1. <rp id="zsypk"></rp>

      2. 數(shù)學分析第二章知識點總結(jié)

        時間:2022-04-22 17:09:49 總結(jié) 我要投稿

        數(shù)學分析第二章知識點總結(jié)

          在我們平凡無奇的學生時代,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點就是一些常考的內(nèi)容,或者考試經(jīng)常出題的地方。哪些才是我們真正需要的知識點呢?下面是小編為大家整理的數(shù)學分析第二章知識點總結(jié),僅供參考,大家一起來看看吧。

        數(shù)學分析第二章知識點總結(jié)

          數(shù)學分析第二章知識點總結(jié)1

          1.無理數(shù)

         、艧o理數(shù):無限不循環(huán)小數(shù)

         、苾蓚無理數(shù)的和還是無理數(shù)

          2.平方根

          ⑴算術(shù)平方根、平方根

          一個正數(shù)有兩個平方根,0只有一個平方根,它是0本身;負數(shù)沒有平方根。

         、崎_平方:求一個數(shù)的平方根的運算叫開平方

          被開方數(shù)

          3.立方根

          ⑴立方根,如果一個數(shù)x的立方等于a,即,那么這個數(shù)x就叫a的立方根.

         、普龜(shù)的立方根是正數(shù),負數(shù)的立方根是負數(shù),0的立方根是0.

         、情_立方、被開方數(shù)

          4.公園有多寬

          求根式、估算根式、根據(jù)面積求邊長

          5.實數(shù)的運算

          運算法則(加、減、乘、除、乘方、開方)

          運算定律(五個-加法[乘法]交換律、結(jié)合律;[乘法對加法的]分配律)

          運算順序:A.高級運算到低級運算;B.(同級運算)從"左"

          到"右"(如5÷×5);C.(有括號時)由"小"到"中"到"大"。

          6.實數(shù)的概念是每年中考的必考知識點,尤其是相反數(shù)、倒數(shù)和絕對值都是高頻考點。我們不僅需要會求一個數(shù)的相反數(shù),求一個數(shù)的倒數(shù),求一個數(shù)的絕對值;還要注意0是沒有倒數(shù)的,倒數(shù)等于它本身的有±1,相反數(shù)等于它本身的只有0。

          7.科學記數(shù)法可以說是是每年中考的必考題,在解決具體問題時,需要記清楚相關概念;另外注意單位換算。對于近似數(shù)和精確度需要注意的是帶計算單位的數(shù)的精確度,需要統(tǒng)一為以“個”為計算單位的數(shù),再來確定。

          8.科學記數(shù)法可以說是是每年中考的必考題,在解決具體問題時,需要記清楚相關概念;另外注意單位換算。對于近似數(shù)和精確度需要注意的是帶計算單位的數(shù)的精確度,需要統(tǒng)一為以“個”為計算單位的數(shù),再來確定。

          9.實數(shù)比較大小也是中考熱點,主要方法可用數(shù)軸比較法、估算法和作差法。至于倒數(shù)法和平方法不是很常見,所以只需簡單了解即可。

          10.計算是數(shù)學的基礎,也是我們解決問題的必要手段。提高實數(shù)的運算能力,先要審題,理解有關概念。要注意零指數(shù)、負整指數(shù)、乘法、特殊角三角函數(shù)值、二次根式化簡和絕對值等知識點。在計算時需要先確定符號,再確定結(jié)果,把好符號關。

          學數(shù)學的好方法

          課前預習閱讀

          預習課文時,要準備一張紙、一支筆,將課本中的關鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。

          課后鞏固

          課后鞏固自己的知識點也很重要。課后鞏固可以讓你的知識點得到一個再記憶的效果,加深記憶數(shù)學知識點的效果。

          初中數(shù)學函數(shù)的概念知識點

          1.常量與變量:在某一變化過程中,可以取不同數(shù)值的量叫做變量;在某一變化過程中保持數(shù)值不變的量叫做常量.

          2.函數(shù):在某一變化過程中的兩個變量x和y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一確定的值和它對應,那么y就叫做x的函數(shù),其中x做自變量,y是因變量。

          (1)自變量取值范圍的確定

         、僬胶瘮(shù)自變量的取值范圍是全體實數(shù)。

         、诜质胶瘮(shù)自變量的取值范圍是使分母不為0的實數(shù)。

         、鄱胃胶瘮(shù)自變量的取值范嗣是使被開方數(shù)是非負數(shù)的實數(shù),若涉及實際問題的函數(shù),除滿足上述要求外還要使實際問題有意義。

          數(shù)學分析第二章知識點總結(jié)2

          函數(shù)簡介

          函數(shù)的定義通常分為傳統(tǒng)定義和近代定義,函數(shù)的兩個定義本質(zhì)是相同的,只是敘述概念的出發(fā)點不同,傳統(tǒng)定義是從運動變化的觀點出發(fā),而近代定義是從集合、映射的觀點出發(fā)。

          函數(shù)的近代定義是給定一個數(shù)集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數(shù)集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示。

          函數(shù)概念含有三個要素:定義域A、值域B和對應法則f。其中核心是對應法則f,它是函數(shù)關系的本質(zhì)特征。

          函數(shù)最早由中國清朝數(shù)學家李善蘭翻譯,出于其著作《代數(shù)學》。之所以這么翻譯,他給出的原因是“凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”,也即函數(shù)指一個量隨著另一個量的變化而變化,或者說一個量中包含另一個量。

          一、一次函數(shù)定義與定義式:

          自變量x和因變量y有如下關系:

          y=kx+b

          則此時稱y是x的一次函數(shù)。

          特別地,當b=0時,y是x的正比例函數(shù)。

          即:y=kx(k為常數(shù),k≠0)

          二、一次函數(shù)的性質(zhì):

          1.y的變化值與對應的x的變化值成正比例,比值為k

          即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

          2.當x=0時,b為函數(shù)在y軸上的截距。

          三、一次函數(shù)的圖像及性質(zhì):

          1.作法與圖形:通過如下3個步驟

          (1)列表;

          (2)描點;

          (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

          2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

          3.k,b與函數(shù)圖像所在象限:

          當k>0時,直線必通過一、三象限,y隨x的增大而增大;

          當k<0時,直線必通過二、四象限,y隨x的增大而減小。

          當b>0時,直線必通過一、二象限;

          當b=0時,直線通過原點

          當b<0時,直線必通過三、四象限。

          特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

          這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

          四、確定一次函數(shù)的表達式:

          已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

          (1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。

          (2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

          (3)解這個二元一次方程,得到k,b的值。

          (4)最后得到一次函數(shù)的表達式。

          五、一次函數(shù)在生活中的應用:

          1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

          2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。

          六、常用公式:

          1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

          2.求與x軸平行線段的中點:|x1-x2|/2

          3.求與y軸平行線段的中點:|y1-y2|/2

          4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

          數(shù)學集合與集合之間的關系知識點

          某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A屬于B。中學教材課本里將符號下加了一個不等于符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

          高中數(shù)學的學習方法

          多看輔導書

          老師布置的作業(yè)我肯定都要做完,但我不會滿足于老師布置的作業(yè),我還要看一些輔導書籍,做一些輔導書籍上的作業(yè),直到我能理解定義、定理和公式的含義,一道題盡量用多種辦法去解題,做到舉一反三。我經(jīng)常買和課程有關的輔導書籍看,每一門課程我都有好幾本相關的輔導書籍。

          定期整理歸納

          每學完一章的內(nèi)容,我都要進行小結(jié)。把這章的內(nèi)容歸納一下,把定義、定理、公式和這個定義、定理、公式有代表行的練習題寫出來,最后就是用幾句話把這一章的內(nèi)容概括一下,目的是方便記憶。我寫在一張紙上,放在口袋里,隨時會拿出這張紙來看一下。我一般不看完,只看前面幾個字,然后去想后面的內(nèi)容,實在想不出來才再看一下的?荚嚽懊恳豢颇课叶际前褍(nèi)容歸納后,寫在紙上放在口袋里,跑到?jīng)]人的大樹底下,一會看一下歸納的紙條,背誦內(nèi)容和例題。

          數(shù)學分析第二章知識點總結(jié)3

          一、實數(shù)的概念及分類

          1、實數(shù)的分類

          一是分類是:正數(shù)、負數(shù)、0;

          另一種分類是:有理數(shù)、無理數(shù)

          將兩種分類進行組合:負有理數(shù),負無理數(shù),0,正有理數(shù),正無理數(shù)

          2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

          在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

          (1)開方開不盡的數(shù),如等;

          (2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

          (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

          (4)某些三角函數(shù)值,如sin60o等

          二、實數(shù)的倒數(shù)、相反數(shù)和絕對值

          1、相反數(shù)

          實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

          2、絕對值

          在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

          3、倒數(shù)

          如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

          4、數(shù)軸

          規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

          解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。

          數(shù)學分析第二章知識點總結(jié)4

          代數(shù)式中的一種有理式:不含除法運算或分數(shù),以及雖有除法運算及分數(shù),但除式或分母中不含變數(shù)者,則稱為整式。 (分母中含有字母有除法運算的,那么式子叫做分式)

          1.單項式:數(shù)或字母的積(如5n),單個的數(shù)或字母也是單項式。

          (1)單項式的系數(shù):單項式中的數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。(如果一個單項式,只含有數(shù)字因數(shù),系數(shù)是它本身,次數(shù)是0)。

          (2)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)(非零常數(shù)的次數(shù)為0)。

          2.多項式

          (1)概念:幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。

          (2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。

          (3)多項式的排列:把一個多項式按某一個字母的`指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列;把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

          在做多項式的排列的題時注意:

          (1)由于單項式的項包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符看作是這一項的一部分,一起移動。

          (2)有兩個或兩個以上字母的多項式,排列時,要注意:a.先確認按照哪個字母的指數(shù)來排列。

          b.確定按這個字母降冪排列,還是升冪排列。

          3.整式:單項式和多項式統(tǒng)稱為整式。

          4.列代數(shù)式的幾個注意事項

          (1)數(shù)與字母相乘,或字母與字母相乘通常使用“· ”乘,或省略不寫;

          (2)數(shù)與數(shù)相乘,仍應使用“×”乘,不用“· ”乘,也不能省略乘號;

          (3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應寫成5a;

          (4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式;

          (5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成3/a的形式;

          (6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a-b和b-a .

          整式的加減運算

          1.同類項的概念:所含字母相同,并且相同字母的次數(shù)也相同的項叫做同類項,幾個常數(shù)項也是同類項。(同類項與系數(shù)無關,與字母排列的順序也無關)。

          2.合并同類項:把多項式中的同類項合并成一項叫做合并同類項。法則:同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。不能合并的項單獨作為一項,不可遺漏

          3.整式加減實質(zhì)就是去括號,合并同類項。

          注:去括號時,如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。

          4.幾個重要的代數(shù)式:(m、n表示整數(shù))

          (1)a與b的平方差是:a2-b2 ; a與b差的平方是:(a-b)2 ;(本式中2為平方)

          (2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b ,則三位整數(shù)是:100a+10b+c;

          (3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n ;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;

          (4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2 (本式中2為平方)

          初中生如何能輕松學好數(shù)學有哪些技巧和方法

          初中生學習數(shù)學要會獨立思考

          初一初二是數(shù)學開竅的階段,在解題上初中生一定要學會自己獨立去思考。你需要做的就是不斷的做題來培養(yǎng)自己的這一能力。而在積累到一定的數(shù)量之后,你的這種獨立解題的能力是別人無法超越的。這個培養(yǎng)過程很簡單也很短,只要你得到一點的成就感對于初中數(shù)學你就會充滿自信。

          其實,學好初中數(shù)學關鍵在于自己的真實能力,而不是形式。很多的初中生數(shù)學筆記一大堆,最后考試的成績也就是那樣。在學習上初中數(shù)學也好,其他科目也罷,不要講究形式感,關鍵是要把一個個的問題和知識學透。不反對記筆記,但是不要一味的做筆記,聽初中數(shù)學課是需要過腦子的。

          學好初中數(shù)學要較真

          數(shù)學是一門嚴謹?shù)膶W科,對于自己不會的地區(qū)和知識點初中生絕對不能模棱兩可的就過去了,而是要把它弄清楚做明白。有的同學在初中數(shù)學的學習中不會只是因為不熟而已,那么怎么辦?就是多練習和多思考,數(shù)學的學習沒有什么捷徑和技巧,熟能生巧才是最好的學習技巧。另外,初中數(shù)學想要打高分,在做題方面一定要仔細和認真,不能馬虎。

          數(shù)學數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)知識點

          1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.

          2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.

          3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.

        【數(shù)學分析第二章知識點總結(jié)】相關文章:

        《觀潮》知識點總結(jié)11-17

        駱駝祥子第二章讀書隨筆03-02

        《化石吟》知識點總結(jié)11-11

        《千字文》第二章11-15

        文秘專業(yè)知識點總結(jié)09-22

        短歌行知識點總結(jié)10-28

        高二化學知識點總結(jié)01-14

        高二物理知識點總結(jié)08-30

        高一政治知識點總結(jié)12-12

        高考數(shù)學知識點總結(jié)09-03

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>