1. <rp id="zsypk"></rp>

      2. 蘇科版八年級下冊9.2反比例函數(shù)的圖象與性質(zhì)2教案設(shè)計

        時間:2021-06-14 12:11:19 教案 我要投稿

        蘇科版八年級下冊9.2反比例函數(shù)的圖象與性質(zhì)(2)教案設(shè)計

          蘇科版八年級下9.2反比例函數(shù)的圖象與性質(zhì)(2)教案

        蘇科版八年級下冊9.2反比例函數(shù)的圖象與性質(zhì)(2)教案設(shè)計

          9.2 反比例函數(shù)的圖象與性質(zhì)(3)

          教學(xué)目標(biāo)

          使學(xué)生對反比例函數(shù)和反比例函數(shù)的圖象意義加深理解.

          教學(xué)重難點

          重點:反比例函數(shù)的圖象.

          難點:利用反比例函數(shù)的圖象解題.

          教學(xué)過程

          一、情境創(chuàng)設(shè)

          反比例函數(shù)

          解析式y(tǒng)=kx (k為常數(shù),k≠0)

          圖象形狀雙曲線(以原點為對稱中心)

          k>0位置一、三象限

          增減性每一象限內(nèi),y隨x的增大而減小

          k<0位置二、四象限

          增減性每一象限內(nèi),y隨x的增大而增大

          二、例題講解

          例1. 如圖是反比例函數(shù) 的圖象的一支。

         。1)函數(shù)圖象的另一支在第幾象限?試求常數(shù)m的取值范圍;

         。2)點 都在這個反比例函數(shù)的圖象上,比較 、 、 的大小

          例2. 如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A、B兩點, 且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是-2,

          求:(1)一次函數(shù)的解析式;

          (2)△AOB的面積.

          四、課堂練習(xí)

          課本P70 練習(xí)1、2題

          五、課堂小結(jié)

          1. 反比例函數(shù)的圖象.

          2. 反比例函數(shù)的性質(zhì).

          六、課堂作業(yè)

          課本 P72/ 第5題

         。ū睅煷蟀妫┑谝徽乱辉淮尾坏仁胶鸵辉淮尾坏仁浇M復(fù)習(xí)學(xué)案

          第一章 一元一次不等式和一元一次不等式組復(fù)習(xí)(編號:復(fù)01)

          一. 知識點回顧

          1. 一般地, 用符號 連接的式子叫做不等式.

          2. 不等式的性質(zhì): 不等式的兩邊都加上(或減去)同一個整式, 不等號的方向 .

          不等式的兩邊都乘以(或除以)同一個正數(shù), 不等號的方向 .

          不等式的兩邊都乘以(或除以)同一個負(fù)數(shù), 不等號的方向 .

          3. 只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1, 像這樣的不等式,叫做 .

          二. 課堂訓(xùn)練( A組)

          1、不等式性質(zhì)應(yīng)用若 ,用“>”號或“<”號填空:

          變式訓(xùn)練:已知(2a-1)x<4的解為x> ,則a的取值范圍為______

          2、在數(shù)軸上表示不等式x-2>0的解集,其中正確的是( )

          3. 如右圖,當(dāng) 時,自變量 的范圍是( )

          A、 B、 C、 D、

          4、在平面直角坐標(biāo)系內(nèi),點P( , )在第四象限,則 的取值范圍是( )

          A、 B、 C、 D、

          5、“x的2倍與3的差不大于8”列出的不等式是( )

          A.2x-3≤8;B.2x-3≥8; C.2x-3<8;D.2x-3>8

          6.若不等式組 無解,則m的取值范圍是( )

          A.m<11B.m>11 C.m≤11D.m≥11

          7、若不等式組 的解集是x>1,則a的取值范圍是 。

          8、 求

          7、解不等式組(1) X- 2(x-3) >4 (2)

          三. 課堂訓(xùn)練 (B組)

          5.已知函數(shù)y=2x-4,右圖是該函數(shù)的圖象,回答下列問題

          (1)觀察圖像回答: 當(dāng)x為什么值時,y>0?

          (2)如果這個函數(shù)y的值滿足-4≤y≤4,求相應(yīng)的x的取值范圍.

          6. 某班有住宿生若干人,分住若干間宿舍,若每間住4人,則還余20人無宿舍;若每間住8人,則有一間宿舍不空也不滿,求該班住宿生人數(shù)和宿舍間數(shù)。

          7.某牛奶公司向某地運輸一批牛奶,由鐵路運輸每千克需運費0.58元,由公路運輸運費0.28元,另需要補(bǔ)助600元.

          (1) 設(shè)該公司運輸?shù)倪@批牛奶為 x千克,選擇鐵路運輸時,所需運費為 元,選擇公路運輸時,所需費用為 元,請分別寫出 , 與x之間的關(guān)系式.

          (2) 若公司只支出運費1500元, 則選用哪種運輸方式運送的牛奶多? 若公司運送1500kg牛奶,則哪種運輸方式所需費用較少?

          四. 課后作業(yè) (自我展現(xiàn))

          1.下列不等式一定成立的是( )

          A.5a>4aB.x+2<x+3 C.-a>-2aD.

          2.不等式-3x+6>0的非負(fù)正整數(shù)有( )

          A.1個B.2個 C.3個D.無數(shù)多個

          3、已知關(guān)于方程3x+a=x-7的根是正數(shù), 那么a的取值范圍是 .

          4、已知一次函數(shù)y = kx + b 的圖象如圖所示,當(dāng)y<0時,

          x的取值范圍是 .

          5、不等式 的解集是 ,則a的取值范圍是 。

          6. 解不等式組

          (1) (2) (3)

          7. 小明準(zhǔn)備用26元買火腿腸和方便面, 已知一根火腿腸2元, 一盒方便面3元,他買了5盒方便面,他還能買多少根火腿腸?

          8、某校今年冬季燒煤取暖時間為4個月,如果每月比計劃多燒5噸煤,那么取暖用煤總量將超過100噸;如果每月比計劃少燒5噸煤,那么取暖用煤總量不足68噸。該校計劃每月燒煤多少噸?

          9、某工廠現(xiàn)有甲種原料360kg,乙種原料290 kg,計劃利用這兩種原料生產(chǎn)A、B兩種的產(chǎn)品共50件,生產(chǎn)A、B兩種產(chǎn)品用料情況如下表:

          需要用甲原料需要用乙原料

          一件A種產(chǎn)品9 kg3 kg

          一件B種產(chǎn)品4 kg10 kg

          若設(shè)生產(chǎn)A產(chǎn)品 件,求 的值,并說明有哪幾種符合題意的生產(chǎn)方案!ü10分題)

          10. 暑假期間,兩名家長計劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報價均為500元的兩家旅行社。經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學(xué)生都按7折收費,乙旅行社的優(yōu)惠條件是:家長和學(xué)生都按8折收費,假設(shè)這兩名家長帶領(lǐng)x名學(xué)生去旅游, 他們應(yīng)該選擇哪家旅行社?

          勾股定理

          j.Co M

          勾股定理(第二課時)

          編寫人:審核人: 日期: 編號: 年級:

          一、學(xué)習(xí)目標(biāo):利用勾股定理解直角三角形

          二、重難點:勾服定理的運用

          三、知識回顧:

          1.在Rt△ABC中∠C=90°,則C2= C=

          b2= b=

          a2= a=

          2.如圖在Rt△ABC中∠C=90°,則AB2= AB=

          BC2= BC=

          AC2= AC=

          四、學(xué)法指導(dǎo):課前預(yù)習(xí)P66-67,小組合作,當(dāng)堂檢測

          例:1.已知在Rt△ABC中∠C=90°,a=3,b=4,求c

          2.求直角三角形中未知邊的長度

          3.已知Rt△ABC中∠C=90°,AB=13,BC=5,求AC

          五、小組合作

          1.已知Rt△ABC中,a=8,b=15,求c.

          2.如果一個直角三角形的兩邊長分別是6cm和8cm,那么這個三角形的周長是多少cm?

          3.如圖等邊△ABC的邊長去6cm.

          (1)求高AD的長。

          (2)求△ABC的面積。

          4.下圖是學(xué)校的旗桿,旗桿上的繩子垂到了地面,并多出了一段,旗桿有多高呢?你能想個辦法嗎?請你與同伴交流設(shè)計方案?

          小明發(fā)現(xiàn)旗桿上的繩子垂到地面還多1米,當(dāng)他們把繩子的下端拉開5米后,發(fā)現(xiàn)下端剛好接觸地面,你能幫他們把旗桿的高度和繩子的長度計算出來嗎?

          反思:

          軸對稱

          課題:12.1.1 軸對稱(一)

          目標(biāo):

          1、在生活實例中認(rèn)識軸對稱圖.

          2、分析軸對稱圖形,理解軸對稱的概念.

          重點:

          軸對稱圖形的概念.

          教學(xué)難點:

          能夠識別軸對稱圖形并找出它的對稱軸.

          教學(xué)過程

          一、新課引入

          我們生活在一個充滿對稱的世界中,許多建筑物都設(shè)計成對稱形,藝術(shù)作品的創(chuàng)作往往也從對稱角度考慮,自然界的許多動植物也按對稱形生長,中國的方塊字中些也具有對稱性……對稱給我們帶來多少美的感受!初步掌握對稱的奧秒,不僅可以幫助我們發(fā)現(xiàn)一些圖形的特征,還可以使我們感受到自然界的美與和諧. 軸對稱是對稱中重要的一種,從這節(jié)課開始,我們來學(xué)習(xí)第十四章:軸對稱.今天我們來研究第一節(jié),認(rèn)識什么是軸對稱圖形,什么是對稱軸.

          二、新課講解:

          出示課本的圖片,觀察它們都有些什么共同特征.

          這些圖形都是對稱的.這些圖形從中間分開后,左右兩部分能夠完全重合.

          小結(jié):對稱現(xiàn)象無處不在,從自然景觀到分子結(jié)構(gòu),從建筑物到藝術(shù)作品,甚至日常生活用品,人們都可以找到對稱的例子.現(xiàn)在同學(xué)們就從我們生活周圍的事物中來找一些具有對稱特征的例子.

          我們的黑板、課桌、椅子等.

          我們的身體,還有飛機(jī)、汽車、楓葉等都是對稱的.

          如課本的圖14.1.2,把一張紙對折,剪出一個圖案(折痕處不要完全剪斷),再打開這張對折的紙,就剪出了美麗的窗花.觀察得到的窗花和圖14.1.1中的圖形,你能發(fā)現(xiàn)它們有什么共同的特點嗎?

          窗花可以沿折痕對折,使折痕兩旁的部分完全重合.不僅窗花可以沿一條直線對折,使直線兩旁重合,上面圖14.1.1中的圖形也可以沿一條直線對折,使直線兩旁的部分重合.

          結(jié)論:如果一個圖形沿一直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.這時,我們也說這個圖形關(guān)于這條直線(成軸)對稱.

          了解了軸對稱圖形及其對稱軸的概念后,我們來做一做.

          取一張質(zhì)地較硬的紙,將紙對折,并用小刀在紙的中央隨意刻出一個圖案,將紙打開后鋪平,你得到兩個成軸對稱的圖案了嗎?與同伴進(jìn)行交流.

          結(jié)論:位于折痕兩側(cè)的圖案是對稱的,它們可以互相重合.

          由此可以得到軸對稱圖形的特征:一個圖形沿一條直線折疊后,折痕兩側(cè)的圖形完全重合.

          接下來我們來探討一個有關(guān)對稱軸的問題.有些軸對稱圖形的對稱軸只有一條,但有的軸對稱圖形的對稱軸卻不止一條,有的軸對稱圖形的對稱軸甚至有無數(shù)條。

          下列各圖,你能找出它們的對稱軸嗎?

          結(jié)果:圖(1)有四條對稱軸;圖(2)有四條對稱軸;圖(3)有無數(shù)條對稱軸;圖(4)有兩條對稱軸;圖(5)有七條對稱軸.

          (1) (2) (3) (4) (5)

          展示掛圖,大家想一想,你發(fā)現(xiàn)了什么?

          像這樣,把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對稱點.

          隨堂練習(xí)

         。ㄒ唬┱n本P117練習(xí) (二)P118練習(xí)

          三、課堂小結(jié):

          這節(jié)課我們主要認(rèn)識了軸對稱圖形,了解了軸對稱圖形及有關(guān)概念,進(jìn)一步探討了軸對稱的特點,區(qū)分了軸對稱圖形和兩個圖形成軸對稱.

          四、作業(yè)

          (一)課本習(xí)題14.1─1、2、6、7、8題.

          課后作業(yè):

          課本P118思考.

          成軸對稱的兩個圖形全等嗎?如果把一個軸對稱圖形沿對稱軸分成兩個圖形,那么這兩個圖形全等嗎?這兩個圖形對稱嗎?

          過程:在硬紙板上畫兩個成軸對稱的圖形,再用剪刀將這兩個圖形剪下來看是否重合.再在硬紙板上畫出一個軸對稱圖形,然后將該圖形剪下來,再沿對稱軸剪開,看兩部分是否能夠完全重合. 結(jié)論:成軸對稱的兩個圖形全等.如果把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形全等,并且也是成軸對稱的.

          軸對稱是說兩個圖形的位置關(guān)系,而軸對稱圖形是說一個具有特殊形狀的圖形.

          軸對稱的兩個圖形和軸對稱圖形,都要沿某一條直線折疊后重合;如果把軸對稱圖形沿對稱軸分成兩部分,那么這兩個圖形就關(guān)于這條直線成軸對稱;反過來,如果把兩個成軸對稱的圖形看成一個整體,那么它就是一個軸對稱圖形.

          課題:12.1.2 軸對稱(二)

          教學(xué)目標(biāo):

          1、了解兩個圖形成軸對稱性的性質(zhì),了解軸對稱圖形的性質(zhì).

          2、探究線段垂直平分線的性質(zhì).

          3、經(jīng)歷探索軸對稱圖形性質(zhì)的過程,進(jìn)一步體驗軸對稱的特點,發(fā)展空間觀察.

          教學(xué)重點:

          1.軸對稱的性質(zhì).

          2.線段垂直平分線的性質(zhì).

          教學(xué)難點:

          體驗軸對稱的特征.

          教學(xué)過程:

          一、新課引入:

          上節(jié)課我們共同探討了軸對稱圖形,知道現(xiàn)實生活中由于有軸對稱圖形,而使得世界非常美麗.那么大家想一想,什么樣的圖形是軸對稱圖形呢?

          今天繼續(xù)來研究軸對稱的性質(zhì).

          二、新課講解:

          觀看投影并思考.

          如圖,△ABC和△A′B′C′關(guān)于直線MN對稱,點A′、B′、C′分別是點A、B、C的對稱點,線段AA′、BB′、CC′與直線MN有什么關(guān)系?

          圖中A、A′是對稱點,AA′與MN垂直,BB′和CC′也與MN垂直.

          AA′、BB′和CC′與MN除了垂直以外還有什么關(guān)系嗎?

          △ABC與△A′B′C′關(guān)于直線MN對稱,點A′、B′、C′分別是點A、B、C的對稱點,設(shè)AA′交對稱軸MN于點P,將△ABC和△A′B′C′沿MN對折后,點A與A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′與MN除了垂直以外,MN還經(jīng)過線段AA′、BB′和CC′的中點.

          對稱軸所在直線經(jīng)過對稱點所連線段的中點,并且垂直于這條線段.我們把經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線.

          自己動手畫一個軸對稱圖形,并找出兩對稱點,看一下對稱軸和兩對稱點連線的關(guān)系.

          我們可以看出軸對稱圖形與兩個圖形關(guān)于直線對稱一樣,對稱軸所在直線經(jīng)過對稱點所連線段的中點,并且垂直于這條線段.

          歸納圖形軸對稱的性質(zhì):

          如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對稱點所連線段的垂直平分線.類似地,軸對稱圖形的對稱軸是任何一對對稱點所連線段的垂直平分線.

          下面我們來探究線段垂直平分線的性質(zhì).

          [探究1]

          如下圖.木條L與AB釘在一起,L垂直平分AB,P1,P2,P3,…是L上的點,分別量一量點P1,P2,P3,…到A與B的距離,你有什么發(fā)現(xiàn)?

          1.用平面圖將上述問題進(jìn)行轉(zhuǎn)化,先作出線段AB,過AB中點作AB的垂直平分線L,在L上取P1、P2、P3…,連結(jié)AP1、AP2、BP1、BP2、CP1、CP2…

          2.作好圖后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…討論發(fā)現(xiàn)什么樣的規(guī)律.

          探究結(jié)果:

          線段垂直平分線上的點與這條線段兩個端點的距離相等.即AP1=BP1,AP2=BP2,…

          證明.

          證法一:利用判定兩個三角形全等.

          如下圖,在△APC和△BPC中,

          △APC≌△BPC PA=PB.

          證法二:利用軸對稱性質(zhì).

          由于點C是線段AB的中點,將線段AB沿直線L對折,線段PA與PB是重合的,因此它們也是相等的.

          帶著探究1的結(jié)論我們來看下面的問題.

          [探究2]

          如右圖.用一根木棒和一根彈性均勻的橡皮筋,做一個簡易的“弓”,“箭”通過木棒中央的孔射出去,怎么才能保持出箭的方向與木棒垂直呢?為什么?

          活動:

          1.用平面圖形將上述問題進(jìn)行轉(zhuǎn)化.作線段AB,取其中點P,過P作L,在L上取點P1、P2,連結(jié)AP1、AP2、BP1、BP2.會有以下兩種可能.

          2.討論:要使L與AB垂直,AP1、AP2、BP1、BP2應(yīng)滿足什么條件?

          探究過程:

          1.如上圖甲,若AP1≠BP1,那么沿L將圖形折疊后,A與B不可能重合,也就是∠APP1≠∠BPP1,即L與AB不垂直.

          2.如上圖乙,若AP1=BP1,那么沿L將圖形折疊后,A與B恰好重合,就有∠APP1=∠BPP1,即L與AB重合.當(dāng)AP2=BP2時,亦然.

          探究結(jié)論:

          與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.也就是說在[探究2]圖中,只要使箭端到弓兩端的端點的距離相等,就能保持射出箭的方向與木棒垂直.

          [師]上述兩個探究問題的結(jié)果就給出了線段垂直平分線的性質(zhì),即:線段垂直平分線上的點與這條線段兩個端點的距離相等;反過來,與這條線段兩個端點距離相等的點都在它的垂直平分線上.所以線段的垂直平分線可以看成是與線段兩端點距離相等的所有點的集合.

          隨堂練習(xí)

          課本P121練習(xí) 1、2.

          三、課堂小結(jié)

          這節(jié)課通過探索軸對稱圖形對稱性的過程,了解了線段的垂直平分線的有關(guān)性質(zhì),同學(xué)們應(yīng)靈活運用這些性質(zhì)來解決問題.

          四、課后作業(yè)

         。ㄒ唬┱n本習(xí)題14.1─3、4、9題.

          課題12.2 軸對稱變換

          教學(xué)目標(biāo):

          1、通過實際操作,了解什么叫做軸對稱變換.

          2、如何作出一個圖形關(guān)于一條直線的軸對稱圖形.

          教學(xué)重點:

          1、軸對稱變換的定義.

          2、能夠按要求作出簡單平面圖形經(jīng)過軸對稱后的圖形.

          教學(xué)難點:

          1、作出簡單平面圖形關(guān)于直線的軸對稱圖形.

          2、利用軸對稱進(jìn)行一些圖案設(shè)計.

          教學(xué)過程:

          一、新課引入:

          在前一個章節(jié),我們學(xué)習(xí)了軸對稱圖形以及軸對稱圖形的一些相關(guān)的性質(zhì)問題.在上節(jié)課的作業(yè)中,我們有個要求,讓同學(xué)們自己思考一種作軸對稱圖形的方法,現(xiàn)在來看一下同學(xué)們完成的怎么樣.

          將一張紙對折后,用針尖在紙上扎出一個圖案,將紙打開后鋪平,得到的兩個圖案是關(guān)于折痕成軸對稱的圖形.

          準(zhǔn)備一張質(zhì)地較軟,吸水性能好的紙或報紙,在紙的一側(cè)上滴上一滴墨水,將紙迅速對折,壓平,并且手指壓出清晰的折痕.再將紙打開后鋪平,位于折痕兩側(cè)的墨跡圖案也是對稱的.

          這節(jié)課我們就是來作簡單平面圖形經(jīng)過軸對稱后的圖形.

          二、新課講解:

          由我們已經(jīng)學(xué)過的知識知道,連結(jié)任意一對對應(yīng)點的線段被對稱軸垂直平分.

          類似地,我們也可以由一個圖形得到與它成軸對稱的另一個圖形,重復(fù)這個過程,可以得到美麗的圖案.

          對稱軸方向和位置發(fā)生變化時,得到的圖形的方向和位置也會發(fā)生變化.大家看大屏幕,從電腦演示的圖案變化中找出對稱軸的方向和位置,體會對稱軸方向和位置的變化在圖案設(shè)計中的奇妙用途.

          下面,同學(xué)們自己動手在一張紙上畫一個圖形,將這張紙折疊描圖,再打開看看,得到了什么?改變折痕的位置并重復(fù)幾次,又得到了什么?同學(xué)們互相交流一下.

          結(jié)論:由一個平面圖形呆以得到它關(guān)于一條直線L對稱的圖形,這個圖形與原圖形的形狀、大小完全相同;新圖形上的每一點,都是原圖形上的某一點關(guān)于直線L的對稱點;

          連結(jié)任意一對對應(yīng)點的線段被對稱軸垂直平分.

          我們把上面由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換.

          成軸對稱的兩個圖形中的任何一個可以看作由另一個圖形經(jīng)過軸對稱變換后得到.一個軸對稱圖形也可以看作以它的一部分為基礎(chǔ),經(jīng)軸對稱變換擴(kuò)展而成的.

          取一張長30厘米,寬6厘米的紙條,將它每3厘米一段,一正一反像“手風(fēng)琴”那樣折疊起來,并在折疊好的紙上畫上字母E,用小刀把畫出的字母E挖去,拉開“手風(fēng)琴”,你就可以得到以字母E為圖案的花邊.回答下列問題.

         。1)在你所得的花邊中,相鄰兩個圖案有什么關(guān)系?相間的兩個圖案又有什么關(guān)系?說說你的理由.

         。2)如果以相鄰兩個圖案為一組,每一組圖案之間有什么關(guān)系?三個圖案為一組呢?為什么?

         。3)在上面的活動中,如果先將紙條縱向?qū)φ,再折成“手風(fēng)琴”,然后繼續(xù)上面的步驟,此時會得到怎樣的花邊?它是軸對稱圖形嗎?先猜一猜,再做一做.

          注:為了保證剪開后的紙條保持連結(jié),畫出的圖案應(yīng)與折疊線稍遠(yuǎn)一些.

          隨堂練習(xí):

          (一)如圖(1),將一張正六邊形紙沿虛線對折折3次,得到一個多層的60°角形紙,用剪刀在折疊好的紙上隨意剪出一條線,如圖(2).

          (1)猜一猜,將紙打開后,你會得到怎樣的圖形?

          (2)這個圖形有幾條對稱軸?

         。3)如果想得到一個含有5條對稱軸的圖形,你應(yīng)取什么形狀的紙?應(yīng)如何折疊?

          答案:(1)軸對稱圖形.

         。2)這個圖形至少有3條對稱軸.

         。3)取一個正十邊形的紙,沿它通過中心的五條對角線折疊五次,得到一個多層的36°角形紙,用剪刀在疊好的紙上任意剪出一條線,打開即可得到一個至少含有5條對稱軸的軸對稱圖形.

          三、課堂小結(jié)

          本節(jié)課我們主要學(xué)習(xí)了如何通過軸對稱變換來作出一個圖形的軸對稱圖形,并且利用軸對稱變換來設(shè)計一些美麗的圖案.在利用軸對稱變換設(shè)計圖案時,要注意運用對稱軸位置和方向的變化,使我們設(shè)計出更新疑獨特的美麗圖案.

          動手并思考

         。ㄒ唬┤缦聢D所示,取一張薄的正方形紙,沿對角線對折后,得到一個等腰直角三角形,再沿斜邊上的高線對折,將得到的角形沿黑色線剪開,去掉含90°角的部分,拆開折疊的紙,并將其鋪平.

          (1)你會得怎樣的圖案?先猜一猜,再做一做.

         。2)你能說明為什么會得到這樣的圖案嗎?應(yīng)用學(xué)過的軸對稱的知識試一試.

         。3)如果將正方形紙按上面方式折3次,然后再沿圓弧剪開,去掉較小部分,展開后結(jié)果又會怎樣?為什么?

         。4)當(dāng)紙對折2次后,剪出的圖案至少有幾條對稱軸?3次呢?

          答案:(1)得到一個有2條對稱軸的圖形.

          (2)按照上面的做法,實際上相當(dāng)于折出了正方形的2條對稱軸;因此(1)中的圖案一定有2條對稱軸.

          (3)按題中的方式將正方形對折3次,相當(dāng)于折出了正方形的4條對稱軸,因此得到的圖案一定有4條對稱軸.

         。4)當(dāng)紙對折2次,剪出的圖案至少有2條對稱軸;當(dāng)紙對折3次,剪出的圖案至少有4條對稱軸.

          (二)自己設(shè)計并制作一個花邊.

          四、作業(yè):

          如果想剪出如下圖所示的“小人”以及“十字”,你想怎樣剪?設(shè)法使剪的次數(shù)盡可能少.

          過程:學(xué)生通過觀察、分析設(shè)計自己的操作方法,教師提示學(xué)生利用軸對稱變換的應(yīng)用.

          結(jié)果:“小人”可以先折疊一次,剪出它的一半即可得到整個圖.

          “十字”可以折疊兩次,剪出它的四分之一即可.

          課題:12.2 .2 用坐標(biāo)表示軸對稱

          教學(xué)目標(biāo):

          在平面直角坐標(biāo)系中,確定軸對稱變換前后兩個圖形中特殊點的位置關(guān)系,再利用軸對稱的性質(zhì)作出成軸對稱的圖形

          教學(xué)重點:

          用坐標(biāo)表示軸對稱

          教學(xué)難點

          利用轉(zhuǎn)化的思想,確定能代表軸對稱圖形的關(guān)鍵點

          教學(xué)過程:

          一、新課引入:

          復(fù)習(xí)軸對稱圖形的有關(guān)性質(zhì)

          二、新課講解:

          1、學(xué)生探索:

          點(x,y)關(guān)于x軸對稱的點的坐標(biāo)(x,-y);點(x,y)關(guān)于y軸對稱的點的坐標(biāo)(-x,y);點 (x,y)關(guān)于原點對稱的點的坐標(biāo)(-x,-y)

          2、例3 四邊形ABCD的四個頂點的坐標(biāo)分別為A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分別作出與四邊形ABCD關(guān)于x軸和y軸對稱的圖形.

          (1)歸納:與已知點關(guān)于y 軸或x軸對稱的點的坐標(biāo)的規(guī)律;

          (2)學(xué)生畫圖

         。3)對于這類問題,只要先求出已知圖形中的一些特殊點的對應(yīng)點的坐標(biāo),描出并順次連接這些特殊點,就可以得到這個圖形的軸對稱圖形.

          3、探究問題

          分別作出△PQR關(guān)于直線x=1(記為m)和直線y=-1(記為n)對稱的圖形,你能發(fā)現(xiàn)它們的對應(yīng)點的坐標(biāo)之間分別有什么關(guān)系嗎?

          (1)學(xué)生畫圖,由具體的數(shù)據(jù),發(fā)現(xiàn)它們的對應(yīng)點的坐標(biāo)之間的關(guān)系

         。2)若△P Q R 中P (x ,y )關(guān)于x=1(記為m)軸對稱的點的坐標(biāo)P (x ,y ) ,

          則 ,y = y .

          若△P Q R 中P (x ,y )關(guān)于y=-1(記為n)軸對稱的點的坐標(biāo)P (x ,y ) ,

          則x = x , =n.

          訓(xùn)練:課本135頁的第1~3題

          三、課堂小結(jié):

          關(guān)于Y軸對稱和關(guān)于X軸對稱的兩點的坐標(biāo)有什么特點?

          四、作業(yè):課本136頁的第5~7題

          課題:12.3.1.1 等腰三角形

          教學(xué)目標(biāo):

          1、等腰三角形的概念.

          2、等腰三角形的性質(zhì).

          3、等腰三角形的概念及性質(zhì)的應(yīng)用.

          教學(xué)重點:

          1、等腰三角形的概念及性質(zhì).

          2、等腰三角形性質(zhì)的應(yīng)用.

          教學(xué)難點:

          等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

          教學(xué)過程:

          一、新課引入:

          在前面的學(xué)習(xí)中,我們認(rèn)識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認(rèn)識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

          有的三角形是軸對稱圖形,有的三角形不是.

          問題:那什么樣的三角形是軸對稱圖形?

          滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

          我們這節(jié)課就來認(rèn)識一種成軸對稱圖形的三角形──等腰三角形.

          二、新課講解:

          要求學(xué)生通過自己的思考來做一個等腰三角形.

          作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形.

          等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

          思考:

          1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

          2.等腰三角形的兩底角有什么關(guān)系?

          3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

          4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

          結(jié)論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

          要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系.

          沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

          由此可以得到等腰三角形的性質(zhì):

          1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

          2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

          由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學(xué)們現(xiàn)在就動手來寫出這些證明過程).

          如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

          所以△BAD≌△CAD(SSS).

          所以∠B=∠C.

          ]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

          所以△BAD≌△CAD.

          所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

          [例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

          求:△ABC各角的度數(shù).

          分析:

          根據(jù)等邊對等角的性質(zhì),我們可以得到

          ∠A=∠ABD,∠ABC=∠C=∠BDC,

          再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

          再由三角形內(nèi)角和為180°,就可求出△ABC的三個內(nèi)角.

          把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

          解:因為AB=AC,BD=BC=AD,

          所以∠ABC=∠C=∠BDC.

          ∠A=∠ABD(等邊對等角).

          設(shè)∠A=x,則

          ∠BDC=∠A+∠ABD=2x,

          從而∠ABC=∠C=∠BDC=2x.

          于是在△ABC中,有

          ∠A+∠ABC+∠C=x+2x+2x=180°,

          解得x=36°.

          在△ABC中,∠A=35°,∠ABC=∠C=72°.

          [師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識.

          隨堂練習(xí)

         。ㄒ唬┱n本P141練習(xí) 1、2、3.

          (二)閱讀課本P138~P140,然后小結(jié).

          三、課時小結(jié)

          這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

          我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們.

          四、作業(yè)

         。ㄒ唬┱n本P147─1、3、4、8題.

          參考練習(xí)

          一、選擇題

          1.如果△ABC是軸對稱圖形,則它的對稱軸一定是( )

          A.某一條邊上的高; B.某一條邊上的中線

          C.平分一角和這個角對邊的直線; D.某一個角的平分線

          2.等腰三角形的一個外角是100°,它的頂角的度數(shù)是( )

          A.80° B.20° C.80°和20° D.80°或50°

          答案:1.C 2.C

          二、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm.

          求這個等腰三角形的邊長.

          解:設(shè)三角形的底邊長為xcm,則其腰長為(x+2)cm,根據(jù)題意,得

          2(x+2)+x=16.

          解得x=4.

          所以,等腰三角形的三邊長為4cm、6cm和6cm.

          課題:12.3.1.1 等腰三角形(二)

          教學(xué)目標(biāo):

          1、理解并掌握等腰三角形的判定定理及推論

          2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.

          教學(xué)重點:

          等腰三角形的判定定理及推論的運用

          教學(xué)難點

          正確區(qū)分等腰三角形的判定與性質(zhì).能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.

          教學(xué)過程:

          一、新課引入:

          復(fù)習(xí)等腰三角形的性質(zhì)

          二、新課講解:

          出示投影片.某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標(biāo),然后在這棵樹的正南方(南岸A點抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質(zhì)專家測得AC的長度就可知河流寬度.

          學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.

          1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容??在△ABC中,苦∠B=∠C,則AB= AC嗎?

          作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?

          2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.

          2、小結(jié),通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

          強(qiáng)調(diào)此定理是在一個三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”.

          4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù).

          例題與練習(xí)

          1.如圖2

          其中△ABC是等腰三角形的是 [ ]

          2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).

         、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).

         、廴粢阎螦=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

          ④若已知 AD=4cm,則BC______cm.

          3.以問題形式引出推論l______.

          4.以問題形式引出推論2______.

          例: 如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

          分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明.

          練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

          (2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

          三、課堂小結(jié)

          1.判定一個三角形是等腰三角形有幾種方法?

          2.判定一個三角形是等邊三角形有幾種方法?

          3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?

          4.現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?

          四、作業(yè)

          閱讀教材

          教材第150頁第12題

          課題:12.3.2 等邊三角形(一)

          教學(xué)目的:

          1、使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

          2、熟識等邊三角形的性質(zhì)及判定.

          3、通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。

          教學(xué)重點:

          等腰三角形的性質(zhì)及其應(yīng)用。

          教學(xué)難點:

          簡潔的邏輯推理。

          教學(xué)過程:

          一、新課引入:

          1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?

          等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。

          等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

          2.若等腰三角形的兩邊長為3和4,則其周長為多少?

          二、新課講解:

          在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

          等邊三角形具有什么性質(zhì)呢?

          1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。

          2.你能否用已知的知識,通過推理得到你的猜想是正確的?

          等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

          3.上面的條件和結(jié)論如何敘述?

          等邊三角形的各角都相等,并且每一個角都等于60°。

          等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

          等邊三角形也稱為正三角形。

          例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數(shù)。

          分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

          問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結(jié)果是否一樣?

          問題2:求∠1是否還有其它方法?

          練習(xí)鞏固:

          1.判斷下列命題,對的打“√”,錯的打“×”。

          a.等腰三角形的角平分線,中線和高互相重合( )

          b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°( )

          2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。

          三、課堂小結(jié):

          由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質(zhì)在實際應(yīng)用中,只要推出其中一個結(jié)論成立,其他兩個結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個結(jié)論成立的條件。

          四、作業(yè)

          1.課本P147─7,9

          2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,

          ∠EOD的度數(shù)。

          課題:12.3.2.2 等邊三角形(二)

          教學(xué)目標(biāo):

          1、掌握等邊三角形的性質(zhì)和判定方法.

          2、培養(yǎng)分析問題、解決問題的能力.

          教學(xué)重點:

          等邊三角形的性質(zhì)和判定方法.

          教學(xué)難點:

          等邊三角形性質(zhì)的應(yīng)用

          教學(xué)過程:

          一、新課引入:

          回顧上節(jié)課講過的等邊三角形的有關(guān)知識

          1.等邊三角形是軸對稱圖形,它有三條對稱軸.

          2.等邊三角形每一個角相等,都等于60°

          3.三個角都相等的三角形是等邊三角形.

          4.有一個角是60°的等腰三角形是等邊三角形.

          其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.

          二、新課講解:

          例題與練習(xí)

          1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

          ①在邊AB、AC上分別截取AD=AE.

          ②作∠ADE=60°,D、E分別在邊AB、AC上.

         、圻^邊AB上D點作DE∥BC,交邊AC于E點.

          2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大。

          分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

          三、課堂小結(jié)

          1、等腰三角形和性質(zhì)

          2、等腰三角形的條件

          四、布置作業(yè)

          1.教科書第147頁練習(xí)1、2

          2.選做題:

          (1)教科書第150頁習(xí)題14.3第ll題.

          (2)已知等邊△ABC,求平面內(nèi)一點P,滿足A,B,C,P四點中的任意三點連線都構(gòu)成等腰三角形.這樣的點有多少個?

          課題:12.3.2.1 等邊三角形(三)

          教學(xué)目標(biāo):

          1、掌握等邊三角形的性質(zhì)和判定方法.

          2、培養(yǎng)分析問題、解決問題的能力.

          教學(xué)重點:

          等邊三角形的性質(zhì)和判定方法.

          教學(xué)難點:

          等邊三角形性質(zhì)的應(yīng)用

          教學(xué)過程

          一、新課引入:

          復(fù)習(xí)等腰三角形的判定與性質(zhì)

          二、新課講解:

          1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

          2.等邊三角形的判定:

          三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

          在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

          注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.

          3.由學(xué)生解答課本148頁的例子;

          4.補(bǔ)充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,

          ∠ABC=120o, 求證: AB=2BC

          分析 由已知條件可得∠ABD=30o, 如能構(gòu)造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.

          B

          證明: 過A作AE∥BC交BD的延長線于E

          ∵DB⊥BC(已知)

          ∴∠AED=90o (兩直線平行內(nèi)錯角相等)

          在△ADE和△CDB中

          ∴△ADE≌△CDB(AAS)

          ∴AE=CB(全等三角形的對應(yīng)邊相等)

          ∵∠ABC=120o,DB⊥BC(已知)

          ∴∠ABD=30o

          在Rt△ABE中,∠ABD=30o

          ∴AE= AB(在直角三角形中,如果一個銳角等于30o,

          那么它所對的直角邊等于斜邊的一半)

          ∴BC= AB 即AB=2BC

          點評 本題還可過C作CE∥AB

          5、訓(xùn)練:如圖所示,在等邊△ABC的邊的延長線上取一點E,以CE為邊作等邊△CDE,使它與△ABC位于直線AE的同一側(cè),點M為線段AD的中點,點N為線段BE的中點,求證:△CNM是等邊三角形.

          分析 由已知易證明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分別為BE、AD的中點,于是有BN=AM,要證明△CNM是等邊三角形,只須證MC=CN,∠MCN=60o,所以要證△NBC≌△MAC,由上述已推出的結(jié)論,根據(jù)邊角邊公里,可證得△NBC≌△MAC

          證明:∵等邊△ABC和等邊△DCE,

          ∴BC=AC,CD=CE,(等邊三角形的邊相等)

          ∠BCA=∠DCE=60o(等邊三角形的每個角都是60)

          ∴∠BCE=∠DCA

          ∴△BCE≌△ACD(SAS)

          ∴∠EBC=∠DAC(全等三角形的對應(yīng)角相等)

          BE=AD(全等三角形的對應(yīng)邊相等)

          又∵BN= BE,AM= AD(中點定義)

          ∴BN=AM

          ∴△NBC≌△MAC(SAS)

          ∴CM=CN(全等三角形的對應(yīng)邊相等)

          ∠ACM=∠BCN(全等三角形的對應(yīng)角相等)

          ∴∠MCN=∠ACB=60o

          ∴△MCN為等邊三角形(有一個角等于60o的等腰三角形是等邊三角形)

          小結(jié)

          1.本題通過將分析法和綜合法并用進(jìn)行分析,得到了本題的證題思路,較復(fù)雜的幾何問題經(jīng)常用這種方法進(jìn)行分析

          2.本題反復(fù)利用等邊三角形的性質(zhì),證得了兩對三角形全等,從而證得△MCN是一個含60o角的等腰三角形,在較復(fù)雜的圖形中,如何準(zhǔn)確地找到所需要的全等三角形是證題的關(guān)鍵.

          三、課堂小結(jié):

          小結(jié)本節(jié)知識

          四、作業(yè):

          第十四章一次函數(shù)

          第十四章 一次函數(shù)

          本章小結(jié)

          小結(jié)1 本章概述

          本章的主要內(nèi)容包括:變量與函數(shù)的概念,函數(shù)的三種表示方法,正比例函數(shù)和一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用舉例,用函數(shù)觀點認(rèn)識一元一次方程、一元一次不等式以及二元一次方程組,課題學(xué)習(xí)“選擇方案”.

          函數(shù)是研究運動變化的重要數(shù)學(xué)模型,它來源于客觀實際,又服務(wù)于客觀實際,而一次函數(shù)又是函數(shù)中最簡單、最基本的函數(shù),它是學(xué)習(xí)其他函數(shù)的基礎(chǔ),所以理解和掌握一次函數(shù)的概念、圖象和性質(zhì)至關(guān)重要,應(yīng)認(rèn)真掌握.

          小結(jié)2 本章學(xué)習(xí)重難點

          【本章重點】理解函數(shù)的概念,特別是一次函數(shù)和正比例函數(shù)的概念,掌握一次函數(shù)的圖象及性質(zhì),會利用待定系數(shù)法求一次函數(shù)的解析式.利用函數(shù)圖象解決實際問題,發(fā)展數(shù)學(xué)應(yīng)用能力,初步體會方程與函數(shù)的關(guān)系及函數(shù)與不等式的關(guān)系,從而建立良好的知識聯(lián)系.

          【本章難點】1.根據(jù)題設(shè)的條件尋找一次函數(shù)關(guān)系式,熟練作出一次函數(shù)的圖象,掌握一次函數(shù)的圖象和性質(zhì),求出一次函數(shù)的表達(dá)式,會利用函數(shù)圖象解決實際問題.

          2.理解一次函數(shù)與一元一次方程、一元一次不等式以及二元一次方程組的關(guān)系.

          小結(jié)3 學(xué)法指導(dǎo)

          1.注意從運動變化和聯(lián)系對應(yīng)的角度認(rèn)識函數(shù).

          2.借助實際問題情境,由具體到抽象地認(rèn)識函數(shù),通過函數(shù)應(yīng)用舉例,體會數(shù)學(xué)建模思想.

          3.注重數(shù)形結(jié)合思想在函數(shù)學(xué)習(xí)中的應(yīng)用.

          4.加強(qiáng)前后知識的聯(lián)系,體會函數(shù)觀點的統(tǒng)領(lǐng)作用.

          5.結(jié)合課題學(xué)習(xí),提高實踐意識和綜合應(yīng)用數(shù)學(xué)知識的能力.

          知識網(wǎng)絡(luò)結(jié)構(gòu)圖

          專題總結(jié)及應(yīng)用

          一、知識性專題

          專題1 函數(shù)自變量的取值范圍

          【專題解讀】 一般地,求自變量的取值范圍時應(yīng)先建立自變量滿足的所有不等式,通過解不等式組下結(jié)論.

          例1 函數(shù) 中,自變量x的取值范圍是 ( )

          A.x≠0 B.x≠1

          C.x≠2 D.x≠-2

          分析 由x+2≠0,得x≠-2.故選D.

          例2 函數(shù) 中,自變量x的取值范圍是 ( )

          A.x≥-1 B.-1<x<2

          C.-1≤x<2 D.x<2

          分析 由 得 即-1≤x<2.故選C.

          專題2 一次函數(shù)的定義

          【專題解讀】 一次函數(shù)一般形如y=kx+b,其中自變量的次數(shù)為1,系數(shù)不為0,兩者缺一不可.

          例3 在一次函數(shù)y=(m-3)xm-1+x+3中,符x≠0,則m的值為 .

          分析 由于x≠0,所以當(dāng)m-1=0,即m=1時,函數(shù)關(guān)系式為y=x+1.當(dāng)m-3=0,即m=3時,函數(shù)關(guān)系式為y=x+3;當(dāng)m-1=1,即m=2時,函數(shù)關(guān)系式為y=(m-2)x+3,當(dāng)m=2時,m-2=0,此時函數(shù)不是一次函數(shù).所以m=1或m=3.故填1或3.

          專題3 一次函數(shù)的圖象及性質(zhì)

          【專題解讀】 一次函數(shù)y=kx+b的圖象為一條直線,與坐標(biāo)軸的交點分別為 ,(0,b).它的傾斜程度由k決定,b決定該直線與y軸交點的位置.

          例4 已知一次函數(shù)的圖象經(jīng)過(2,5)和(-1,-1)兩點.

          (1)畫出這個函數(shù)的圖象;

          (2)求這個一次函數(shù)的解析式.

          分析 已知兩點可確定一條直線,運用待定系數(shù)法即可求出對應(yīng)的函數(shù)關(guān)系式.

          解:(1)圖象如圖14-104所示.

          (2)設(shè)函數(shù)解析式為y=kx+b,則 解得

          所以函數(shù)解析式為y=2x+1.

          二、規(guī)律方法專題

          專題4 一次函數(shù)與方程(或方程組或不等式)的關(guān)系

          【專題解讀】 可根據(jù)一次函數(shù)的圖象求出一元一次方程或二元一次方程(組)的解或一元一次不等式的解集,反之,由方程(組)的解也可確定一次函數(shù)表達(dá)武.

          例5 如圖14-105所示,已知函數(shù)y=3x+b和y=ax-3的圖象交于點P(-2,-5),則根據(jù)圖象可得不等式3x+b>ax-3的解集是 .

          分析 由圖象知當(dāng)x>-2時,y=3x+b對應(yīng)的y值大于y=ax-3對應(yīng)的y值,或者y=3x+b的圖象在x>-2時位于y=ax-3的圖象上方.故填x>-2.

          專題5 一次函數(shù)的應(yīng)用

          【專題解讀】在應(yīng)用一次函數(shù)解決實際問題時,關(guān)鍵是將實際問題轉(zhuǎn)化為數(shù)學(xué)問題.

          例6 假定拖拉機(jī)耕地時,每小時的耗油量是個常最,已知拖拉機(jī)耕地2小時油箱中余油28升,耕地3小時油箱中余油22升.

          (1)寫出油箱中余油量Q(升)與工作時間t(小時)之間的函數(shù)關(guān)系式;

          (2)畫出函數(shù)的圖象;

          (3)這臺拖拉機(jī)工作3小時后,油箱中的油還夠拖拉機(jī)繼續(xù)耕地幾小時?

          分析 由兩組對應(yīng)量可求出函數(shù)關(guān)系式,再畫出圖象(在自變量取值范圍內(nèi)).

          解:(1)設(shè)函數(shù)關(guān)系式為Q=kt+b(k≠0).

          由題意可知 ∴

          ∴余沒量Q與時間t之間的函數(shù)關(guān)系式是Q=-6t+40.

          ∵40-6t≥0,∴t≤ .

          ∴自變量t的取值范圍是0≤t≤ .

          (2)當(dāng)t=0時,Q=40;當(dāng)t= 時,Q=0.

          得到點(0,40),( ,0).

          連接兩點,得出函數(shù)Q=-6t+40(0≤t≤ )的圖象,如圖14-106所示.

          (3)當(dāng)Q=0時,t= ,那么 -3= (小時).

          ∴拖拉機(jī)還能耕地 小時,即3小時40分.

          規(guī)律.方法 運用一次函數(shù)圖象及其性質(zhì)可以幫助我們解決實際生活中的許多問題,如利潤最大、成本最小、話費最省、最佳設(shè)計方案等問題,我們應(yīng)善于總結(jié)規(guī)律,達(dá)到靈活運用的目的.

          三、思想方法專題

          專題6 函數(shù)思想

          【專題解讀】 函數(shù)思想就是應(yīng)用運動、變化的觀點來分析問題中的數(shù)量關(guān)系,抽象升華為函數(shù)模型,進(jìn)而解決有關(guān)問題的方法,函數(shù)的實質(zhì)是研究兩個變量之間的對應(yīng)關(guān)系,靈活運用函數(shù)思想可以解決許多數(shù)學(xué)問題.

          例7 利用圖象解二元一次方程組

          分析 方程組中的兩個方程均為關(guān)于x,y的二元一次方程,可以轉(zhuǎn)化為y關(guān)于x的函數(shù).由①得y=2x-2,由②得y=-x-5,實質(zhì)上是兩個y關(guān)于x的一次函數(shù),在平面直角坐標(biāo)系中畫出它們的圖象,可確定它們的交點坐標(biāo),即可求出方程組的解.

          解:由①得y=2x-2,

          由②得y=-x-5.

          在平面直角坐標(biāo)系中畫出一次函數(shù)y=2x-2,y=-x-5的圖象,如圖14-107所示.

          觀察圖象可知,直線y=2x-2與直線y=-x-5的交點坐標(biāo)是(-1,-4).

          ∴原方程組的解是

          規(guī)律?方法 解方程組通常用消元法,但如果把方程組中的兩個方程看做是兩個一次函數(shù),畫出這兩個函數(shù)的圖象,那么它們的交點坐標(biāo)就是方程組的解.

          例8 我國是一個嚴(yán)重缺水的國家,大家應(yīng)該倍加珍惜水資源,節(jié)約用水.據(jù)測試,擰不緊的水龍頭每秒會滴下2滴水,每滴水約0.05 mL.小明同學(xué)在洗手時,沒有把水龍頭擰緊,當(dāng)小明離開x小時后,水龍頭滴了y mL水.

          (1)試寫出y與x之間的函數(shù)關(guān)系式;

          (2)當(dāng)?shù)瘟?620 mL水時,小明離開水龍頭幾小時?

          分析 已知擰不緊的水龍頭每秒滴2滴水,又∵1小時=3600秒,∴1小時滴水(3600×2)滴,又∵每滴水約0.05 mL,每小時約滴水3600×2×0.05=360(mL).

          解:(1)y與x之間的函數(shù)關(guān)系式為y=360x(x≥0).

          (2)當(dāng)y=1620時,有360x=1620,∴x=4.5.

          ∴當(dāng)?shù)瘟?620 mL水時,小明離開水龍頭4.5小時.

          專題7 數(shù)形結(jié)合思想

          【專題解讀】 數(shù)形結(jié)合思想是指將數(shù)與形結(jié)合起來進(jìn)行分析、研究、解決問題的一種思想方法.?dāng)?shù)形結(jié)合思想在解決與函數(shù)有關(guān)的問題時,能起到事半功倍的作用.

          例9 如圖14-108所示,一次函數(shù)的圖象與x軸、y軸分別相交于A,B兩點,如果A點的坐標(biāo)為(2,0),且OA=OB,試求一次函數(shù)的解析式.

          分析 通過觀察圖象可以看出,要確定一次函數(shù)的關(guān)系式,只要確定B點的坐標(biāo)即可,因為OB=OA=2,所以點B的坐標(biāo)為(0,-2),再結(jié)合A點坐標(biāo),即可求出一次函數(shù)的關(guān)系式.

          解:設(shè)一次函數(shù)的關(guān)系式為y=kx+b(k,b為常數(shù),且k≠0).

          ∵OA=OB,點A的坐標(biāo)為(2,0),

          ∴點B的坐標(biāo)為(0,-2).

          ∵點A,B的坐標(biāo)滿足一次函數(shù)的關(guān)系式y(tǒng)=kx+b,

          ∴一次函數(shù)的解析式為y=x-2.

          【解題策略】 利用函數(shù)圖象研究數(shù)量之間的關(guān)系是數(shù)形結(jié)合思想的具體運用,在解決有關(guān)函數(shù)問題時有著重要的作用.

          專題8 分類討論思想

          【專題解讀】 分類討論思想是在對數(shù)學(xué)對象進(jìn)行分類的過程中尋求答案的一種思想方法.分類討論思想既是一種重要的數(shù)學(xué)思想,又是一種重要的數(shù)學(xué)方法.分類的關(guān)鍵是根據(jù)分類的目的,找出分類的對象.分類既不能重復(fù),也不能遺漏,最后要全面總結(jié).

          例10 在一次遙控車比賽中,電腦記錄了速度的變化過程,如圖14-109所示,能否用函數(shù)關(guān)系式表示這段記錄?

          分析 根據(jù)所給圖象及函數(shù)圖象的增減性,本題要分三種情況進(jìn)行討論.電腦記錄提供了賽車時間t(s)與賽車速度v(m/s)之間的關(guān)系,在10 s內(nèi),賽車的速度從0增加到7.5 m/s,又減至0,因此要注意時間對速度的影響.

          解:觀察圖象可知.

          當(dāng)t在0~1 s內(nèi)時,速度v與時間t是正比例函數(shù)關(guān)系,v=7.5t(0≤t≤1).

          當(dāng)t在1~8 s內(nèi)時,速度v保持不變,

          v=7.5(1<t≤8);

          當(dāng)t在8~10 s內(nèi)時,速度v與時間t是一次函數(shù)關(guān)系,設(shè)一次函數(shù)為v=kt+b(k≠0),又一次函數(shù)圖象過(8,7.5)和(10,0),

          則 解得

          ∴v=-3.75t+37.5(8<t≤10).

          即

          專題9 方程思想

          【專題解讀】 方程思想是指對通過列方程(組)使所求數(shù)學(xué)問題得解的方法.在函數(shù)及其圖象中,方程思想的應(yīng)用主要體現(xiàn)在運用待定系數(shù)法確定函數(shù)關(guān)系式.

          例11 已知一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點A(-3,-2)及點B(1,6),求此函數(shù)關(guān)系式,并作出函數(shù)圖象.

          分析 可將由已知條件給出的坐標(biāo)分別代入y=kx+b中,通過解方程組求出k,b的值,從而確定函數(shù)關(guān)系式.

          解:由題意可知 ∴

          ∴函數(shù)關(guān)系式為y=2x+4.圖象如圖14-110所示.

          2011中考真題精選

          一、選擇題

          1. (2011新疆烏魯木齊,5,4)將直線y=2x向右平移1個單位后所得圖象對應(yīng)的函數(shù)解析式為( )

          A、y=2x-1B、y=2x-2 C、y=2x+1D、y=2x+2

          考點:一次函數(shù)圖象與幾何變換。

          專題:探究型。

          分析:根據(jù)函數(shù)圖象平移的法則進(jìn)行解答即可.

          解答:解:直線y=2x向右平移1個單位后所得圖象對應(yīng)的函數(shù)解析式為y=2(x-1),

          即y=2x-2.

          故選B.

          點評:本題考查的是一次函數(shù)的圖象與幾何變換,熟知“上加下減,左加右減”的原則是解答此題的關(guān)鍵.

          2. (2011南昌,8,3分)已知一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限,則b的值可以是( )

          A.?2 B.?1 C.0 D.2

          考點:一次函數(shù)圖象與系數(shù)的關(guān)系.

          專題:探究型.

          分析:根據(jù)一次函數(shù)的圖象經(jīng)過第一、二、三象限判斷出b的符號,再找出符合條件的b的可能值即可.

          解答:解:∵一次函數(shù)的圖象經(jīng)過第一、二、三象限,∴b>0,∴四個選項中只有2符合條件.故選D.

          點評:本題考查的是一次函數(shù)的圖象與系數(shù)的關(guān)系,即一次函數(shù)y=kx+b(k≠0)中,當(dāng)b<0時,函數(shù)圖象與y軸相較于負(fù)半軸.

          3. (2011陜西,4,3分)下列四個點,在正比例函數(shù) 的圖像上的點是( )

          A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)

          考點:一次函數(shù)圖象上點的坐標(biāo)特征。

          專題:函數(shù)思想。

          分析:根據(jù)函數(shù)圖象上的點的坐標(biāo)特征,經(jīng)過函數(shù)的某點一定在函數(shù)的圖象上,一定滿足函數(shù)的解析式.根據(jù)正比例函數(shù)的定義,知 是定值.

          解答:解:由 ,得 =? ; A、∵ = ,故本選項錯誤; B、∵ = ,故本選項錯誤; C、∵ =? ,故本選項錯誤; D、∵ =? ,故本選項正確;

          故選D.

          點評:本題考查了正比例函數(shù)圖象上點的坐標(biāo)特征,經(jīng)過函數(shù)的某點一定在函數(shù)的圖象上.在這條直線上的各點的坐標(biāo)一定適合這條直線的解析式.

          4. (2011?臺灣1,4分)坐標(biāo)平面上,若點(3,b)在方程式3y=2x?9的圖形上,則b值為何( )

          A、?1B、2 C、3D、9

          考點:一次函數(shù)圖象上點的坐標(biāo)特征。

          專題:計算題。

          分析:利用一次函數(shù)圖象上點的坐標(biāo)性質(zhì),將點(3,b)代入即可得出b的值.

          解答:解:把點(3,b)代入3y=2x?9,得:b=?1.

          故選A.

          點評:本題考查的知識點是:在這條直線上的點的坐標(biāo)一定適合這條直線的解析式.

          5.(2011臺灣,9,4分)如圖的坐標(biāo)平面上,有一條通過點(-3,-2)的直線L.若四點(-2,a).(0,b).(c,0).(d,-1)在L上,則下列數(shù)值的判斷,何者正確( )

          A.a(chǎn)=3 B.b>-2 C.c<-3 D.d=2

          考點:一次函數(shù)圖象上點的坐標(biāo)特征。

          專題:數(shù)形結(jié)合。

          分析:根據(jù)函數(shù)的圖象可判斷出函數(shù)的增減性,從而結(jié)合選項即可判斷各選項正確與否.

          解答:解:由題意得:此函數(shù)為減函數(shù),

          A.-2>-3,故a<-2,故本選項錯誤;

          B.-3<0,故-2>b,故本選項錯誤;

          C.0>-2,故c<-3,故本選項正確;

          D.-1>-2,故b<-3,故本選項錯誤.

          故選C.

          點評:本題考查一次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是掌握函數(shù)的增減性,另外本題還可以利用特殊值設(shè)出符合題意的函數(shù)解析式,然后代入判斷.

          6. (2011重慶江津區(qū),4,4分)直線y=x?1的圖象經(jīng)過的象限是( )

          A、第一、二、三象限B、第一、二、四象限

          C、第二、三、四象限D(zhuǎn)、第一、三、四象限

          考點:一次函數(shù)的性質(zhì)。

          專題:計算題。

          分析:由y=x?1可知直線與y軸交于(0,?1)點,且y隨x的增大而增大,可判斷直線所經(jīng)過的象限.

          解答:解:直線y=x?1與y軸交于(0,?1)點,且k=1>0,y隨x的增大而增大,

          ∴直線y=x?1的圖象經(jīng)過第一、三、四象限.

          故選D.

          點評:本題考查了一次函數(shù)的性質(zhì).關(guān)鍵是根據(jù)圖象與y軸的交點位置,函數(shù)的增減性判斷圖象經(jīng)過的象限.

          7. (2011湖北咸寧,8,3分)如圖,在平面直角坐標(biāo)系中,□OABC的頂點A在 軸上,頂點B的坐標(biāo)為(6,4).若直線l經(jīng)過點(1,0),且將□OABC分割成面積相等的兩部分,則直線l的函數(shù)解析式是( )

          A、y=x+1B、 C、y=3x?3D、y=x?1

          考點:待定系數(shù)法求一次函數(shù)解析式;平行四邊形的性質(zhì);中心對稱。

          分析:首先根據(jù)條件l經(jīng)過點D(1,0),且將?OABC分割成面積相等的兩部分,求出E點坐標(biāo),然后設(shè)出函數(shù)關(guān)系式,再利用待定系數(shù)法把D,E兩點坐標(biāo)代入函數(shù)解析式,可得到答案.

          解答:解:設(shè)D(1,0),

          ∵線l經(jīng)過點D(1,0),且將?OABC分割成面積相等的兩部分,

          ∴OD=OE=1,

          ∵頂點B的坐標(biāo)為(6,4).

          ∴E(5,4)

          設(shè)直線l的函數(shù)解析式是y=kx+b,

          ∵圖象過D(1,0),E(5,4),

          解得: ,

          ∴直線l的函數(shù)解析式是y=x?1.

          故選D.

          點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式,解題的關(guān)鍵是求出E點坐標(biāo).

          8(2011,臺灣省,15,5分)如圖的坐標(biāo)平面上有四直線L1、L2、L3、L4.若這四直線中,有一直線為方程式3x?5y+15=0的圖形,則此直線為何?( )

          A、L1B、L2

          C、L3D、L4

          考點:一次函數(shù)的圖象;一次函數(shù)圖象上點的坐標(biāo)特征。

          專題:推理填空題。

          分析:求出直線與X、Y軸的交點坐標(biāo)(0,3),(?5,0),根據(jù)圖象即可選出答案.

          解答:解:將x=0代入3x?5y+15=0得:y=3,

          ∴方程式3x?5y+15=0的圖形與y軸的交點為(0,3),

          將y=0代入3x?5y+15=0得:x=?5,

          ∴方程式3x?5y+15=0的圖形與x軸的交點為(?5,0),

          觀察圖形可得直線L1與x、y軸的交點恰為(?5,0)、(0,3),

          ∴方程式3x?5y+15=0的圖形為直線L1.

          故選A.

          點評:本題主要考查對一次函數(shù)的圖象,一次函數(shù)圖象上點的坐標(biāo)特征等知識點的理解和掌握,能根據(jù)一次函數(shù)的圖象進(jìn)行判斷是接此題的關(guān)鍵.

          9. (2011山東濱州,6,3分)關(guān)于一次函數(shù)y=-x+1的圖像,下列所畫正確的是( )

          【考點】一次函數(shù)的圖象.

          【專題】常規(guī)題型.

          【分析】根據(jù)函數(shù)的k為-1,b=1,可判斷函數(shù)為減函數(shù),且與y軸的交點在y軸的負(fù)半軸.

          【解答】解:由題意得:函數(shù)的k為-1,b=1,

          ∴函數(shù)為減函數(shù),且與y軸的交點在y軸的負(fù)半軸,

          結(jié)合選項可得C符合題意.

          故選C.

          【點評】本題考查一次函數(shù)的圖象的知識,難度不大,對于此類題目要先判斷增減性及與y軸交點的位置.

          10. (2011山東濟(jì)南,10,3分)一次函數(shù)y=(k?2)x+3的圖象如圖所示,則k的取值范圍是( )

          A.k>2 B.k<2C.k>3D.k<3

          考點:一次函數(shù)圖象與系數(shù)的關(guān)系。

          專題:探究型。

          分析:先根據(jù)一次函數(shù)的圖象得到關(guān)于k的不等式,求出k的取值范圍即可.

          解答:解:一次函數(shù)的圖象過二、四象限可知,k?2<0,

          解得k<2.

          故選B.

          點評:本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,當(dāng)k<0時,函數(shù)的圖象過二、四象限.

          11. (2011泰安,13,3分)已知一次函數(shù)y=mx+n-2的圖象如圖所示,則m.n的取值范圍是( )

          A.m>0,n<2B.m>0,n>2 C.m<0,n<2D.m<0,n>2

          考點:一次函數(shù)圖象與系數(shù)的關(guān)系。

          專題:探究型。

          分析:先根據(jù)一次函數(shù)的圖象經(jīng)過二.四象限可知m<0,再根據(jù)函數(shù)圖象與y軸交與正半軸可知n-2>0,進(jìn)而可得出結(jié)論.

          解答:解:∵一次函數(shù)y=mx+n-2的圖象過二.四象限,

          ∴m<0,

          ∵函數(shù)圖象與y軸交與正半軸,

          ∴n-2>0,

          ∴n>2.

          故選D.

          點評:本題考查的是一次函數(shù)的圖象,即直線y=kx+b所在的位置與k.b的符號有直接的關(guān)系.k>0時,直線必經(jīng)過一.三象限.k<0時,直線必經(jīng)過二.四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負(fù)半軸相交.

          12. (2011成都,21,4分)在平面直角坐標(biāo)系xOy中,點P(2,a)在正比例函數(shù) 的圖象上,則點Q(a,3a-5)位于第 象限.

          考點:一次函數(shù)圖象上點的坐標(biāo)特征;點的坐標(biāo)。

          專題:數(shù)形結(jié)合。

          分析:把點P坐標(biāo)代入正比例函數(shù)解析式可得a的值,進(jìn)而根據(jù)點的Q的橫縱坐標(biāo)的符號可得所在象限.

          解答:解:∵點P(2,a)在正比例函數(shù) 的圖象上,

          ∴a=1,

          ∴a=1,3a-5=-2,

          ∴點Q(a,3a-5)位于第四象限.

          故答案為:四.

          點評:考查一次函數(shù)圖象上點的坐標(biāo)特征;得到a的值是解決本題的突破點.

          13. (2011四川雅安,10,3分)已知一次函數(shù)y=kx+b,k從2,?3中隨機(jī)取一個值,b從1,?1,?2中隨機(jī)取一個值,則該一次函數(shù)的圖象經(jīng)過二、三、四象限的概率為( )

          A. B. C. D.

          考點:列表法與樹狀圖法;一次函數(shù)的性質(zhì)。

          分析:根據(jù)已知畫出樹狀圖,再利用一次函數(shù)的性質(zhì)該一次函數(shù)的圖象經(jīng)過二、三、四象限時,k<0,b<0,即可得出答案.

          解答:解:∵k從2,?3中隨機(jī)取一個值,b從1,?1,?2中隨機(jī)取一個值,

          ∴可以列出樹狀圖:

          ∴該一次函數(shù)的圖象經(jīng)過二、三、四象限時,k<0,b<0,

          ∴當(dāng)k=?3,b=?1,時符合要求,

          ∴該一次函數(shù)的圖象經(jīng)過二、三、四象限的概率為: ,

          故選:C.

          點評:此題主要考查了一次函數(shù)的性質(zhì)以及樹狀圖法求概率,熟練的應(yīng)用一次函數(shù)知識得出k,b的符號是解決問題的關(guān)鍵.

          14. (2011湖南懷化,7,3分)在平面直角坐標(biāo)系中,把直線y=x向左平移一個單位長度后,其直線解析式為( )

          A.y=x+1B.y=x?1

          C.y=xD.y=x?2

          考點:一次函數(shù)圖象與幾何變換。

          專題:探究型。

          分析:根據(jù)“左加右減”的原則進(jìn)行解答即可.

          解答:解:由“左加右減”的原則可知,在平面直角坐標(biāo)系中,把直線y=x向左平移一個單位長度后,

          其直線解析式為y=x+1.

          故選A.

          點評:本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.

          15.(2011年廣西桂林,8,3分)直線 一定經(jīng)過點( ).

          A.(1,0) B.(1,k) C.(0,k) D.(0,-1)

          考點:一次函數(shù)圖象上點的坐標(biāo)特征.

          分析:根據(jù)一次函數(shù)y=kx+b(k≠0)與y軸的交點為(0,b)進(jìn)行解答即可.

          答案:解:∵直線y=kx-1中b=-1,

          ∴此直線一定與y軸相較于(0,-1)點,

          ∴此直線一定過點(0,-1).

          故選D.

          點評:本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點,即一次函數(shù)y=kx+b(k≠0)與y軸的交點為(0,b).3. (2011四川雅安10,3分)已知一次函數(shù) , 從 中隨機(jī)取一個值, 從 中隨機(jī)取一個值,則該一次函數(shù)的圖像經(jīng)過二.三.四象限的概率為( )

          A B C D

          考點:列表法與樹狀圖法;一次函數(shù)的性質(zhì)。

          分析:根據(jù)已知畫出樹狀圖,再利用一次函數(shù)的性質(zhì)該一次函數(shù)的圖象經(jīng)過二、三、四象限時,k<0,b<0,即可得出答案.

          解答:∵k從2,?3中隨機(jī)取一個值,b從1,?1,?2中隨機(jī)取一個值,

          ∴可以列出樹狀圖

          ∴該一次函數(shù)的圖象經(jīng)過二、三、四象限時,k<0,b<0,

          ∴當(dāng)k=?3,b=?1時符合要求,

          ∴當(dāng)k=?3,b=?2時符合要求,

          ∴該一次函數(shù)的圖象經(jīng)過二、三、四象限的概率為 ,

          故選A.

          1.(2011?湖南張家界,8,3)關(guān)于x的一次函數(shù)y=kx+k2+1的圖象可能正確的是( )

          A、 B、 C、 D、

          考點:一次函數(shù)的圖象。

          分析:根據(jù)圖象與y軸的交點直接解答即可.

          解答:解:令x=0,則函數(shù)y=kx+k2+1的圖象與y軸交于點(0,k2+1),∵k2+1>0,∴圖象與y軸的交點在y軸的正半軸上.

          故選C.

          點評:本題考查一次函數(shù)的圖象,考查學(xué)生的分析能力和讀圖能力.

          16.(2011?江西,5,3)已知一次函數(shù)y=?x+b的圖象經(jīng)過第一、二、四象限,則b的值可以是( )

          A、?2B、?1 C、0D、2

          考點:一次函數(shù)圖象與系數(shù)的關(guān)系。

          分析:根據(jù)一次函數(shù)的圖象經(jīng)過第一、二、四象限判斷出b的符號,再找出符合條件的b的可能值即可.

          解答:解:∵一次函數(shù)的圖象經(jīng)過第一、二、四象限,

          k=?1,

          ∴b>0,

          ∴四個選項中只有2符合條件.

          故選D.

          點評:本題考查的是一次函數(shù)的圖象與系數(shù)的關(guān)系,即一次函數(shù)y=kx+b(k≠0)中,當(dāng)b<0時,函數(shù)圖象與y軸相較于負(fù)半軸.

          17.(2011年江西省,5,3分)已知一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限,則b的值可以是( )

          A.-2 B.-1 C.0 D.2

          考點:一次函數(shù)圖象與系數(shù)的關(guān)系.

          專題:探究型.

          分析:根據(jù)一次函數(shù)的圖象經(jīng)過第一、二、三象限判斷出b的符號,再找出符合條件的b的可能值即可.

          解答:解:∵一次函數(shù)的圖象經(jīng)過第一、二、三象限,

          ∴b>0,

          ∴四個選項中只有2符合條件.

          故選D.

          點評:本題考查的是一次函數(shù)的圖象與系數(shù)的關(guān)系,即一次函數(shù)y=kx+b(k≠0)中,當(dāng)b<0時,函數(shù)圖象與y軸相較于負(fù)半軸.

          18. (2011安徽省蕪湖市,7,4分)已知直線y=kx+b經(jīng)過點(k,3)和(1,k),則k的值為( )

          A、 B、

          C、 D、

          考點:待定系數(shù)法求一次函數(shù)解析式;解一元二次方程-直接開平方法。

          分析:運用待定系數(shù)法求一次函數(shù)解析式,代入后求出k,b的值即可.

          解答:解:∵直線y=kx+b經(jīng)過點(k,3)和(1,k),

          ∴將(k,3)和(1,k),代入解析式得:

          解得:k=± ,b=0,

          則k的值為:± .

          故選B.

          點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及直接開平方法解一元二次方程,將已知點代入得出二元一次方程組是解決問題的關(guān)鍵.

          19.2011廣州,9,3分)當(dāng)實數(shù)x的取值使得 有意義時,函數(shù)y=4x+1中y的取值范圍是( )

          A.y≥-7 B. y≥9 C. y>9 D. y≤9

          【考點】函數(shù)值;二次根式有意義的條件.

          【專題】計算題.

          【分析】易得x的取值范圍,代入所給函數(shù)可得y的取值范圍.

          【解答】解:由題意得x-2≥0,

          解得x≥2,

          ∴4x+1≥9,

          即y≥9.

          故選B.

          【點評】考查函數(shù)值的取值的求法;根據(jù)二次函數(shù)被開方數(shù)為非負(fù)數(shù)得到x的取值是解決本題的關(guān)鍵.

          20. (2010廣東佛山,8,3分)下列函數(shù)的圖象在每一個象限內(nèi),y值隨x值的增大而增大的是( )

          A. B. C. D.

          考點二次函數(shù)的性質(zhì);一次函數(shù)的性質(zhì);反比例函數(shù)的`性質(zhì)

          分析一次函數(shù)當(dāng)k大于0時,y值隨x值的增大而增大,反比例函數(shù)系數(shù)k為負(fù)時,y值隨x值的增大而增大,對于二次函數(shù)根據(jù)其對稱軸判斷其在區(qū)間上的單調(diào)性.

          解答解:A、對于一次函數(shù)y=?x+1,k<0,函數(shù)的圖象在每一個象限內(nèi),y值隨x值的增大而減小,故本選項錯誤,

          B、對于二次函數(shù)y=x2?1,當(dāng)x>0時,y值隨x值的增大而增大,當(dāng)x<0時,y值隨x值的增大而減小,故本選項錯誤,

          C、對于反比例函數(shù) ,k>0,函數(shù)的圖象在每一個象限內(nèi),y值隨x值的增大而減小,故本選項錯誤,

          D、對于反比例函數(shù) ,k<0,函數(shù)的圖象在每一個象限內(nèi),y值隨x值的增大而增大,故本選項正確,故選D.

          點評本題主要考查二次函數(shù)、一次函數(shù)和反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是熟練掌握各個函數(shù)在每個象限內(nèi)的單調(diào)性.

          21. (2011湖南常德,16,3分)設(shè)min{x,y}表示x,y兩個數(shù)中的最小值,例如min{0,2}=0,min{12,8}=8,則關(guān)于x的函數(shù)y可以表示為( )

          A. B.

          C. y =2x D. y=x+2

          考點:一次函數(shù)的性質(zhì)。

          專題:新定義。

          分析:根據(jù)題意要求及函數(shù)性質(zhì),可對每個選項加以論證得出正確選項.

          解答:解:根據(jù)已知,在沒有給出x的取值范圍時,不能確定2x和x+2的大小,所以不能直接表示為,C:y =2x,D:y=x+2.

          當(dāng)x<2時,可得:x+x<x+2,即2x<x+2,可表示為y=2x.

          當(dāng)x≥2時,可得:x+x≥x+2,即2x≥x+2,可表示為y=x+2.

          故選:A.

          點評:此題考查的是一次函數(shù)的性質(zhì),解題的關(guān)鍵是根據(jù)已知和函數(shù)性質(zhì)討論得出.

          22. (2011?玉林,6,3分)已知二次函數(shù)y=ax2的圖象開口向上,則直線y=ax?1經(jīng)過的象限是( )

          A、第一、二、三象限B、第二、三、四象限

          C、第一、二、四象限D(zhuǎn)、第一、三、四象限

          考點:二次函數(shù)圖象與系數(shù)的關(guān)系;一次函數(shù)圖象與系數(shù)的關(guān)系。

          專題:函數(shù)思想。

          分析:二次函數(shù)圖象的開口向上時,二次項系數(shù)a>0;一次函數(shù)y=kx+b(k≠0)的一次項系數(shù)k>0、b<0時,函數(shù)圖象經(jīng)過第一、三、四象限.

          解答:解:∵二次函數(shù)y=ax2的圖象開口向上,

          ∴a>0;

          又∵直線y=ax?1與y軸交與負(fù)半軸上的?1,

          ∴y=ax?1經(jīng)過的象限是第一、三、四象限.

          故選D.

          點評:本題主要考查了二次函數(shù)、一次函數(shù)圖象與系數(shù)的關(guān)系.二次函數(shù)圖象的開口方向決定了二次項系數(shù)a的符號.

          23. (2011貴州遵義,7,3分)若一次函數(shù) 的函數(shù)值 隨 的增大而減小,則 的取值范圍是

          A. B. C. D.

          【考點】一次函數(shù)的性質(zhì).

          【專題】探究型.

          【分析】根據(jù)一次函數(shù)的性質(zhì)列出關(guān)于m的不等式,求出m的取值范圍即可.

          【解答】解:∵一次函數(shù)y=(2-m)x-2的函數(shù)值y隨x的增大而減小,

          ∴2-m<0,

          ∴m>2.

          故選D.

          【點評】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,當(dāng)k<0時,y隨x的增大而減小.

          24. (2011河北,5,2分)一次函數(shù)y=6x+1的圖象不經(jīng)過( )

          A.第一象限B.第二象限 C.第三象限D(zhuǎn).第四象限

          考點:一次函數(shù)的性質(zhì)。

          專題:存在型;數(shù)形結(jié)合。

          分析:先判斷出一次函數(shù)y=6x+1中k的符號,再根據(jù)一次函數(shù)的性質(zhì)進(jìn)行解答即可.

          解答:解:∵一次函數(shù)y=6x+1中k=6>0,b=1>0,

          ∴此函數(shù)經(jīng)過一.二.三象限,

          故選D.

          點評:本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,當(dāng)k>0時,函數(shù)圖象經(jīng)過一.三象限,當(dāng)b>0時,函數(shù)圖象與y軸正半軸相交.

          25.(2011清遠(yuǎn),9,3分)一次函數(shù)y=x+2的圖象大致是( )

          考點:一次函數(shù)的圖象.

          專題:數(shù)形結(jié)合.

          分析:根據(jù)一次函數(shù)y=x+2與x軸和y軸的交點,結(jié)合一次函數(shù)圖象的性質(zhì)便可得出答案.

          解答:解:一次函數(shù)y=x+2,當(dāng)x=0時,y=2;當(dāng)y=0時,x=-2,故一次函數(shù)y=x+2圖象經(jīng)過(0,2)(-2,0);故根據(jù)排除法可知A選項正確.故選A.

          點評:本題主要考查了一次函數(shù)的性質(zhì),可用數(shù)形結(jié)合的思想進(jìn)行解答,這也是速解習(xí)題常用的方法.

          26. (2011杭州,7,3分)一個矩形被直線分成面積為x,y的兩部分,則y與x之間的函數(shù)關(guān)系只可能是( )

          A. B. C. D.

          考點:一次函數(shù)的應(yīng)用;一次函數(shù)的圖象.

          分析:因為個矩形被直線分成面積為x,y的兩部分,矩形的面積一定,y隨著x的增大而減小,但是x+y=k(矩形的面積是一定值),由此可以判定答案.

          解答:解:因為x+y=k(矩形的面積是一定值),

          整理得y=-x+k,

          由此可知y是x的一次函數(shù),,圖象經(jīng)過二、四象限,x、y都不能為0,且x>0,y>0,圖象位于第一象限,

          所以只有A符合要求.

          故選A.

          點評:此題主要考查實際問題的一次函數(shù)的圖象與性質(zhì),解答時要熟練運用.

          二、填空題

          1. (2011江蘇鎮(zhèn)江常州,16,3分)已知關(guān)于x的一次函數(shù)y=kx+4k?2(k≠0).若其圖象經(jīng)過原點,則k= ,若y隨著x的增大而減小,則k的取值范圍是 k<0 .

          考點:一次函數(shù)的性質(zhì);待定系數(shù)法求一次函數(shù)解析式.

          分析:(1)若其圖象經(jīng)過原點,則4k?2=0,即可求出k的值;(2)若y隨著x的增大而減小,則一次項系數(shù)當(dāng)k<0時,圖象經(jīng)過二.四象限.

          解答:解:(1)當(dāng)其圖象經(jīng)過原點時:

          4k?2=0,

          k= ;

         。2)當(dāng)y隨著x的增大而減小時:

          k<0.

          故答案為:k= ;k<0.

          點評:本題主要考查一次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握一次函數(shù)的性質(zhì).正確的確定一次函數(shù)的一次項系數(shù)和常數(shù)項.

          2. (2011內(nèi)蒙古呼和浩特,12,3)已知關(guān)于x的一次函數(shù)y=mx+n的圖象如圖所示,則 可化簡為______.

          考點:二次根式的性質(zhì)與化簡;一次函數(shù)圖象與系數(shù)的關(guān)系.

          專題:數(shù)形結(jié)合.

          分析:根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系,確定m、n的符號,然后由絕對值、二次根式的化簡運算法則解得即可.

          解答:解:根據(jù)圖示知,關(guān)于x的一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、四象限,∴m<0;

          又∵關(guān)于x的一次函數(shù)y=mx+n的圖象與y軸交與正半軸,∴n>0;

          ∴ =n-m-(-m)=n.故答案是:n.

          點評:本題主要考查了二次根式的性質(zhì)與化簡、一次函數(shù)圖象與系數(shù)的關(guān)系.一次函數(shù)y=kx+b(k≠0)的圖象,當(dāng)k>0時,經(jīng)過第一、二、三象限;當(dāng)k<0時,經(jīng)過第一、二、四象限.

          3. (2011陜西,15,3分)若一次函數(shù) 的圖像經(jīng)過 一、二、四象限,則m的取值范圍是 .

          考點:一次函數(shù)的性質(zhì)。

          專題:計算題;數(shù)形結(jié)合。

          分析:根據(jù)一次函數(shù)的性質(zhì)進(jìn)行分析:由圖形經(jīng)過一、二、四象限可知(2m?1)<0,3?2m>0,即可求出m的取值范圍

          解答:解:∵y=(2m?1)x+3?2m的圖象經(jīng)過 一、二、四象限

          ∴(2m?1)<0,3?2m>0

          ∴解不等式得:m< ,m<

          ∴m的取值范圍是m< .

          故答案為:m<

          點評:本題主要考查一次函數(shù)的性質(zhì)、求不等式,關(guān)鍵是確定好一次函數(shù)的一次項系數(shù)和常數(shù)項.

          4. 一次函數(shù)y=3x-2的函數(shù)值y隨自變量x值的增大而 增大(填“增大”或“減小”).

          考點:一次函數(shù)的性質(zhì).

          專題:存在型.

          分析:根據(jù)一次函數(shù)的性質(zhì)判斷出一次函數(shù)y=3x-2中k的符號,再根據(jù)一次函數(shù)的增減性進(jìn)行解答即可.

          解答:解:∵一次函數(shù)y=3x-2中,k=3>0,

          ∴函數(shù)值y隨自變量x值的增大而增大.

          故答案為:增大.

          點評:本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,k>0時,y隨x的增大而增大.

          5. (2011四川廣安,17,3分)寫出一個具體的 隨 的增大而減小的一次函數(shù)解析式________________________.

          考點:一次函數(shù)的性質(zhì)

          專題:一次函數(shù)

          分析:所寫的一次函數(shù) 只需滿足 即可.

          解答:答案不唯一,如:y=-x+1

          點評:一次函數(shù) 的增減性與 的符號有關(guān),而與 的符號無關(guān).當(dāng) 時, 隨 的增大而增大;當(dāng) 時, 隨 的增大而減。

          6.(2011天津,13,3分)已知一次函數(shù)的圖象經(jīng)過點(0,1),且滿足y隨x的增大而增大,則該一次函數(shù)的解析式可以為 y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函數(shù)) .

          考點:一次函數(shù)的性質(zhì)。

          專題:開放型。

          分析:先設(shè)出一次函數(shù)的解析式,再根據(jù)一次函數(shù)的圖象經(jīng)過點(0,1)可確定出b的值,再根據(jù)y隨x的增大而增大確定出k的符號即可.

          解答:解:設(shè)一次函數(shù)的解析式為:y=kx+b(k≠0),

          ∵一次函數(shù)的圖象經(jīng)過點(0,1),

          ∴b=1,

          ∵y隨x的增大而增大,

          ∴k>0,

          故答案為y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函數(shù)).

          點評:本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,k>0,y隨x的增大而增大,與y軸交于(0,b),當(dāng)b>0時,(0,b)在y軸的正半軸上.

          7. 表1給出了直線l1上部分點(x,y)的坐標(biāo)值,表2給出了直線l2上部分點(x,y)的坐標(biāo)值.

          那么直線l1和直線l2交點坐標(biāo)為 (2,?1) .

          考點:兩條直線相交或平行問題。

          專題:圖表型。

          分析:通過觀察直線l1上和l2上部分點的坐標(biāo)值,會發(fā)現(xiàn)當(dāng)x=2時,y的值都是?1,即兩直線都經(jīng)過點(2,?1),即交點.

          解答:解:通過觀察表可知,直線l1和直線l2交點坐標(biāo)為(2,?1).

          故答案為:(2,?1)

          點評:解答此題的關(guān)鍵是找出兩條直線都經(jīng)過的點,即交點.

          8. (2011山東省濰坊, 14,3分)一個y關(guān)于x的函數(shù)同時滿足兩個條件:①圖象過(2,1)點;②當(dāng) 時.y隨x的增大而減小,這個函數(shù)解析式為_______________ (寫出一個即可)

          【考點】二次函數(shù)的性質(zhì);一次函數(shù)的性質(zhì);反比例函數(shù)的性質(zhì).

          【專題】開放型.

          【分析】本題的函數(shù)沒有指定是什么具體的函數(shù),可以從一次函數(shù),反比例函數(shù),二次函數(shù)三方面考慮,只要符合條件①②即可.

          【解答】解:符合題意的函數(shù)解析式可以是y= ,y=-x+3,y=-x2+5等,(本題答案不唯一)

          故答案為:y= ,y=-x+3,y=-x2+5等.

          【點評】本題考查了一次函數(shù),反比例函數(shù),二次函數(shù)的性質(zhì).關(guān)鍵是從三種函數(shù)解析式上考慮,只要符合題意即可.

          9.(2011四川廣安,17,3分)寫出一個具體的 隨 的增大而減小的一次函數(shù)解析式________________________.

          考點:一次函數(shù)的性質(zhì)

          專題:一次函數(shù)

          分析:所寫的一次函數(shù) 只需滿足 即可.

          解答:答案不唯一,如:y=-x+1

          點評:一次函數(shù) 的增減性與 的符號有關(guān),而與 的符號無關(guān).當(dāng) 時, 隨 的增大而增大;當(dāng) 時, 隨 的增大而減。

          10. (2011浙江義烏,11,4分)一次函數(shù)y=2x-1的圖象經(jīng)過點(a,3),則a= 2 .

          考點:一次函數(shù)圖象上點的坐標(biāo)特征。

          專題:計算題。

          分析:把所給點的橫縱坐標(biāo)代入一次函數(shù)可得a的值.

          解答:解:∵一次函數(shù)y=2x-1的圖象經(jīng)過點(a,3),

          ∴3=2a-1,

          解得a=2.

          故答案為:2.

          點評:本題考查一次函數(shù)圖象上點的坐標(biāo)特點;用到的知識點為:點在函數(shù)解析式上,點的橫縱坐標(biāo)就適合該函數(shù)解析式.

          11. (2011?貴陽12,4分)一次函數(shù)y=2x?3的圖象不經(jīng)過第 二 象限.

          考點:一次函數(shù)的性質(zhì)。

          專題:探究型。

          分析:先根據(jù)一次函數(shù)的性質(zhì)判斷出此函數(shù)圖象所經(jīng)過的象限,再進(jìn)行解答即可.

          解答:解:∵一次函數(shù)y=2x?3中,k=2>0,

          ∴此函數(shù)圖象經(jīng)過一、三象限,

          ∵b=?3<0,

          ∴此函數(shù)圖象與y軸負(fù)半軸相交,

          ∴此一次函數(shù)的圖象經(jīng)過一、三、四象限,不經(jīng)過第二象限.

          故答案為:二.

          點評:本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,當(dāng)k>0時,函數(shù)圖象經(jīng)過一、三象限,當(dāng)b<0時,(0,b)在y軸的負(fù)半軸,直線與y軸交于負(fù)半軸.

          12. (2011湖南懷化,12,3分)一次函數(shù)y=?2x+3中,y的值隨x值增大而 增大 .(填“增大”或“減小”)

          考點:一次函數(shù)的性質(zhì)。

          專題:探究型。

          分析:先判斷出一次函數(shù)y=?2x+3中k的符號,再根據(jù)一次函數(shù)的增減性進(jìn)行解答即可.

          解答:解:∵一次函數(shù)y=?2x+3中k=2>0,

          ∴y的值隨x值增大而增大.

          故答案為:增大.

          點評:本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)y=kx+b(k≠0)中,當(dāng)k>0時,y隨x的增大而增大.

          13. 一次函數(shù)y=-3x+2的圖象不經(jīng)過第 三象限.

          【考點】一次函數(shù)的性質(zhì).

          【分析】根據(jù)一次函數(shù)的性質(zhì)容易得出結(jié)論.

          【解答】解:因為解析式y(tǒng)=-3x+2中,-3<0,2>0,圖象過一、二、四象限,故圖象不經(jīng)過第三象限.

          【點評】在直線y=kx+b中,當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減。

          14.(2011?株洲14,3分)如圖,直線l過A、B兩點,A(0,?1),B(1,0),則直線l的解析式為 y=x?1 .

          考點:待定系數(shù)法求一次函數(shù)解析式。

          專題:計算題;數(shù)形結(jié)合。

          分析:從圖象上找到直線所過的兩個點的坐標(biāo),利用待定系數(shù)法求解即可.

          解答:解:設(shè)函數(shù)解析式為y=kx+b,

          將(1,0),(0,?1)分別代入解析式得,

          解得 ,

          函數(shù)解析式為y=x?1.

          故答案為y=x?1.

          點評:此題考查了待定系數(shù)法求函數(shù)解析式,從圖象所在坐標(biāo)系找出關(guān)鍵點是列方程組的必要步驟.

          15.(2011吉林長春,13,3分)如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點A.當(dāng)y<3時,x的取值范圍是 x>2 .

          考點:一次函數(shù)的圖象.

          專題:數(shù)形結(jié)合.

          分析:根據(jù)一次函數(shù)的圖象可直接進(jìn)行解答.

          解答:解:由函數(shù)圖象可知,此函數(shù)是減函數(shù),當(dāng)y=3時x=2,故當(dāng)y<3時,x>2.故答案為:x>2.

          點評:本題考查的是一次函數(shù)的圖象,利用數(shù)形結(jié)合求出x的取值范圍是解答此題的關(guān)鍵.

          16.(2011遼寧沈陽,13,4)如果一次函數(shù)y=4x+b的圖象經(jīng)過第一、三、四象限,那么b的取值范圍是 b<0 .

          考點:一次函數(shù)圖象與系數(shù)的關(guān)系。

          專題:數(shù)形結(jié)合。

          分析:根據(jù)圖象在坐標(biāo)平面內(nèi)的位置關(guān)系確定k,b的取值范圍,從而求解.

          解答:解:根據(jù)一次函數(shù)的性質(zhì)和圖象可知:k>0時,直線必經(jīng)過一、三象限.k<0時,直線必經(jīng)過二、四象限.

          b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負(fù)半軸相交.

          根據(jù)題意一次函數(shù)y=4x+b的圖象經(jīng)過第一、三、四象限可知:b<0.

          故答案為:b<0.

          點評:本題主要考查一次函數(shù)圖象在坐標(biāo)平面內(nèi)的位置與k、b的關(guān)系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關(guān)系.k>0時,直線必經(jīng)過一、三象限.

          k<0時,直線必經(jīng)過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負(fù)半軸相交.

          17.(2011遼寧沈陽,13,4分如果一次函數(shù)Y=4X+B的圖象經(jīng)過第一、三、四象限,那么B的取值范圍是 .

          考點:一次函數(shù)圖象與系數(shù)的關(guān)系。

          專題:數(shù)形結(jié)合。

          分析:根據(jù)圖象在坐標(biāo)平面內(nèi)的位置關(guān)系確定K,B的取值范圍,從而求解.

          解答:解:根據(jù)一次函數(shù)的性質(zhì)和圖象可知:k>0時,直線必經(jīng)過一、三象限.k<0時,直線必經(jīng)過二、四象限.

          b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負(fù)半軸相交.

          根據(jù)題意一次函數(shù)y=4x+b的圖象經(jīng)過第一、三、四象限可知:b<0.

          故答案為:b<0.

          點評:本題主要考查一次函數(shù)圖象在坐標(biāo)平面內(nèi)的位置k、b的關(guān)系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關(guān)系.k>0時,直線必經(jīng)過一、三象限.k<0時,直線必經(jīng)過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負(fù)半軸相交.

          18.(2011巴彥淖爾,11,3分)已知點A(?5,a),B(4,b)在直線y=?3x+2上,則a b.(填“>”“<”或“=”號 )

          考點:一次函數(shù)圖象上點的坐標(biāo)特征。

          專題:探究型。

          分析:先根據(jù)一次函數(shù)的解析式判斷出函數(shù)的增減性,再比較出?5與4的大小即可解答.

          解答:解:∵直線y=?3x+2中,k=?3<0,

          ∴此函數(shù)是減函數(shù),

          ∵?5<4,

          ∴a>b.

          故答案為:>.

          點評 :本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點,根據(jù)題意判斷出一次函數(shù)的增減性是解答此題的關(guān)鍵.

          三、解答題

          1. (2011湖北咸寧,23,10分)在平面直角坐標(biāo)系中,點P從原點O出發(fā),每次向上平移2個單位長度或向右平移1個單位長度.

         。1)實驗操作:

          在平面直角坐標(biāo)系中描出點P從點O出發(fā),平移1次后,2次后,3次后可能到達(dá)的點,并把相應(yīng)點的坐標(biāo)填寫在表格中:

          P從點O出發(fā)平移次數(shù)可能到達(dá)的點的坐標(biāo)

          1次(0,2),(1,0)

          2次

          3次

         。2)觀察發(fā)現(xiàn):

          任一次平移,點P可能到達(dá)的點在我們學(xué)過的一種函數(shù)的圖象上,如:平移1次后在函數(shù) y=?2x+2 的圖象上;平移2次后在函數(shù) y=?2x+4 的圖象上…由此我們知道,平移n次后在函數(shù) y=?2x+2n 的圖象上.(請?zhí)顚懴鄳?yīng)的解析式)

         。3)探索運用:

          點P從點O出發(fā)經(jīng)過n次平移后,到達(dá)直線y=x上的點Q,且平移的路徑長不小于50,不超過56,求點Q的坐標(biāo).

          考點:一次函數(shù)圖象與幾何變換;坐標(biāo)與圖形變化-平移。

          專題:探究型。

          分析:(1)根據(jù)點的平移特點描出每次平移后P點的位置即可;

         。2)先根據(jù)P點平移一次后的點的坐標(biāo)求出過此點的函數(shù)解析式,再根據(jù)函數(shù)圖象平移的性質(zhì)解答即可;

          (3)設(shè)點Q的坐標(biāo)為(x,y),求出Q點的坐標(biāo),得出n的取值范圍,再根據(jù)點Q的坐標(biāo)為正整數(shù)即可進(jìn)行解答.

          解答:解:(1)如圖所示:

          P從點O出發(fā)平移次數(shù)可能到達(dá)的點

          的坐標(biāo)

          1次

          2次(0,4),(1,2),(2,0)

          3次(0,6),(1,4),(2,2),(3,0)

         。2)設(shè)過(0,2),(1,0)點的函數(shù)解析式為:y=kx+b(k≠0),

          則 ,

          解得 .

          故第一次平移后的函數(shù)解析式為:y=?2x+2;

          ∴答案依次為:y=?2x+2;y=?2x+4;y=?2x+2n.

         。3)設(shè)點Q的坐標(biāo)為(x,y),依題意, .

          解這個方程組,得到點Q的坐標(biāo)為 .

          ∵平移的路徑長為x+y,

          ∴50≤ ≤56.

          ∴37.5≤n≤42.(9分)

          ∵點Q的坐標(biāo)為正整數(shù),

          ∴點Q的坐標(biāo)為(26,26),(28,28).

          點評:本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.

          2. (2011?郴州)求與直線y=x平行,并且經(jīng)過點P(1,2)的一次函數(shù)的解析式.

          考點:兩條直線相交或平行問題。

          專題:計算題。

          分析:平行于直線y=x,則k=1,再根據(jù)待定系數(shù)法求解即可.

          解答:解:根據(jù)題意,設(shè)一次函數(shù)解析式為y=kx+b,

          ∵與直線y=x平行,∴k=1,

          由點P(1,2)得:1+b=2,

          解得:b=1,

          ∴函數(shù)解析式為:y=x+1,

          所以一次函數(shù)的解析式為:y=x+1.

          點評:本題主要考查兩條直線相交或平行問題,難度不大,掌握用待定系數(shù)法求函數(shù)解析式,根據(jù)平行得到k=1是解本題的關(guān)鍵.

          3. 在平面直角坐標(biāo)系中,已知 三個頂點的坐標(biāo)分別為

         。1)畫出 ,并求出 所在直線的解析式.

          (2)畫出 繞點 順時針旋轉(zhuǎn) 后得到的 ,并求出 在上述旋轉(zhuǎn)過程中掃過的面積.

          考點:作圖-旋轉(zhuǎn)變換;待定系數(shù)法求一次函數(shù)解析式;扇形面積的計算.

          分析:(1)利用待定系數(shù)法將A(-1,2),C(-2,9)代入解析式求出一次函數(shù)解析式即可;

         。2)根據(jù)AC的長度,求出S=S扇形+S△ABC,就即可得出答案.

          解答:(1)如圖所示, 即為所求.

          設(shè) 所在直線的解析式為

          ∴ 解得 , ∴ .

          (2)如圖所示, 即為所求.

          由圖可知, , = .

          點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及扇形面積求法,得出扇形面積等于

          S=S扇形+S△ABC是解決問題的關(guān)鍵.

          4. 2011福建福州,19,12分)如圖,在平面直角坐標(biāo)系中,A.B均在邊長為1的正方形網(wǎng)格格點上.

         。1)求線段AB所在直線的函數(shù)解析式,并寫出當(dāng)0≤y≤2時,自變量x的取值范圍;

         。2)將線段AB繞點B逆時針旋轉(zhuǎn)90°,得到線段BC,請在答題卡指定位置畫出線段BC.若直線BC的函數(shù)解析式為y=kx+b,則y隨x的增大而 (填“增大”或“減小”).

          考點:待定系數(shù)法求一次函數(shù)解析式;一次函數(shù)圖象與幾何變換.

          分析:(1)根據(jù)一次函數(shù)圖象知A(1,0),B(0,2),然后將其代入一次函數(shù)的解析式,利用待定系數(shù)法求該函數(shù)的解析式;

          (2)根據(jù)旋轉(zhuǎn)的性質(zhì),在答題卡中畫出線段BC,然后根據(jù)直線BC的單調(diào)性填空.

          解答:(1)設(shè)直線AB的函數(shù) 解析式為y=kx+b,依題意,得A(1,0),B(0,2)∴

          解得 ,∴直線AB的函數(shù)解析式為y=?2x+2,當(dāng)0≤y≤2時,自變量x的取值范圍是0≤x≤1.

         。2)線段BC即為所求.增大

          點評:本題綜合考查了待定系數(shù)法求一次函數(shù)的解析式.一次函數(shù)圖象與幾何變換.解答此題時,采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想,使問題變得形象.直觀,降低了題的難度.

          5. (2011浙江紹興,21,10分)在平面直角坐標(biāo)系中.過一點分?作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如.圖中過點P分?作x軸,y軸的垂線.與坐標(biāo)軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.

          (1)判斷點M(l,2),N(4,4)是否為和諧點,并說明理由;

         。2)若和諧點P(a,3)在直線y=?x+b(b為常數(shù))上,求a,b 的值.

          考點:一次函數(shù)綜合題;一次函數(shù)圖象上點的坐標(biāo)特征;三角形的面積。

          專題:計算題。

          分析:(1)計算1×2≠2×(1+2),4×4=2×(4+4)即可;

         。2)當(dāng)a>0時,根據(jù)(a+3)×2=3a,求出a,進(jìn)一步求出b;當(dāng)a<0時,根據(jù)(?a+3)×2=?3a求出a進(jìn)一步求出b.

          解答:(1)解:∵1×2≠2×(1+2),4×4=2×(4+4),

          ∴點M不是和諧點,點N是和諧點.

          (2)解:由題意得:當(dāng)a>0時,(a+3)×2=3a,

          ∴a=6,

          點P(a,3)在直線 y=?x+b上,代入得:b=9

          當(dāng)a<0時,(?a+3)×2=?3a,

          ∴a=?6,

          點P(a,3)在直線y=?x+b上,代入得:b=?3,

          ∴a=6,b=9或a=?6,b=?3.

          點評:本題主要考查對一次函數(shù)圖象上點的坐標(biāo)特征,三角形的面積等知識點的理解和掌握,理解題意并根據(jù)題意進(jìn)行計算是解此題的關(guān)鍵.

          6. (2011湖州,19,6分)已知:一次函數(shù)y=kx+b的圖象經(jīng)過M(0,2),(1,3)兩點.

         。1)求k,b的值;

         。2)若一次函數(shù)y=kx+b的圖象與x軸交點為A(a,0),求a的值.

          考點:待定系數(shù)法求一次函數(shù)解析式;一次函數(shù)圖象上點的坐標(biāo)特征.

          分析:(1)根據(jù)待定系數(shù)法求出一次函數(shù)解析式即可;

         。2)根據(jù)圖象與函數(shù)坐標(biāo)軸交點坐標(biāo)求法得出a的值.

          解答:解:(1)由題意,得 解得 ∴k、b的值分別是1和2;

          (2)由(1)得y=x+2,∴當(dāng)y=0時,x=-2,即a=-2.

          點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)與坐標(biāo)軸交點求法,此題比較典型應(yīng)熟練掌握.

          7. (2011?銅仁地區(qū)19,10分)(2)已知一次函數(shù)y=kx+b的圖象經(jīng)過兩點A(1,1),B(2,?1),求這個函數(shù)的解析式.

          分析:(2)將A(1,1),B(2,?1)代入函數(shù)解析式,解方程組即可求得k與b的值,則可得這個函數(shù)的解析式.

         。2)根據(jù)題意得: ,

          解得: ,

          ∴函數(shù)的解析式是:y=?2x+3

          綜合驗收評估測試題

          (時間:120分鐘 滿分:120分)

          一、選擇題(每小題3分,共30分)

          1.如圖14-111所示,飲水桶中的水由圖①的位置下降到圖②的位置的過程中,如果水減少的體積是y,水位下降的高度是x,那么能夠表示y與x之間函數(shù)關(guān)系的圖象是(如圖14-112所示) ( )

          2.一次函數(shù)y=kx+b的圖象經(jīng)過第一、二、三象限,則下列說法正確的是 ( )

          A.k>0,b>0 B.k>0,b<0

          C.k<0,b>0 D.k<0,b<0

          3.小明從家走了10分鐘后到達(dá)了一個離家900米的報亭,看了10分鐘的報紙,然后用了15分鐘沿原路回到家,下列圖象中能表示小明離家距離y(米)與時間x(分)關(guān)系的是(如圖14-113所示) ( )

          4.直線y=kx+b與兩坐標(biāo)軸的交點如圖14-114所示,當(dāng)y<0時,x的取值范圍是 ( )

          A.x>2 B.x<2

          C.x>-1 D.x<-1

          5.某公司準(zhǔn)備與汽車租賃公司簽訂租車合同,以每月用車路程x km計算,甲汽車租賃公司每月收取的租賃費為y1元,乙汽車租賃公司每月收取的租賃費為y2元,若y1,y2與x之間的函數(shù)關(guān)系如圖14-115所示,其中x=0對應(yīng)的函數(shù)值為月固定租賃費,則下列判斷錯誤的是 ( )

          A.當(dāng)月用車路程為2000 km時,兩家汽車租賃公司租賃費用相同

          B.當(dāng)月用車路程為2300 km 時,租賃乙汽車租賃公司的車比較合算

          C.除去月固定租賃費,甲租賃公司每公里收取的費用比乙租賃公司多

          D.甲租賃公司平均每公里收取的費用比乙租賃公司少

          6.函數(shù) 和 的圖象如圖14-116所示,當(dāng)y1>y2時,x的取值范圍是 ( )

          A.x<-1 B.-1<x<2

          C.x<-1或x>2 D.x>2

          7.已知四條直線y=kx-3,y=-1,y=3和x=1所圍成的四邊形的面積是12.則k的值為 ( )

          A.1或-2 B.2或-1 C.3 D.4

          8.如圖14-117所示反映的過程是:小強(qiáng)從家去菜地澆水,又去玉米地除草,然后回家.如果菜地到玉米地的距離為a千米,小強(qiáng)在玉米地除草比在菜地澆水多用的時間為b分鐘,則a,b的值分別為 ( )

          A.1.1,8 B.0.9,3 C.1.1,12 D.0.9,8

          9.函數(shù)y=-x與函數(shù)y=x+1的圖象的交點坐標(biāo)為 ( )

          A. B.

          C. D.

          10.函數(shù)y=ax+b①和y=bx+a②(ab≠0)在同一平面直角坐標(biāo)系中的圖象(如圖14-118所示)可能是 ( )

          二、填空題(每小題3分,共30分)

          11.函數(shù) 的自變量x的取值范圍是 .

          12.寫出一個y隨x增大而增大的一次函數(shù)的解析式 .

          13.一根彈簧原長為12 cm,它所掛物體的質(zhì)量不能超過15 kg,并且每掛1 kg物體就伸長 cm.則掛重物后的彈簧長度y(cm)與所掛物體的質(zhì)量x(kg)之間的函數(shù)關(guān)系式是 ,自變量x的取值范圍是 .

          14.若一次函數(shù)的圖象經(jīng)過第一、三、四象限,則它的解析式可以為 .

          15.已知直線y=kx+b過點A(x1,y1)和B(x2,y2),若k<0,且x1<x2,則y1 y2.(填“>”或“<”)

          16.(天津中考)已知一次函數(shù)的圖象過點(3,5)與(-4,-9),則該函數(shù)的圖象與y軸交點的坐標(biāo)為 .

          17.在平面直角坐標(biāo)系中,將直線y=-2x+1向下平移4個單位長度后,所得直線的解析式為 .

          18.如圖14-119所示的是小明從學(xué)校到家行進(jìn)的路程s(米)與時間t(分)的函數(shù)圖象.觀察圖象,從中得到如下信息:①學(xué)校離小明家1000米;②小明用了20分鐘到家;③小明前10分鐘走了路程的一半;④小明后10分鐘比前10分鐘走得快.其中正確的有 (填序號).

          19.如圖14-120所示,直線y=kx+b經(jīng)過A(2,1),B(-1,-2)兩點,則不等式組 >kx+b>-2的解集為 .

          20.用棋子按如圖14-121所示的方式擺圖形,依照此規(guī)律,第n個圖形比第(n-1)個圖形多 枚棋子.

          三、解答題(第21~23小題各8分,第24~26小題各12分,共60分)

          21.我們知道,海拔高度每上升1千米,溫度下降6℃,某時刻,益陽地面溫度為20℃.設(shè)高出地面x千米處的溫度為y℃.

          (1)寫出y與x之間的函數(shù)關(guān)系式;

          (2)已知益陽碧云峰高出地面約500米,求這時山頂?shù)臏囟却蠹s是多少攝氏度;

          (3)此刻,有一架飛機(jī)飛過益陽上空,若機(jī)艙內(nèi)儀表顯示飛機(jī)外面的溫度為-34℃,求飛機(jī)離地面的高度為多少千米.

          22.如圖14-122所示,在平面直角坐標(biāo)系中,一條直線l與x軸相交于點A(2,0).與正比例函數(shù)y=kx(k≠0,且k為常數(shù))的圖象相交于點P(1,1).

          (1)求k的值;

          (2)求△AOP的面積.

          23.已知一次函數(shù)y=kx-4,當(dāng)x=2時,y=-3.

          (1)求一次函數(shù)的解析式;

          (2)將該函數(shù)的圖象向上平移6個單位,求平移后的圖象與x軸交點的坐標(biāo).

          24.一列長為120米的火車勻速行駛,經(jīng)過一條長為160米的隧道,從車頭駛?cè)胨淼廊肟诘杰囄搽x開隧道出口共用14秒.設(shè)車頭駛?cè)胨淼廊肟趚秒時,火車在隧道內(nèi)的長度為y米.

          (1)求火車行駛的速度;

          (2)當(dāng)0≤x≤14時,求y與x的函數(shù)關(guān)系式;

          (3)在如圖14-123所示的平面直角坐標(biāo)系中畫出y與x的函數(shù)圖象.

          25.小聰和小明沿同一條路同時從學(xué)校出發(fā)到寧波天一閣查閱資料,學(xué)校與天一閣的路程是4千米.小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到達(dá)天一閣.圖14-124中折線O-A-B-C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題.

          (1)小聰在天一閣查閱資料的時間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;

          (2)請你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過的時間t(分鐘)之間的函數(shù)關(guān)系式;

          (3)當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是多少千米?

          26.某加油站五月份營銷一種油品的銷售利潤y(萬元)與銷售量x(萬升)之間的函數(shù)關(guān)系的圖象如圖14-125所示,該加油站截止到13日調(diào)價時的銷售利潤為4萬元,截止到15日進(jìn)油時的銷售利潤為5.5萬元.(銷售利潤=(售價-成本價)×銷售量)

          請你根據(jù)圖象(如圖14-125所示)及加油站五月份該油品的所有銷售記錄(如圖14-126所示)提供的信息,解答下列問題.

          (1)求銷售量x為多少時,銷售利潤為4萬元;

          (2)分別求線段AB與BC所對應(yīng)的函數(shù)關(guān)系式;

          (3)我們把銷售每升油所獲得的利潤稱為利潤率,那么,在OA,AB,BC三段所表示的銷售信息中,哪一段的利潤率最大?(直接寫出答案)

          參考答案

          1.C[提示:由圖①到圖②的過程中,水減少的體積是均勻變化的,隨著水位下降高度的增加,水減少的體積也逐漸增加.]

          2.A

          3.D[提示:圖象上的數(shù)要和題目中的條件對應(yīng).]

          4.B[提示:y<0時,圖象處于x軸的下方,對應(yīng)的x的值小于2.]

          5.D[提示:由圖象知,選項A,B都正確,由于直線y1比y2上升得快,所以除去月固定租賃費,甲公司每公里收取的費用比乙公司多.]

          6.C[提示:y1>y2時,y1的圖象在y2圖象的上方,即x<-1或x>2.]

          7.A[提示:當(dāng)直線y=kx-3與y=-1和y=3的交點在直線x=1的左側(cè)時,交點坐標(biāo)分別為 , ,則四邊形面積為 解得k=-2.當(dāng)直線y=kx-3與y=-1和y=3的交點在x=1的右側(cè)時.四邊形面積為 ,解得k=1.故選A.]

          8.D[提示:由圖象可知,菜地和玉米地之間的距離為2-1.1=0.9(千米),a=0.9;小明在菜地澆水的時間為10分鐘,在玉米地除草的時間為18分鐘,18-10=8(分),b=8.故選D.]

          9.A[提示:解方程組 ]

          10.D[提示:因為ab≠0,所以a≠0且b≠0,故C不正確;從A,B,D的圖象分析a,b異號,假設(shè)a>0,b<0,則直線y=ax+b經(jīng)過第一、三、四象限,直線y=bx+a經(jīng)過第一、二、四象限.]

          11.x≥3[提示:根據(jù)二次根式和分式有意義的條件知 所以x≥3.]

          12.y=x[提示:答案不唯一,只要一次函數(shù)關(guān)系式中的k>0即可.]

          13. 0≤x≤15

          14.y=x-2[提示:答案不唯一,只要一次函數(shù)關(guān)系式中的k>0,b<0即可.]

          15.>[提示:∵k<0,∴y隨x的增大而減小,又∵x1<x2,∴y1>y2.]

          16.(0,-1)[提示:由待定系數(shù)法可求出過(3,5)和(-4,-9)的直線的解析式為y=2x-1,直線與y軸的交點坐標(biāo)為(0,-1).]

          17.y=-2x-3[提示:直線向下平移,k不變,b減小.]

          18.①②④

          19.-1<x<2[提示:用待定系數(shù)法可求出k=1,b=-1,不等式組為 >x-1>-2,解不等式組可得-1<x<2.]

          20.3n-2[提示:第2個圖形比第1個圖形多(2×3-2)枚,第3個圖形比第2個圖形多(3×3-2)枚,第4個圖形比第3個圖形多(4×3-2)枚,…,第n個圖形比第n-1個圖形多(3n-2)枚.]

          21.解:(1)y=20-6x(x≥0). (2)500米=0.5千米,y=20-6×0.5=17(℃).(3)-34=20-6x,x=9.

          22.解:(1)∵點P(1,1)在正比例函數(shù)y=kx的圖象上,∴1=k×1,∴k=1. (2)S△POA= OA? = ×2×1=1.

          23.解:(1)由已知得-3=2k-4,解得k= ,∴一次函數(shù)的解析式為y= x-4. (2)將直線y= x-4向上平移6個單位后得到的直線是y= x+2.∵當(dāng)y=0時,x=-4,∴平移后的圖象與x軸交點的坐標(biāo)是(-4,0)

          24.解:(1)(120+160)÷14=20(米/秒). (2)當(dāng)0≤x≤6時,y=20x;當(dāng)6<x≤8時,y=120;當(dāng)8<x≤14時,y=120+160-20x=-20x+280.∴ (3)如圖14-127所示.

          25.解:(1)15 (2)由圖象可知,s是t的正比例函數(shù),設(shè)所求函數(shù)的解析式為s=kt(k≠0),將(45,4)代入得4=45k,解得k= .∴s與t的函數(shù)關(guān)系式為 (0≤t≤45). (3)由圖象可知,在30≤t≤45的時段內(nèi),小聰離開學(xué)校的路程s是t的一次函數(shù),設(shè)函數(shù)解析式為s=mt+n(m≠0),將(30,4),(45,0)代入得 解得 ∴ (30≤t≤45).令 ,解得 .當(dāng) 時, .即當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是3千米.

          26.解:(1)根據(jù)題意,當(dāng)銷售利潤為4萬元時,銷售量為4÷(5-4)=4(萬升).答:銷售量為4萬升時銷售利潤為4萬元.

          (2)點A的坐標(biāo)為(4,4),從13日到15日的利潤為5.5-4=1.5(萬元),所以銷售量為1.5÷(5.5-4)=1(萬升),所以點B的坐標(biāo)為(5,5.5).設(shè)線段AB所對應(yīng)的函數(shù)關(guān)系式為y=kx+b,則 解得 所以線段AB所對應(yīng)的函數(shù)關(guān)系式為y=1.5x-2(4≤x≤5).從15日到31日共銷售5萬升,利潤為1×1.5+4×(5.5-4.5)=5.5(萬元).所以本月銷售該油品的利潤為5.5+5.5=11(萬元),所以點C的坐標(biāo)為(10,11).設(shè)線段BC所對應(yīng)的函數(shù)關(guān)系式為y=mx+n,則 解得 所以線段BC所對應(yīng)的函數(shù)關(guān)系式為y=1.1x(5≤x≤10).

          直角三角形的再發(fā)現(xiàn)

          第二十二講 直角三角形的再發(fā)現(xiàn)

          直角三角形是一類特殊三角形,有著豐富的性質(zhì):兩銳角互余、斜邊的平方是兩直角邊的平方和、斜邊中線等于斜邊一半、30°所對的直角邊等于斜邊一半等,在學(xué)習(xí)了相似三角形的知識后,我們利用相似三角形法,能得到應(yīng)用極為廣泛的結(jié)論.

          如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,則有:

          1.同一三角形中三邊的平方關(guān)系:AB2=AC2+BC2,

          AC2=AD2+CD2,BC2=CD2+BD2.

          2.角的相等關(guān)系:∠A=∠DCD,∠B=∠ACD.

          3.線段的等積式:由面積得 AC×BC=AB×CD;

          由 △ACD∽△CBD∽△ABC,得CD2=AD×BD,AC2=AD×AB,BC2=BD×AB.

          以直角三角形為背景的幾何問題,常以下列圖形為載體,綜合了全等三角形、相似三角形、等腰三角形,特殊四邊形等豐富的知識.

          注 直角三角形被斜邊上的高分成的3個直角三角形相似,由此導(dǎo)出的等積式的特點是:一線段是兩個三角形的公共邊,另兩條線段在同一直線上,這些等積式廣泛應(yīng)用于與直角三角形問題的計算與證明中.

          例題求解

          【例1】 等腰三角形ABC的底邊長為8cm,腰長5cm,一動點P在底邊上從B向C以0.25cm/秒的速度移動,當(dāng)點P運動到PA與腰垂直的位置時,點P運動的時間為 .

          (江蘇省常州市中考題)

          思路點撥 為求BP需作出底邊上的高,就得到與直角三角形相關(guān)的基本圖形,注意動 態(tài)過程.

          【例2】 如圖,在矩形ABCD中,AE⊥BD于E,S矩形ABCD=40cm2,S△ABE:S△DBA=1:5,則AE的長為( )

          A.4cm B.5cm C.6cm D.7cm (青島市中考題)

          思路點撥 從題設(shè)條件及基本圖形入手,先建立AB、AD的等式.

          【例3】 如圖,在Rt△ABC中,∠BAC=90°,AB=AC,DB為BC的中點,E為AC上一點,點G在BE上,連結(jié)DG并延長交AE于F,若∠FGE=45°.

          (1)求證:BD×BC=BG×BE;

          (2)求證:AG⊥BE;

          (3)若E為AC的中點,求EF:FD的值.(鹽城市中考題)

          思路點撥 發(fā)現(xiàn)圖形中特殊三角形、基本圖形、線段之間的關(guān)系是解本例的基礎(chǔ).(1)證明△GBD∽△CBE;(2)證明△ABG∽EBA;(3)利用相似三角形,把求 的值轉(zhuǎn)化為求其他線段的比值.

          【例4】 如圖,H、Q分別是正方形ABCD的邊AB、BC上的點,且BH=BQ,過B作HC的垂線,垂足為P.求證:DP⊥PQ. (“祖沖之杯”邀請賽試題)

          思路點撥 因∠BPQ+∠QPC=90°,要證DP⊥PQ,即證∠QPC+∠DPC=90°,只需證∠BPQ=∠DPC,只要證明△BPQ∽△CPD即可.

          注 題設(shè)條件有中點,圖形中有與直角三角形相關(guān)的基本圖形,給我們以豐富的聯(lián)想,單獨應(yīng)用或組合應(yīng)用可推出許多結(jié)論.因此,讀者應(yīng)不拘泥于給出的思路點撥,多角度探索與思考,尋找更多更好的解 法,以培養(yǎng)我們發(fā)散思的能力.

          【例5】 已知△ABC中,BC>AC,CH是AB邊上的高,且滿足 ,試探討∠A與∠B的關(guān)系,井加以證明. (武漢市選拔賽試題)

          思路點撥 由題設(shè)條件易想到直角三角形中的基本圖形、基本結(jié)論,可猜想出∠A與∠B的關(guān)系,解題的關(guān)鍵是綜合運用勾股定理、比例線段的性質(zhì), 推導(dǎo)判定兩個三角形相似的條件.

          注 構(gòu)造逆命題是提出問題的一個常用方法,本例是在直角三角形被斜邊上的高分成的相似三角形得出結(jié)論基礎(chǔ)上提出的一個逆命題,讀者你能提出新的問題嗎?并加以證明.

          學(xué)力訓(xùn)練

          1.如圖,已知正方形ABCD的邊長是1,P是CD邊的中點 ,點Q在線段BC上,

          當(dāng)BQ= 時,三角形ADP與三角形QCP相似.

          (云南省中考題)

          2.如圖,Rt△ABC中,CD為斜邊AB上的高,DF⊥CB于E,若BE=6,CE=4,則

          AD= .

          3.如圖,平行四邊形ABCD中,AB=2,BC=2 ,AC=4,過AC的中點O作EF⊥AC交AD于E,交BC于F,則EF= . (重慶市競賽題)

          4.P是Rt△ABC的斜邊BC上異于B、C的一點,過點P作直線截△ABC,使截得的三角形與△ABC相似,滿足這樣條件的直線共有( )

          A.1條 B. 2條 C.3條 D.4條

          (2001年安徽省中考題)

          5.在△ABC中,AD是高,且AD2=BD×CD,那么∠BAC的度數(shù)是( )

          A.小于90° B.等于90° C.大于90° D.不確定

          6. 如 圖,矩形ABCD中,AB= ,BC=3,AE⊥BD于E,則EC=( )

          A. B. C. D.

          7.如圖,在矩形ABCD中,E是CD的中點,BE⊥ AC交AC于F,過F作FG∥AB交AE于G,求證:AG2=AF×FC.

          8.如圖,在平行四邊形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延長線相交于G.

          求證;(1)AB=BH;(2)AB2=GA×HE. (青島市中考題)

          9.如圖,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于點D,過點C作CE⊥AD于E,CE的延長線交AB于點F,過點E作EG∥BC交AB于點G,AE×AD=16,AB=4

          (1)求證:CE=EF;

          (2)求EG的長.

          (河南省中考題)

          10.如圖,直角梯形ABCD中,∠A=90°,AC⊥BD,已知 ,則 = .

          (江蘇省競賽題)

          11.如圖,在Rt△ABC中,兩條直角邊AB、AC的長分別為l厘米、2厘米,那么直角的角平分線的長度等于 厘米.

          12.如圖,點D、E分別在△ABC的邊AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的長為 .

          ( “我愛 數(shù)學(xué)”初中數(shù)學(xué)夏令營試題)

          13.如圖,△ABC為等腰直角三角形,∠C=90°,若AD= AC,CE= BC,則∠1與∠2的大小關(guān)系是( )

          A.∠1>∠2 B.∠1<∠2 C.∠1=∠2 D.無法確定

          (天津市競賽題)

          14.如圖,△ABC中,CD⊥AB交AB于點D,有下列條件:

          ①∠A=∠BCD;②∠A+∠BCD=∠ADC;③ ;④BC2=BD×BA.

          其中,一定能判斷△ABC是直角三角形的共有( )

          A.0個 B.1個 C.2個 D.3個 (2003年河南省競賽題)

          15.如圖,在直角梯形ABCD中, AB=7,AD=2,DC=3,如果邊AD上的點P使得以P,

          A、D為頂點的三角形和以P、B、C為頂點的三角形相似,那么這樣的點P有( )

          A.1個 B.2個 C.3個 D.4個

          16.如圖,在Rt△ABC中,∠ACB=90°,CD是角平分線,DE∥BC交AC于點E,DF∥ AC交BC于點F.

          求證:(1)四邊形CEDF是正方形;(2)CD2=AE×BF.

          (山東省競賽題)

          17.如圖,在Rt△ABC中,∠BCA=90°,CD⊥AB于D,已知Rt△ABC的三邊長都是整數(shù),且BD=113,求Rt△BCD與Rt△ACD的周長之比.

          (全國初中數(shù)學(xué)聯(lián)賽題 )

          18.如圖,在Rt△ABC中,∠C=90°,∠A的平分線AD交BC邊于D,求證: .

          (昆明市競賽題)

          19.如圖,已知邊長為a的正方形ABCD,在AB、AD上分別取點P、S,連結(jié)PS,將Rt△SAP繞正方形中心O旋轉(zhuǎn)180°得Rt△QCR,從而得四邊形PQRS.試判斷四邊形PQRS能否變化成矩形?若能,設(shè)PA= x,SA=y ,請說明x 、y具有什么關(guān)系時,四邊形PQRS是矩形;若不能,請說明理由.

          (山東省濟(jì)南市中考題)

          20.如圖,在△ABC中,∠ACB=90°

          (1)當(dāng)點D在斜邊AB內(nèi)時,求證: ;

          (2)當(dāng)點D與點A重合時,(1)中的等式是否存在?請說明理由;

          (3)當(dāng)點D在BA的延長線上時,(1)中的等式是否存在?請說明理由.

          立方根

          學(xué)習(xí)目標(biāo):

          1.理解立方根的概念,會用根號表示一個數(shù)的立方根;

          2.掌握用立方運算求一些數(shù)的立方根;

          重點、難點:理解立方和開立方、平方根與立方根的異同點.

          學(xué)習(xí)過程

          一.【預(yù)學(xué)提綱】初步感知、激發(fā)興趣[

          1.棱長為1時,正方體的體積是 ;設(shè)棱長為x的正方體體積為2.依題意列方程得: .

          2. 直接說出一些數(shù)的立方根.

          [:學(xué)*科*網(wǎng)]

          二.【預(yù)學(xué)練習(xí)】初步運用、生成問題

          1.下列判斷正確的是( )

          A.64的立方根是 4 B.(-1) 的立方根是1

          C. 的立方根是2, D.如果 =a,則a=0

          2. 求下列各數(shù)的立方根:

         。1)64 (2)- (3)9

          解:(1)因為( )3=64,所以64的立方根是 ,即 = .

          (2)因為( )3=- ,所以- 的立方根是 ,即 = .

         。3)9的立方根是 .

          3.填空: = ; = .

          三.【新知探究】師生互動、揭示通法

          問題1.求下列各數(shù)的立方根

         。1)-125 (2) -0.008 (3)

          四. 【解疑助學(xué)】生生互動、突出重點

          問題2.求下列各式中的x:

          (1)(2x-1)3=125 (2)x3-3=1 (3)(x+1)3=5

          問題3. 計算下列各式的值

          五.【變式拓展】能力提升、突破難點

          1. 已知x2+y2+4x-6y+13=0

         。1)請你用配方的數(shù)學(xué)方法求出x、y的值;

          (2)計算 的值.

          2.已知- ,求a的值.

          六.【回扣目標(biāo)】學(xué)有所成、悟出方法

          1. 立方和開立方的區(qū)別:

          立方運算中,已知底數(shù)和指數(shù),求冪;而開立方運算中,已知 和 ,求 .

          2. 立方和開立方的聯(lián)系:

          立方與開立方是一對 運算.

          3.立方根與平方根的意義的區(qū)別,填下表:

          被開方數(shù)類別正數(shù)0負(fù)數(shù)

          平方根有兩個平方根

          立方根

        【蘇科版八年級下冊9.2反比例函數(shù)的圖象與性質(zhì)2教案設(shè)計】相關(guān)文章:

        反比例函數(shù)的圖象及性質(zhì)的說課稿02-03

        反比例函數(shù)的圖象與性質(zhì)說課稿范文04-11

        《反比例函數(shù)的圖象及性質(zhì)》說課稿范文09-29

        反比例函數(shù)的圖象與性質(zhì)教學(xué)反思08-10

        反比例函數(shù)的圖象與性質(zhì)教學(xué)設(shè)計范文06-30

        反比例函數(shù)的圖象與性質(zhì)教案教學(xué)設(shè)計05-17

        《反比例函數(shù)的圖象和性質(zhì)》教學(xué)反思02-12

        反比例函數(shù)的圖象與性質(zhì)的教學(xué)反思的內(nèi)容12-08

        反比例函數(shù)的圖象與性質(zhì)數(shù)學(xué)說課稿11-03

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>