1. <rp id="zsypk"></rp>

      2. 《花邊有多寬》優(yōu)秀說課教案

        時間:2021-07-03 14:28:08 教案 我要投稿

        《花邊有多寬》優(yōu)秀說課教案

          一、教材分析:

        《花邊有多寬》優(yōu)秀說課教案

          1、教材的地位和作用

          一元二次方程是中學數(shù)學的主要內容之一,在初中數(shù)學中占有重要地位。通過一元二次方程的學習,可以對已學過實數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學習可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎。此外,學習一元二次方程對其它學科有重要意義。本節(jié)課是一元二次方程的概念,是通過豐富的實例,讓學生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。

          2、教學目標

          根據(jù)大綱的要求、本節(jié)教材的內容和學生的好奇心、求知欲及已有的知識經(jīng)驗,本節(jié)課的三維目標主要體現(xiàn)在:

          知識與能力目標: 要求學生會根據(jù)具體問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學生歸納、分析的能力。

          過程與方法目標:引導學生分析實際問題中的數(shù)量關系,回顧一元一次方程的概念,組織學生討論,讓學生自己抽象出一元二次方程的概念 。

          情感、態(tài)度與價值觀:通過數(shù)學建模的分析、思考過程,激發(fā)學生學數(shù)學的興趣,體會做數(shù)學的快樂,培養(yǎng)用數(shù)學的意識。

          3、教學重點與難點

          要運用一元二次方程解決生活中的實際問題,首先必須了解一元二次方程的概念,而概念的教學又要從大量的實例出發(fā) 。所以,本節(jié)課的重點是:由實際問題列出一元二次方程和一元二次方程的概念。鑒于學生比較缺乏社會生活經(jīng)歷,處理信息的能力也較弱,因此把由實際問題轉化成數(shù)學方程確定為本節(jié)課的難點。

          二、教法、學法:

          因為學生已經(jīng)學習了一元一次方程及相關概念,所以本節(jié)課我主要采用啟發(fā)式、類比法教學。教學中力求體現(xiàn)“問題情景---數(shù)學模型-----概念歸納”的模式。但是由于學生將實踐問題轉化為數(shù)學方程的能力有限,所以,本節(jié)課借助多媒體輔助教學,指導學生通過直觀形象的觀察與演示,從具體的問題情景中抽象出數(shù)學問題,建立數(shù)學方程,從而突破難點。同時學生在現(xiàn)實的生活情景中,經(jīng)歷數(shù)學建模,經(jīng)過自主探索和合作交流的學習過程,產(chǎn)生積極的情感體驗,進而創(chuàng)造性地解決問題,有效發(fā)揮學生的思維能力。

          三、教學過程設計

          1、創(chuàng)設情景,引入新課

          因為數(shù)學來源與生活,所以以學生的實際生活背景為素材創(chuàng)設情景,易于被學生接受、感知。通過微機演示課本中的實例,并應用微機對其進行分析,充分顯示微機演示中的生動性、靈活性,把圖形的靜變成動,增強直觀性;同時幫助學生從實際問題中提煉出數(shù)學問題,初步培養(yǎng)學生的空間概念和抽象能力。情景分析中學生自然會想到用方程來解決問題,但所列的方程不是以前學過的,從而激發(fā)學生的求知欲望,順利地進入新課。

          2、啟發(fā)探究,獲取新知

          通過上述情景分析,讓學生小組合作,列出方程。英國一位著名的數(shù)學教育心理學家曾說:概念的教學要從大量實例出發(fā),通過實例幫助完成定義,而不是教定義。因此,我在課本的`基礎上,又補充2個實例,而且,補充的例題所列出的方程正好是一個一次項為0,一個常數(shù)項為0 的特殊一元二次方程,這為后面概括得出一元二次方程的一般形式作準備。在學生列出方程后,對所列方程進行整理,并引導學生分析所列方程的特征,同時與一元一次方程相比較,找出兩者的區(qū)別與聯(lián)系,并類比一元一次方程的概念來得出一元二次方程的概念。由于一元二次方程的概念是本節(jié)的重點,所以在形成概念的過程中主要引導學生積極主動進行自我嘗試、自我分析、自我修正、自我反思,讓學生真正理解一元二次方程概念的內涵:(1)是整式方程(2)只含有一個未知數(shù)(3)未知數(shù)的最高次數(shù)是2。因為任何一個一元一次方程都可以化為 “ax+b=c(a≠0)”的形式,由此類比得出一元二次方程的一般形式為“ax2+bx+c=0(a≠0)”;并由一元一次方程項及系數(shù)的概念聯(lián)想得出一元二次方程的項及系數(shù)的概念。

          3、練習反饋,應用拓展

          在這個環(huán)節(jié),我遵循鞏固與發(fā)展想結合的原則,將學生分成小組,以小組競賽活動的方式對本課知識進行鞏固。不僅調動學生學習的積極性、主動性,增強學生積極參與教學活動意識和集體榮譽感,而且還能培養(yǎng)學生的觀察能力和判斷能力。同時,對概念進行變式應用,可以開拓學生思維,培養(yǎng)學生的創(chuàng)新意識。

          4、小結歸納,上升理性

          引導學生從以下3個方面進行小結,(1)本節(jié)課我們學習了哪些知識?(2)學習過程中用了哪些數(shù)學方法?(3)確定一元二次方程的項及系數(shù)時要注意什么?以培養(yǎng)學生的歸納、概括能力。

          5、作業(yè)布置

          考慮帶學生在知識、技能、能力等方面的發(fā)展都不盡相同,因此,我分層次布置作業(yè),以便同時兼顧到學有困難和學有余力的學生。

          四、教學評價

          根據(jù)新課程標準的評價理念,在教學過程中,不僅注重學生的參與意識和學生對待學習的態(tài)度是否積極,而且注重引導學生嘗試從不同角度分析和解決問題。

          五、板書設計

          2.1花邊有多寬(第1課時)一元二次方程的概念

          具體抽象    歸納

          1、花邊的寬為x米2x2 - 13x + 11 = 0

          2、設梯子底端滑動x米x2 + 12x -15 = 0

          3、設正方形的邊長為x,則2x2 - 50 = 0

          4、設乙數(shù)為x,則x2 + 3x = 0

        【《花邊有多寬》優(yōu)秀說課教案】相關文章:

        花邊有多寬說課稿11-12

        母愛有多寬散文10-17

        《項脊軒志》優(yōu)秀說課教案11-16

        《鈉》的說課教案09-30

        《背影》說課教案02-19

        大班優(yōu)秀主題說課教案《我長大了》09-22

        品德與社會《人種有不同》優(yōu)秀說課設計08-21

        幼兒說課優(yōu)秀課件03-20

        小數(shù)的性質說課教案02-23

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>