- 相關(guān)推薦
數(shù)的概念的發(fā)展
教學(xué)目標(biāo)
。1)了解數(shù)的概念發(fā)展的過(guò)程和動(dòng)力;
。2)了解引進(jìn)虛數(shù)單位i的必要性和作用;理解i的性質(zhì).
。3)正確對(duì)復(fù)數(shù)進(jìn)行分類,掌握數(shù)集之間的從屬關(guān)系;
。4)了解數(shù)系從自然數(shù)到有理數(shù)到實(shí)數(shù)再到復(fù)數(shù)擴(kuò)充的基本思想.
教學(xué)建議
1.教材分析
。1)知識(shí)結(jié)構(gòu)
首先簡(jiǎn)明扼要地對(duì)已經(jīng)學(xué)過(guò)的數(shù)集因生產(chǎn)與科學(xué)發(fā)展的需要而逐步擴(kuò)充的過(guò)程作了概括;然后說(shuō)明,數(shù)集的每一次擴(kuò)充,對(duì)數(shù)學(xué)學(xué)科本身來(lái)說(shuō),也解決了原有數(shù)集中某種運(yùn)算不是永遠(yuǎn)可以實(shí)施的矛盾,使得某些代數(shù)方程在新的數(shù)集中能夠有解。從而引出虛數(shù)單位i及其性質(zhì),接著,將數(shù)的范圍擴(kuò)充到復(fù)數(shù),并指出復(fù)數(shù)后來(lái)由于在科學(xué)技術(shù)中得到應(yīng)用而進(jìn)一步發(fā)展。
、?gòu)膶?shí)際生產(chǎn)需要推進(jìn)數(shù)的發(fā)展
自然數(shù)整數(shù)有理數(shù)無(wú)理數(shù)
、趶慕夥匠痰男枰七M(jìn)數(shù)的發(fā)展
負(fù)數(shù)分?jǐn)?shù)無(wú)理數(shù)虛數(shù)
。2)重點(diǎn)、難點(diǎn)分析
(一)認(rèn)識(shí)的動(dòng)力
從正整數(shù)擴(kuò)充到整數(shù),從整數(shù)擴(kuò)充到有理數(shù),從有理數(shù)擴(kuò)充到實(shí)數(shù),數(shù)的概念是不斷發(fā)展的,其發(fā)展的動(dòng)力來(lái)自兩個(gè)方面。
①解決實(shí)際問(wèn)題的需要
由于計(jì)數(shù)的需要產(chǎn)生了自然數(shù);為了表示具有相反意義的量的需要產(chǎn)生了整數(shù);由于測(cè)量的需要產(chǎn)生了有理數(shù);由于表示量與量的比值(如正方形對(duì)角線的長(zhǎng)度與邊長(zhǎng)的比值)的需要產(chǎn)生了無(wú)理數(shù)(既無(wú)限不循環(huán)小數(shù))。
②解方程的需要。
為了使方程有解,就引進(jìn)了負(fù)數(shù);為了使方程有解,就要引進(jìn)分?jǐn)?shù);為了使方程有解,就要引進(jìn)無(wú)理數(shù)。
引進(jìn)無(wú)理數(shù)后,我們已經(jīng)能使方程永遠(yuǎn)有解,但是,這并沒有徹底解決問(wèn)題,當(dāng)時(shí),方程在實(shí)數(shù)范圍內(nèi)無(wú)解。為了使方程()有解,就必須把實(shí)數(shù)概念進(jìn)一步擴(kuò)大,這就必須引進(jìn)新的數(shù)。
。ǘ┳⒁鈹(shù)的概念在擴(kuò)大時(shí)要遵循的原則
第一,要能解決實(shí)際問(wèn)題中或數(shù)學(xué)內(nèi)部的矛盾。現(xiàn)在要解決的就是在實(shí)數(shù)集中,方程無(wú)解這一矛盾。
第二,要盡量地保留原有數(shù)集(現(xiàn)在是實(shí)數(shù)集)的性質(zhì),特別是它的運(yùn)算性質(zhì)。
。ㄈ┱_確認(rèn)識(shí)數(shù)集之間的關(guān)系
①有理數(shù)就是一切形如的數(shù),其中,所以有理數(shù)集實(shí)際就是分?jǐn)?shù)集.
、凇把h(huán)節(jié)不為0的循環(huán)小數(shù)也都是有理數(shù)”.
、郏欣頂(shù)}={分?jǐn)?shù)}={循環(huán)小數(shù)},{實(shí)數(shù)}={小數(shù)}.
、茏匀粩(shù)集N、整數(shù)集Z、有理數(shù)集Q、實(shí)數(shù)集R、復(fù)數(shù)集C之間有如下的包含關(guān)系:
2.教法建議
(1)注意知識(shí)的連續(xù)性:數(shù)的發(fā)展過(guò)程是漫長(zhǎng)的,每一次發(fā)展都來(lái)自于生產(chǎn)、生活和計(jì)算等需要,所以在教學(xué)時(shí)要注意使學(xué)生認(rèn)識(shí)到數(shù)的發(fā)展的兩個(gè)動(dòng)力.
。2)創(chuàng)造良好的課堂氣氛:由于本節(jié)課要了解擴(kuò)充實(shí)數(shù)集的必要性,所以,教師可以多向?qū)W生介紹一些數(shù)的發(fā)展過(guò)程當(dāng)中的一些科學(xué)史,課堂學(xué)習(xí)的氣氛可以營(yíng)造成一種師生共同研究、共同交流的氣氛。
教學(xué)目的
1。使學(xué)生了解數(shù)是在人類社會(huì)的生產(chǎn)和生活中產(chǎn)生和發(fā)展起來(lái)的,了解虛數(shù)產(chǎn)生歷史過(guò)程;
2。理解并掌握虛數(shù)單位的定義及性質(zhì);
3。掌握復(fù)數(shù)的定義及復(fù)數(shù)的分類.
教學(xué)重點(diǎn)
虛數(shù)單位的定義、性質(zhì)及復(fù)數(shù)的分類.
教學(xué)難點(diǎn)
虛數(shù)單位的性質(zhì).
教學(xué)過(guò)程
一、復(fù)習(xí)引入
原始社會(huì),由于計(jì)數(shù)的需要產(chǎn)生了自然數(shù)的概念,隨著文字的產(chǎn)生和發(fā)展,出現(xiàn)了記數(shù)的符號(hào),進(jìn)而建立了自然數(shù)的概念。自然數(shù)的全體構(gòu)成自然數(shù)集。
為了表示具有相反意義的量引進(jìn)了正負(fù)數(shù)以及表示沒有的零,這樣將數(shù)集擴(kuò)充到有理數(shù)集
有些量與量之間的比值,如用正方形的邊長(zhǎng)去度量它的對(duì)角線所得的結(jié)果,無(wú)法用有理數(shù)表示,為解決這種矛盾,人們又引進(jìn)了無(wú)理數(shù),有理數(shù)和無(wú)理數(shù)合并在一起,構(gòu)成實(shí)數(shù)集.
數(shù)的概念是人類社會(huì)的生產(chǎn)和生活中產(chǎn)生和發(fā)展起來(lái)的,數(shù)學(xué)理論的研究和發(fā)展也推動(dòng)著,數(shù)已經(jīng)成為現(xiàn)代社會(huì)生活和科學(xué)技術(shù)時(shí)刻離不開的科學(xué)語(yǔ)言和工具.
二、新課教學(xué)
。ㄒ唬┨摂(shù)的產(chǎn)生
我們知道,在實(shí)數(shù)范圍內(nèi),解方程是無(wú)能為力的,只有把實(shí)數(shù)集擴(kuò)充到復(fù)數(shù)集才能解決.對(duì)于復(fù)數(shù)(a、b都是實(shí)數(shù))來(lái)說(shuō),當(dāng)時(shí),就是實(shí)數(shù);當(dāng)時(shí)叫虛數(shù),當(dāng)時(shí),叫做純虛數(shù).可是,歷史上引進(jìn)虛數(shù),把實(shí)數(shù)集擴(kuò)充到復(fù)數(shù)集可不是件容易的事,那么,歷史上是如何引進(jìn)虛數(shù)的呢?
16世紀(jì)意大利米蘭學(xué)者卡當(dāng)(1501—1576)在1545年發(fā)表的《重要的藝術(shù)》一書中,公布了三次方程的一般解法,被后人稱之為“卡當(dāng)公式”.他是第一個(gè)把負(fù)數(shù)的平方根寫到公式中的數(shù)學(xué)家,并且在討論是否可能把10分成兩部分,使它們的乘積等于40時(shí),他把答案寫成,盡管他認(rèn)為和這兩個(gè)表示式是沒有意義的、想象的、虛無(wú)飄渺的,但他還是把10分成了兩部分,并使它們的乘積等于40.給出“虛數(shù)”這一名稱的是法國(guó)數(shù)學(xué)家笛卡爾(1596—1650),他在《幾何學(xué)》(1637年發(fā)表)中使“虛的數(shù)’‘與“實(shí)的數(shù)”相對(duì)應(yīng),從此,虛數(shù)才流傳開來(lái).
數(shù)系中發(fā)現(xiàn)一顆新星——虛數(shù),于是引起了數(shù)學(xué)界的一片困惑,很多大數(shù)學(xué)家都不承認(rèn)虛數(shù).德國(guó)數(shù)學(xué)家菜不尼茨(1664—1716)在1702年說(shuō):“虛數(shù)是神靈遁跡的精微而奇異的隱避所,它大概是存在和虛妄兩界中的兩棲物”.瑞士數(shù)學(xué)大師歐拉(1707—1783)說(shuō):“一切形如,習(xí)的數(shù)學(xué)式子都是不可能有的,想象的數(shù),因?yàn)樗鼈兯硎镜氖秦?fù)數(shù)的平方根.對(duì)于這類數(shù),我們只能斷言,它們既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它們純屬虛幻.”然而,真理性的東西一定可以經(jīng)得住時(shí)間和空間的考驗(yàn),最終占有自己的一席之地.法國(guó)數(shù)學(xué)家達(dá)蘭貝爾(.1717—1783)在1747年指出,如果按照多項(xiàng)式的四則運(yùn)算規(guī)則對(duì)虛數(shù)進(jìn)行運(yùn)算,那么它的結(jié)果總是的形式(a、b都是實(shí)數(shù))(說(shuō)明:現(xiàn)行教科書中沒有使用記號(hào)而使用).法國(guó)數(shù)學(xué)家棣莫佛(1667—1754)在1730年發(fā)現(xiàn)公式了,這就是著名的探莫佛定理.歐拉在1748年發(fā)現(xiàn)了有名的關(guān)系式,并且是他在《微分公式》(1777年)一文中第一次用i來(lái)表示—1的平方根,首創(chuàng)了用符號(hào)i作為虛數(shù)的單位.“虛數(shù)”實(shí)際上不是想象出來(lái)的,而它是確實(shí)存在的.挪威的測(cè)量學(xué)家未塞爾(1745—1818)在1779年試圖給于這種虛數(shù)以直觀的幾何解釋,并首先發(fā)表其作法,然而沒有得到學(xué)術(shù)界的重視.
德國(guó)數(shù)學(xué)家高斯(1777—1855)在1806年公布了虛數(shù)的圖象表示法,即所有實(shí)數(shù)能用一條數(shù)軸表示,同樣,虛數(shù)也能用一個(gè)平面上的點(diǎn)來(lái)表示.在直角坐標(biāo)系中,橫軸上取對(duì)應(yīng)實(shí)數(shù)a的點(diǎn)A,縱軸上取對(duì)應(yīng)實(shí)數(shù)b的點(diǎn)B,并過(guò)這兩點(diǎn)引平行于坐標(biāo)軸的直線,它們的交點(diǎn)C就表示復(fù)數(shù).象這樣,由各點(diǎn)都對(duì)應(yīng)復(fù)數(shù)的平面叫做“復(fù)平面”,后來(lái)又稱“高斯平面”.高斯在1831年,用實(shí)數(shù)組(a,b)代表復(fù)數(shù),并建立了復(fù)數(shù)的某些運(yùn)算,使得復(fù)數(shù)的某些運(yùn)算也象實(shí)數(shù)一樣地“代數(shù)化”.他又在1832年第一次提出了“復(fù)數(shù)”這個(gè)名詞,還將表示平面上同一點(diǎn)的兩種不同方法——直角坐標(biāo)法和極坐標(biāo)法加以綜合.統(tǒng)一于表示同一復(fù)數(shù)的代數(shù)式和三角式兩種形式中,并把數(shù)軸上的點(diǎn)與實(shí)數(shù)—一對(duì)應(yīng),擴(kuò)展為平面上的點(diǎn)與復(fù)數(shù)—一對(duì)應(yīng).高斯不僅把復(fù)數(shù)看作平面上的點(diǎn),而且還看作是一種向量,并利用復(fù)數(shù)與向量之間—一對(duì)應(yīng)的關(guān)系,闡述了復(fù)數(shù)的幾何加法與乘法.至此,復(fù)數(shù)理論才比較完整和系統(tǒng)地建立起來(lái)了.
經(jīng)過(guò)許多數(shù)學(xué)家長(zhǎng)期不懈的努力,深刻探討并發(fā)展了復(fù)數(shù)理論,才使得在數(shù)學(xué)領(lǐng)域游蕩了200年的幽靈——虛數(shù)揭去了神秘的面紗,顯現(xiàn)出它的本來(lái)面目,原來(lái)虛數(shù)不虛呵.虛數(shù)成為了數(shù)系大家庭中一員,從而實(shí)數(shù)集才擴(kuò)充到了復(fù)數(shù)集.
數(shù)學(xué)本身的發(fā)展有著極其重要的意義,而且為證明機(jī)翼上升力的基本定理起到了重要作用,并在解決堤壩滲水的問(wèn)題中顯示了它的威力,也為建立巨大水電站提供了重要的理論依據(jù).
()叫復(fù)數(shù)的代數(shù)形式;
b叫復(fù)數(shù)()的虛部,用表示;
。ǎ┊(dāng)時(shí)z是實(shí)數(shù),當(dāng)時(shí),z是虛數(shù).
例2。()取什么值時(shí),復(fù)數(shù)是(?)
。1)實(shí)數(shù)(2)純虛數(shù)(3)零
解:∵,∴,
(1)z為實(shí)數(shù),則解得:或
。2)z為實(shí)數(shù),則解得:
。3)z為零,則解得:
【數(shù)的概念的發(fā)展】相關(guān)文章:
數(shù)系的擴(kuò)充與復(fù)數(shù)的概念說(shuō)課稿11-02
《函數(shù)的概念》說(shuō)課稿函數(shù)的概念的說(shuō)課稿03-31
《導(dǎo)數(shù)的概念》說(shuō)課稿12-14
《集合的概念》說(shuō)課稿07-08
《函數(shù)概念》說(shuō)課稿07-07
《集合的概念》教案03-07
函數(shù)概念教案11-26