)目標(biāo)

          1.理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式.

          2.會運用公式計算圓柱的體積.

          教學(xué)重點

          圓柱體體積的計算.

          教學(xué)難點

          理解圓柱體體積公式的推導(dǎo)過程.

          教學(xué)過程

          一、復(fù)習(xí)準(zhǔn)備

          (一)教師提問

          1.什么叫體積?怎樣求長方體的體積?

          2.圓的面積公式是什么?

          3.圓的面積公式是怎樣推導(dǎo)的?

          (二)談話導(dǎo)入

          同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)

          二、新授教學(xué)

          (一)教學(xué)圓柱體的體積公式.(演示動畫“圓柱體的體積1”)

          1.教師演示

          把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體.

          2.學(xué)生利用學(xué)具操作.

          3.啟發(fā)學(xué)生思考、討論:

         。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)

          (2)通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?

         、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了.

         、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化.

         、劢崎L方體的高就是圓柱的高,沒有變化.

          4.學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進行猜想.

         。1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?

         。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?

          (3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?

          5.啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?

         。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體.

         。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體.

          6.推導(dǎo)圓柱的體積公式

          (1)學(xué)生分組討論:圓柱體的體積怎樣計算?

         。2)學(xué)生匯報討論結(jié)果,并說明理由.

          因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積×高)

          (3)用字母表示圓柱的體積公式.(板書:V=Sh)

          (二)教學(xué)例4.

          1.出示例4

          例4.一根圓柱形鋼材,底面積是50平方厘米,高是2。1米,它的體積是多少?

          2。1米=210厘米

          50×210=10500(立方厘米)

          答:它的體積是10500立方厘米.

          2.反饋練習(xí)

         。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?

          (2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?

          (三)教學(xué)例5.

          1.出示例5

          例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?

          水桶的底面積:

         。3。14×

         。3。14×100

          =314(平方厘米)

          水桶的容積:

          314×25

         。7850(立方厘米)

          =7。8(立方分米)

          答:這個水桶的容積大約是7。8立方分米.

          三、課堂小結(jié)

          通過本節(jié)課的學(xué)習(xí),你有什么收獲?

          1.圓柱體體積公式的推導(dǎo)方法.

          2.公式的應(yīng)用.

          四、課堂練習(xí)

         。ㄒ唬┨畋

          底面積S(平方米)15

          高h(米)3

          圓柱的體積V(立方米)6.4

          (二)求下面各圓柱的體積.

         。ㄈ┮粋圓柱形水池,半徑是10米,深1。5米.這個水池占地面積是多少?水池的容積是多少立方米?

          五、課后作業(yè)

         。ㄒ唬┣笙铝袌D形的表面積和體積.(圖中單位:厘米)

         。ǘ﹥蓚底面積相等的圓柱,一個圓柱的高為4。5分米,體積為81立方分米.另一個圓柱的高為3分米,體積是多少?

          六、板書設(shè)計

        《圓柱的體積》數(shù)學(xué)教案2

          教學(xué)目標(biāo):

          1、使學(xué)生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。

          2、讓學(xué)生經(jīng)歷觀察、操作、討論等數(shù)學(xué)活動過程,理解圓柱體積公式的推導(dǎo)過程,引導(dǎo)學(xué)生探討問題,體驗轉(zhuǎn)化和極限的思想。

          3、在圖形的變換中,培養(yǎng)學(xué)生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生興趣,滲透事物是普遍聯(lián)系的唯物辨證思想。

          教學(xué)重點:

          圓柱體積計算公式的推導(dǎo)過程并能正確應(yīng)用。

          教學(xué)難點:

          借助教具演示,弄清圓柱與長方體的關(guān)系。

          教具準(zhǔn)備:

          多媒體課件、長方體、圓柱形容器若干個;學(xué)生準(zhǔn)備推導(dǎo)圓柱體積計算公式用學(xué)具。

          教學(xué)設(shè)想:

          《 圓柱的體積 》是學(xué)生在有了圓柱、圓和長方體的相關(guān)的基礎(chǔ)上進行教學(xué)的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導(dǎo)過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯(lián)系,通過想象、課件演示、實踐操作,從經(jīng)歷和體驗中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識從生活中來到生活去的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對科學(xué)知識的求知欲,使學(xué)生樂于探索,善于探索。

          教學(xué)過程:

          一、創(chuàng)設(shè)情境,激疑引入

          水是生命之源!節(jié)約用水是我們每個公民應(yīng)盡的義務(wù)。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。

          1、出示裝了水的圓柱容器。

         。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?

         。2)討論后匯報

          生1:用量筒或量杯直接量出它的體積;

          生2:用秤稱出水的重量,然后進一步知道體積;

          生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。

          師:現(xiàn)在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?

          生1:把水到入長方體容器中

          生2:我們學(xué)過了長方體的體積計算,只要量出長、寬、高就行

          [設(shè)計意圖:通過本環(huán)節(jié),給學(xué)生創(chuàng)設(shè)一個生活中的情境,提出問題,學(xué)習(xí)身邊的數(shù)學(xué),激起學(xué)生的學(xué)習(xí)興趣;根據(jù)需要滲透圓柱體(新問題)和長方體(已知)的知識聯(lián)系為所學(xué)內(nèi)容作了鋪墊的準(zhǔn)備]

          2、創(chuàng)設(shè)問題情境。

          師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的體積,能用同學(xué)們想出來的辦法嗎?

          [設(shè)計意圖:進一步從實際需要提出問題,激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]

          師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

          二、經(jīng)歷體驗,探究新知

          1、回顧舊知,幫助遷移

         。1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系?

          生1:圓柱的上下兩個底面是圓形

          生2:側(cè)面展開是長方形

          生3:說明圓柱和我們學(xué)過的圓和長方形有聯(lián)系

          師:請同學(xué)們想想圓柱的體積與什么有關(guān)?

          生1:可能與它的大小有關(guān)

          生2:不是吧,應(yīng)該與它的高有關(guān)

          [設(shè)計意圖:溫故而知新,既復(fù)習(xí)了舊知識又引出了新知識,學(xué)生在不知不覺中就學(xué)到了新知。]

          (2)請大家回憶一下:在學(xué)習(xí)圓的面積時,我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。

          配合學(xué)生回答演示課件。

          [設(shè)計意圖:通過想象,進一步發(fā)展學(xué)生的空間觀念,由形到體;同時使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊]

          2、小組合作,探究新知

         。1)啟發(fā)猜想:我們要解決圓柱的體積的問題,可以怎么辦?(引導(dǎo)學(xué)生說出圓柱可能轉(zhuǎn)化成我們學(xué)過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉(zhuǎn)化近似的長方體了。)

         。2)學(xué)生以小組為單位操作體驗。

          把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。使學(xué)生進一步明確分的份數(shù)越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)

          [設(shè)計意圖:教師提出問題,學(xué)生帶著問題大膽猜測、動手體驗。這樣學(xué)生在自主探索、體驗、領(lǐng)悟的過程中成為了發(fā)現(xiàn)者和創(chuàng)造者。]

         。3)學(xué)生小組匯報交流

          近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。

          教師根據(jù)學(xué)生匯報,用教具進行演示。

         。4)概括板書:根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式

          長方體的體積 = 底面積 高

          圓柱的體積 = 底面積 高

          用字母表示計算公式V= sh

          [設(shè)計意圖:首先通過學(xué)生的聯(lián)想建立圓柱體和長方體的聯(lián)系,初步建立轉(zhuǎn)化的雛形,然后再通過實踐操作,動畫演示,驗證了學(xué)生的發(fā)現(xiàn),從學(xué)生的認識和發(fā)現(xiàn)中,圍繞著圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學(xué)生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識 公式)]

          三、實踐應(yīng)用,鞏固新知。

          1、火眼金睛判對錯。

         。1)長方體、正方體、圓柱的體積都等于底面積乘高。( )

         。2)圓柱的高越大,圓柱的體積就越大。( )

          (3)如果兩個圓柱的體積相等,則它們一定等底等高。( )

          [設(shè)計意圖:加深對剛學(xué)知識的分析和理解。]

          2、計算下面各圓柱的體積。

         。1)底面積是30平方厘米,高4厘米。

         。2)底面周長是12。56米,高是2米。

         。3)底面半徑是2厘米,高10厘米。

          [設(shè)計意圖:讓學(xué)生靈活運用公式進行計算。]

          3、實踐練習(xí)。

          提供在創(chuàng)設(shè)情景中圓柱形接水容器的內(nèi)底面直徑和高。

          這個圓柱形容器,內(nèi)底面直徑是10厘米,高12厘米,水面高度10厘米。

          [設(shè)計意圖:讓學(xué)生領(lǐng)悟數(shù)學(xué)與現(xiàn)實生活的聯(lián)系。]

          4、課堂作業(yè)。

          為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇;▔牡酌鎯(nèi)直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?

          [設(shè)計意圖:使學(xué)生進一步感受到生活中處處有數(shù)學(xué),同時培養(yǎng)學(xué)生的環(huán)保意識。]

          四、反思回顧

          師:通過本節(jié)課的學(xué)習(xí),你有什么收獲嗎?

          [設(shè)計意圖:讓不同層次的學(xué)生談學(xué)習(xí)收獲,可使每個學(xué)生都體驗到成功的喜悅。這樣,學(xué)生的收獲不僅只有知識,還包括能力、方法、情感等,學(xué)生體驗到學(xué)習(xí)的樂趣,增強了學(xué)好數(shù)學(xué)的信心。]

          板書設(shè)計:

          圓柱的體積

          根據(jù)圓柱與近似長方體的關(guān)系,推導(dǎo)公式

          長方體的體積 = 底面積 高

          圓柱的體積 = 底面積 高

          用字母表示計算公式V= sh

          教學(xué)反思:

          本節(jié)的教學(xué)從生活的實際創(chuàng)設(shè)情境,提出問題,讓學(xué)生學(xué)習(xí)有用的數(shù)學(xué),提高了學(xué)生運用數(shù)學(xué)知識解決身邊問題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識的特點。運用已有的知識(長方體體積的計算)經(jīng)驗(圓面積公式的推導(dǎo))解決新的問題,在新舊知識的聯(lián)系上,巧妙的利用想象、課件演示將圓和圓柱有機的聯(lián)系到一起,使學(xué)生想象合理、聯(lián)系有方。在探究新知中,通過想象和操作,讓學(xué)生充分經(jīng)歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強了實踐與知識的聯(lián)系,并創(chuàng)造性的補充了一些與學(xué)生身邊實際生活相聯(lián)系的練習(xí)題,提高了學(xué)生的學(xué)習(xí)興趣。

        《圓柱的體積》數(shù)學(xué)教案3

          教學(xué)目標(biāo):

          1、使學(xué)生能夠運用公式正確地計算圓柱的體積和容積。

          2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

          4、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

          教學(xué)重點:掌握圓柱體積的計算公式。

          教學(xué)難點:靈活應(yīng)用圓柱的體積公式解決實際問題。

          教學(xué)過程:

          一、復(fù)習(xí)

          1、復(fù)習(xí)圓柱體積的推導(dǎo)過程

          長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

          長方體的體積=底面積高,所以圓柱的體積=底面積高,即V=Sh。

          2、復(fù)習(xí)長方體的體積公式后,讓學(xué)生獨立完成練習(xí)三第6題,并指名板演。

          二、解決實際問題

          1、練習(xí)三第7題。

          學(xué)生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨立完成。

          2、練習(xí)三第5題。

          (1)指導(dǎo)學(xué)生變換公式:因為V=Sh,所以h=VS。也可以列方程解答。

         。2)學(xué)生選擇喜愛的方法解答這道題目。

          3、練習(xí)三第8題。

         。1)學(xué)生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。

         。2)在充分理解題意后學(xué)生獨立完成,集體訂正。

          4、練習(xí)三第9、10題

         。1)學(xué)生獨立審題,完成9、10兩題。

          (2)評講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)

         。3)指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

          三、布置作業(yè)

          完成一課三練的相關(guān)練習(xí)。

        《圓柱的體積》數(shù)學(xué)教案4

          探究目標(biāo):

          1、組織學(xué)生開展測量、計算、估測等數(shù)學(xué)實踐活動,使學(xué)生進一步掌握圓柱體積計算公式,并能運用公式正確地計算圓柱的體積。

          2、在探索空間與圖形的過程中,培養(yǎng)學(xué)生初步的空間觀念及實踐能力,同時結(jié)合具體的情境培養(yǎng)其估測意識。

          3、使學(xué)生學(xué)會與他人合作,并能比較清楚地表達和交流解決問題的過程和結(jié)果。

          4、讓學(xué)生體驗解決策略的多樣性,不斷激發(fā)其對數(shù)學(xué)的好奇心和求知欲,使其積極地參與數(shù)學(xué)學(xué)習(xí)活動。

          教學(xué)重難點:

          學(xué)生會應(yīng)用圓柱體積公式解決實際問題。

          探究過程:

          一、遷移引入

          提問:一個圓柱的底面積是80平方厘米,高是20厘米,求它的體積。

          提問:如果已知的是底面半徑和高,該怎么求呢?

          二、自主探究

          1、出示長方體魚缸。

          要計算這個長方體魚缸能裝多少水,就是求什么?

          怎樣求這個長方體的容積呢?

          2、出示圓柱形魚缸。

         、殴罍y。這個圓柱形魚缸的容積大約是多少?

         、撇僮、匯報。如果忽略容器的壁厚,這個圓柱形魚缸的容積到底是多少呢?學(xué)生分小組進行操作計算,各小組派代表演示操作過程,并展示計算過程。

          學(xué)生可能的回答有:

          生1:這個圓柱的底面周長是94.5厘米,它的高是12厘米,計算過程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

          生2:我們小組測量的是底面直徑和高。底面直徑長30厘米,高是12厘米,計算過程如下:3.14×(30÷2)2×12=8478(立方厘米)

          生3:我們測量的是底面半徑和高。3.14×152×12=8478(立方厘米)

         、仍u價。

          組織學(xué)生間進行評價。你最喜歡哪個小組的操作方案?為什么?每一步列式的意義是什么?使學(xué)生進一步掌握圓柱體積的計算方法。

         、煞此。引導(dǎo)學(xué)生將實際計算結(jié)果與自己的估測結(jié)果進行對比。自己矯正偏差。

         、恃由。如果每立方分米水重1千克,這個魚缸大約能裝水多少千克?

          3、自學(xué)例題。

          組織學(xué)生自學(xué)課本例5。同桌的兩名同學(xué)結(jié)合例5的解答過程提出相關(guān)的數(shù)學(xué)問題,進行互問互答。

          三、鞏固練習(xí)

          做教科書第80頁“做一做”中的第2題、練習(xí)二十一的第5題。

          學(xué)生獨立完成,指名板演,集體評講。

          四、創(chuàng)意作業(yè)

          學(xué)生綜合運用所學(xué)的知識,進行計算、繪圖、裁剪、粘貼等多項操作活動。

          在一張長30厘米,寬20厘米的長方形紙上進行合理的裁剪,做一個無蓋的圓柱形筆筒。比一比,誰做的筆筒容積最大?

        《圓柱的體積》數(shù)學(xué)教案5

          教學(xué)內(nèi)容:P19-20頁例5、例6及補充例題,完成“做一做”及練習(xí)三第1~4題。

          教學(xué)目標(biāo):

          1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

          2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

          滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

          教學(xué)重點:掌握圓柱體積的計算公式。

          教學(xué)難點:圓柱體積的計算公式的推導(dǎo)。

          教學(xué)過程:

          一、復(fù)習(xí)

          1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)

          2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。

          3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。

          二、新課

          1、圓柱體積計算公式的推導(dǎo)。

          (1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形。

        《圓柱的體積》數(shù)學(xué)教案6

          教學(xué)目標(biāo)

          圓柱的體積(1)

          圓柱的體積(教材第25頁例5)。

          探索并掌握圓柱的體積計算公式,會運用公式計算圓柱的體積,體會轉(zhuǎn)化的思想方法。

          教學(xué)重難點

          1.掌握圓柱的體積公式,并能運用其解決簡單實際問題。

          2.理解圓柱體積公式的推導(dǎo)過程。

          教學(xué)工具

          推導(dǎo)圓柱體積公式的圓柱教具一套。

          教學(xué)過程

          復(fù)習(xí)導(dǎo)入

          1、口頭回答。

          (1)什么叫體積?怎樣求長方體的體積?

          (2)怎樣求圓的面積?圓的面積公式是什么?

          (3)圓的面積公式是怎樣推導(dǎo)的?在學(xué)生回憶的基礎(chǔ)上,概括出“轉(zhuǎn)化圖形——建立聯(lián)系——推導(dǎo)公式”的方法。

          2、引入新課。

          我們在推導(dǎo)圓的面積公式時,是把它轉(zhuǎn)化成近似的長方形,找到這個長方形與圓各部分之間的聯(lián)系,由長方形的面積公式推導(dǎo)出了圓的面積公式。今天,我們能不能也用這個思路研究圓柱體積的計算問題呢?

          教師板書:圓柱的體積(1)。

          新課講授

          1、教學(xué)圓柱體積公式的推導(dǎo)。

          (1)教師演示。

          把圓柱的底面分成16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。

          (2)學(xué)生利用學(xué)具操作。

          (3)啟發(fā)學(xué)生思考、討論:

         、賵A柱切開后可以拼成一個什么立體圖形?

          學(xué)生:近似的長方體。

         、谕ㄟ^剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?

          教師:拼成的近似長方體和圓柱相比,體積大小變了沒有?形狀呢?

          學(xué)生:拼成的近似長方體和圓柱相比,底面的形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方體的高就是圓柱的高,沒有變化。故體積不變。

          (4)學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進行猜想:

         、偃绻褕A柱的底面平均分成32份,拼成的形狀是怎樣的?

         、谌绻褕A柱的底面平均分成64份,拼成的形狀是怎樣的?

         、廴绻褕A柱的底面平均分成128份,拼成的形狀是怎樣的?

          (5)啟發(fā)學(xué)生說出:通過以上的觀察,發(fā)現(xiàn)了什么?

         、倨骄值姆輸(shù)越多,拼起來的形狀越接近長方體。

          ②平均分的份數(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體形狀就越接近長方體。

          (6)推導(dǎo)圓柱的體積公式。

         、賹W(xué)生分組討論:圓柱的體積怎樣計算?

         、趯W(xué)生匯報討論結(jié)果,并說明理由。

          教師:因為長方體的體積等于底面積乘高,而近似長方體的體積等于圓柱的體積,近似長方體的底面積等于圓柱的底面積,近似長方體的高等于圓柱的高,所以圓柱的體積=底面積×高。

          2、教學(xué)補充例題。

          (1)出示補充例題:一根圓柱形鋼材,底面積是1250px2,高是2.1m。它的體積是多少?

          (2)指名學(xué)生分別回答下面的問題:

         、龠@道題已知什么?求什么?

         、谀懿荒芨鶕(jù)公式直接計算?

         、塾嬎阒耙⒁馐裁?

          學(xué)生:計算時既要分析已知條件和問題,還要注意先統(tǒng)一計量單位。

          (3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的。

         、50×2.1=105(cm3)答:它的體積是2625px3。

          ②2.1m=5250px 50×210=10500(cm3)

          答:它的體積是262500px3。

         、1250px2=0.5m2 0.5×2.1=1.05(m3)

          答:它的體積是1.05m3。

         、1250px2=0.005m2

          0.005×2.1=0.0105(m3)

          答:它的體積是0.0105m3。

          先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單。對不正確的第①、③種解答要說說錯在什么地方。

          (4)引導(dǎo)思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?

          教師板書:V=πr2h。

          課堂作業(yè)

          教材第25頁“做一做”和教材第28頁練習(xí)五的第1題。學(xué)生獨立做在練習(xí)本上,做完后集體訂正。

          答案:“做一做”:1. 6750(cm3)

          2. 7.85m3

          第1題:(從左往右)

          3.14×52×2=157(cm3)

          3.14×(4÷2)2×12=150.72(cm3)

          3.14×(8÷2)2×8=401.92(cm3)

          課堂小結(jié)

          通過這節(jié)課的學(xué)習(xí),你有什么收獲?你有什么感受?

          課后作業(yè)

          完成練習(xí)冊中本課時的練習(xí)。

          第4課時圓柱的體積(1)

          課后小結(jié)

          1.“圓柱的體積”是學(xué)生在掌握了圓柱的基本特征以及長方體、正方體體積計算方法等基礎(chǔ)上學(xué)習(xí)的。它是今后學(xué)習(xí)圓錐體積計算的基礎(chǔ)。

          2.采用小組合作學(xué)習(xí),從而引發(fā)自主探究,最后獲取知識的新方式來代替教師講授的老模式,能取得事半功倍的效果。

          3.推導(dǎo)公式時間過長,可能導(dǎo)致練習(xí)時間少,練習(xí)量少,要注意把控。

          課后習(xí)題

          教材第25頁“做一做”和教材第28頁練習(xí)五的第1題。學(xué)生獨立做在練習(xí)本上,做完后集體訂正。

          答案:“做一做”:1. 6750(cm3)

          2. 7.85m3

          第1題:(從左往右)

          3.14×52×2=157(cm3)

          3.14×(4÷2)2×12=150.72(cm3)

          3.14×(8÷2)2×8=401.92(cm3)

        《圓柱的體積》數(shù)學(xué)教案7

          圓柱的體積

          教材簡析:

          本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計算公式。

          教學(xué)目的:

          1、運用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解這個過程。

          2。會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。

          3。引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力

          4。借助實物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。

          教 具:圓柱的體積公式演示教具,多媒體課件

          教學(xué)過程:

          一、情景引入

          1、出示圓柱形水杯。

         。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計算出這些水的體積嗎?

          (3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。

          2、創(chuàng)設(shè)問題情景。(課件顯示)

          如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?

          今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設(shè)計意圖:問題是思維的動力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成"任務(wù)驅(qū)動"的探究氛圍。)

          二、新課教學(xué):

          設(shè)疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。

          1。探究推導(dǎo)圓柱的體積計算公式。

          課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)

          討論并得出結(jié)果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的.高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程當(dāng)中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)

          要用這個公式計算圓柱的體積必須知道什么條件?

          填表:請同學(xué)看屏幕回答下面問題,

          底面積(㎡)高(m)圓柱體積(m3)

          63

          0.5 8

          52

         。ㄔO(shè)計意圖:設(shè)計練習(xí)能使學(xué)生達到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點,夯實基礎(chǔ)知)

          例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米。它的容積約是多少立方分米?(得數(shù)保留整立方分米)

          解: d=6dm,h=7dm。r=3dm

          S底 =πr2=3。14×32 =3。14×9 =28。26(dm2)

          V =S底h =28。26×7 =197。82198dm3 答:油桶的容積約是198立方分

         。ㄔO(shè)計意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)

          三.鞏固反饋

          1.求下面圓柱體的體積。(單位:厘米)

          同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題,教師歸納學(xué)生所用的解題方法,強調(diào)在解題的過程當(dāng)中格式。(設(shè)計意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會靈活運用公式的訓(xùn)練題。通過對公式的拓展性理解,可以進一步加深學(xué)生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學(xué)生的邏輯思維能力。)

          練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm。已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?

          (設(shè)計意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學(xué)就存在于自己的身邊。)

          四.拓展練習(xí)

          1.一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(結(jié)果保留π)

          2.一個底面直徑是20cm的圓柱形容體里,放進一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、

         。ㄔO(shè)計意圖:安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,使學(xué)生認識到數(shù)學(xué)的價值體驗到數(shù)學(xué)對于了解周圍世界和解決實際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)

          五.課堂小結(jié):

          1.談?wù)勥@節(jié)課你有哪些收獲。

          2.解題時需要注意那些方面。

         。ㄔO(shè)計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結(jié),使學(xué)生暢談收獲、發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生的語言表達能力,又能培養(yǎng)學(xué)生的歸納概括能力;同時通過對本節(jié)所學(xué)知識的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識系統(tǒng)化、完整化。)

          六.布置作業(yè)

          1。A冊習(xí)題2。7

          2。拓展練習(xí)2題

          教學(xué)反思: 本節(jié)課的教學(xué)體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;二、遵循學(xué)生的認知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);三、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達到預(yù)期效果,不足處學(xué)生討論時間控制太少,課后作業(yè)個別學(xué)生還是對公式不會靈活應(yīng)用。

        《圓柱的體積》數(shù)學(xué)教案8

          一、教學(xué)目標(biāo)

          (一)知識與技能

          用已學(xué)的圓柱體積知識解決生活中的實際問題,并滲透轉(zhuǎn)化思想。

         。ǘ┻^程與方法

          經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,讓學(xué)生在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗“等積變形”的轉(zhuǎn)化過程。

          (三)情感態(tài)度和價值觀

          通過實踐,讓學(xué)生在合作中建立協(xié)作精神,并增強學(xué)生“用數(shù)學(xué)”的意識。

          二、教學(xué)重難點

          教學(xué)重點:利用所學(xué)知識合理靈活地分析、解決不規(guī)則物體的體積的計算方法。

          教學(xué)難點:轉(zhuǎn)化前后的溝通。

          三、教學(xué)準(zhǔn)備

          每組一個礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。

          四、教學(xué)過程

          (一)復(fù)習(xí)舊知,做好鋪墊

          1、板書:圓柱的體積。

          問:圓柱的體積怎么計算?體積和容積有什么區(qū)別?

          2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題)

          【設(shè)計意圖】通過復(fù)習(xí)圓柱的體積計算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識上的準(zhǔn)備。

         。ǘ┨剿鲗嵺`,體驗轉(zhuǎn)化過程

          1、創(chuàng)設(shè)情境,提出問題。

          每個小組桌子上有一個沒有裝滿水的礦泉水瓶。

          教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?(隨機板書)

          預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)

          預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)

          預(yù)設(shè)3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)

          2、你覺得你能輕松解決什么問題?

         。1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)

          學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。

          教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)

          小結(jié):知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準(zhǔn)備好直尺,或許等會兒有用哦!

         。2)預(yù)設(shè)2:喝了多少水?

          學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計算。

          教師:當(dāng)物體形狀不規(guī)則時,我們想求出它的體積可以怎么辦?

          教師相機引導(dǎo):能否將空氣部分變成一個規(guī)則的立體圖形呢?

          學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?

          引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)

          小結(jié):這個方法不錯,我們利用水的流動性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個問題還難得到你嗎?

        《圓柱的體積》數(shù)學(xué)教案9

          教學(xué)內(nèi)容:

          P19-20頁例5、例6及補充例題,完成做一做及練習(xí)三第1~4題。

          教學(xué)目標(biāo):

          1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

          2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

          3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

          教學(xué)重點:

          掌握圓柱體積的計算公式。

          教學(xué)難點:

          圓柱體積的計算公式的推導(dǎo)。

          教學(xué)過程:

          一、復(fù)習(xí)

          1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)

          2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)

          3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。

          師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?

          二、新課

          1、圓柱體積計算公式的推導(dǎo)。

         。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形課件演示)

         。2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)

          反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?

          長方體和圓柱體的底面積和體積有怎樣的關(guān)系?

          學(xué)生說演示過程,總結(jié)推倒公式。

         。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)

        【《圓柱的體積》數(shù)學(xué)教案】相關(guān)文章:

        1.《圓柱的體積》數(shù)學(xué)教案

        2.圓柱的體積

        3.圓柱的體積說課稿

        4.《圓柱的體積一》說課稿

        5.《圓柱的體積》的聽課記錄

        6.圓柱的體積說課稿8篇

        7.圓柱的體積說課稿(7篇)

        8.圓柱的體積說課稿8篇

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>