初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn)大全
在平時(shí)的學(xué)習(xí)中,說起知識(shí)點(diǎn),應(yīng)該沒有人不熟悉吧?知識(shí)點(diǎn)是傳遞信息的基本單位,知識(shí)點(diǎn)對(duì)提高學(xué)習(xí)導(dǎo)航具有重要的作用。還在為沒有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?以下是小編收集整理的初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn),僅供參考,希望能夠幫助到大家。
初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn) 篇1
1、有序數(shù)對(duì):有順序的兩個(gè)數(shù)a與b組成的數(shù)對(duì)叫做有序數(shù)對(duì),記做(a,b)。
2、平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
3、橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4、坐標(biāo):對(duì)于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對(duì)應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),記作P(a,b)。
5、象限:兩條坐標(biāo)軸把平面分成四個(gè)部分,右上部分叫第一象限,按逆時(shí)針方向依次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限內(nèi)。
6、各象限點(diǎn)的坐標(biāo)特點(diǎn)①第一象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;②第二象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;③第三象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;④第四象限的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0。
7、坐標(biāo)軸上點(diǎn)的坐標(biāo)特點(diǎn)①x軸正半軸上的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;②x軸負(fù)半軸上的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;③y軸正半軸上的點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0;④y軸負(fù)半軸上的點(diǎn):橫坐
標(biāo)0,縱坐標(biāo)0;⑤坐標(biāo)原點(diǎn):橫坐標(biāo)0,縱坐標(biāo)0。(填“>”、“<”或“=”)
8、點(diǎn)P(a,b)到x軸的距離是|b|,到y(tǒng)軸的距離是|a| 。
9、對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn)①關(guān)于x軸對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);②關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn),縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù);③關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)。
10、點(diǎn)P(2,3)到x軸的距離是;到y(tǒng)軸的距離是;點(diǎn)P(2,3)關(guān)于x軸對(duì)稱的點(diǎn)坐標(biāo)為(,);點(diǎn)P(2,3)關(guān)于y軸對(duì)稱的點(diǎn)坐標(biāo)為(,)。
11、如果兩個(gè)點(diǎn)的橫坐標(biāo)相同,則過這兩點(diǎn)的直線與y軸平行、與x軸垂直;如果兩點(diǎn)的縱坐標(biāo)相同,則過這兩點(diǎn)的'直線與x軸平行、與y軸垂直。如果點(diǎn)P(2,3)、Q(2,6),這兩點(diǎn)橫坐標(biāo)相同,則PQ‖y軸,PQ⊥x軸;如果點(diǎn)P(—1,2)、Q(4,2),這兩點(diǎn)縱坐標(biāo)相同,則PQ‖x軸,PQ⊥y軸。
12、平行于x軸的直線上的點(diǎn)的縱坐標(biāo)相同;平行于y軸的直線上的點(diǎn)的橫坐標(biāo)相同;在一、三象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同;在二、四象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù)。如果點(diǎn)P(a,b)在一、三象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同,即a = b;如果點(diǎn)P(a,b)在二、四象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),即a = —b 。
13、表示一個(gè)點(diǎn)(或物體)的位置的方法:一是準(zhǔn)確恰當(dāng)?shù)亟⑵矫嬷苯亲鴺?biāo)系;二是正確寫出物體或某地所在的點(diǎn)的坐標(biāo)。選擇的坐標(biāo)原點(diǎn)不同,建立的平面直角坐標(biāo)系也不同,得到的同一個(gè)點(diǎn)的坐標(biāo)也不同。
初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn) 篇2
填空題答題技巧
要求熟記的基本概念、基本事實(shí)、數(shù)據(jù)公式、原理,復(fù)習(xí)時(shí)要特別細(xì)心,注意記熟,做到臨考前能準(zhǔn)確無誤、清晰回憶。
對(duì)那些起關(guān)鍵作用的,或最容易混淆記錯(cuò)的概念、符號(hào)或圖形要特別注意,因?yàn)榭疾榈耐褪撬鼈。如區(qū)間的端點(diǎn)開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個(gè)單調(diào)區(qū)間取了并集等等。
解答題答題技巧
。1)仔細(xì)審題。注意題目中的關(guān)鍵詞,準(zhǔn)確理解考題要求。
(2)規(guī)范表述。分清層次,要注意計(jì)算的準(zhǔn)確性和簡約性、邏輯的條理性和連貫性。
。3)給出結(jié)論。注意分類討論的問題,最后要?dú)w納結(jié)論。
(4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗(yàn)算時(shí)間。
初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn) 篇3
有理數(shù)加法法則
1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
有理數(shù)加法的運(yùn)算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
有理數(shù)減法法則
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)
有理數(shù)乘法法則
1、兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。
初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn) 篇4
平面直角坐標(biāo)系:
在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:
①在同一平面
、趦蓷l數(shù)軸
、刍ハ啻怪
、茉c(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn) 篇5
1、有序數(shù)對(duì)
有順序的兩個(gè)數(shù)a與b組成的數(shù)對(duì),叫做有序數(shù)對(duì)。
2、平面直角坐標(biāo)系
平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向?yàn)檎较颍粌勺鴺?biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面上的任意一點(diǎn)都可以用一個(gè)有序數(shù)對(duì)來表示。
建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個(gè)部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點(diǎn)不屬于任何象限。
3、坐標(biāo)方法的簡單應(yīng)用
用坐標(biāo)表示地理位置
利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些地點(diǎn)分布情況平面圖的過程如下:
、沤⒆鴺(biāo)系,選擇一個(gè)適當(dāng)?shù)膮⒄拯c(diǎn)為原點(diǎn),確定x軸、y軸的正方向;
⑵根據(jù)具體問題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長度;
⑶在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個(gè)地點(diǎn)的名稱。
4、用坐標(biāo)表示平移
在平面直角坐標(biāo)系中,將點(diǎn)(x,y)向右(或左)平移a個(gè)單位長度,可以得到對(duì)應(yīng)點(diǎn)(x+a,y)(或(x—a,y));將點(diǎn)(x,y)向上(或下)平移b個(gè)單位長度,可以得到對(duì)應(yīng)點(diǎn)(x,y+b)(或(x,y—b))。
在平面直角坐標(biāo)系內(nèi),如果把一個(gè)圖形各個(gè)點(diǎn)的橫坐標(biāo)都加(或減去)一個(gè)正數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個(gè)單位長度;如果把它各個(gè)點(diǎn)的縱坐標(biāo)都加(或減去)一個(gè)正數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個(gè)單位長度。
初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn) 篇6
一、平面解析幾何的基本思想和主要問題
平面解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學(xué)學(xué)科,其基本思想就是用代數(shù)的方法研究幾何問題。例如,用直線的方程可以研究直線的性質(zhì),用兩條直線的方程可以研究這兩條直線的位置關(guān)系等。
平面解析幾何研究的問題主要有兩類:一是根據(jù)已知條件,求出表示平面曲線的方程;二是通過方程,研究平面曲線的性質(zhì)。
二、直線坐標(biāo)系和直角坐標(biāo)系
直線坐標(biāo)系,也就是數(shù)軸,它有三個(gè)要素:原點(diǎn)、度量單位和方向。如果讓一個(gè)實(shí)數(shù)與數(shù)軸上坐標(biāo)為的點(diǎn)對(duì)應(yīng),那么就可以在實(shí)數(shù)集與數(shù)軸上的點(diǎn)集之間建立一一對(duì)應(yīng)關(guān)系。
點(diǎn)與實(shí)數(shù)對(duì)應(yīng),則稱點(diǎn)的坐標(biāo)為,記作,如點(diǎn)坐標(biāo)為,則記作;點(diǎn)坐標(biāo)為,則記為。
直角坐標(biāo)系是由兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成,兩條數(shù)軸的度量單位一般相同,但有時(shí)也可以不同,兩個(gè)數(shù)軸的交點(diǎn)是直角坐標(biāo)系的原點(diǎn)。在平面直角坐標(biāo)系中,有序?qū)崝?shù)對(duì)構(gòu)成的集合與坐標(biāo)平面內(nèi)的點(diǎn)集具有一一對(duì)應(yīng)關(guān)系。
一個(gè)點(diǎn)的坐標(biāo)是這樣求得的,由點(diǎn)向軸及軸作垂線,在兩坐標(biāo)軸上形成正投影,在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的橫坐標(biāo),在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的縱坐標(biāo)。
在學(xué)習(xí)這兩種坐標(biāo)系時(shí),要注意用類比的方法。例如,平面直角坐標(biāo)系是二維坐標(biāo)系,它有兩個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)需用兩個(gè)實(shí)數(shù)(即一對(duì)有序?qū)崝?shù))來表示,而直線坐標(biāo)系是一維坐標(biāo)系,它只有一個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)只需用一個(gè)實(shí)數(shù)來表示。
三、向量的有關(guān)概念和公式
如果數(shù)軸上的任意一點(diǎn)沿著軸的正向或負(fù)向移動(dòng)到另一個(gè)點(diǎn),則說點(diǎn)在軸上作了一次位移。位移是一個(gè)既有大小又有方向的量,通常叫做位移向量,簡稱向量,記作。如果點(diǎn)移動(dòng)的方向與數(shù)軸的正方向相同,則向量為正,否則為負(fù)。線段的長叫做向量的長度,記作。向量的長度連同表示其方向的正負(fù)號(hào)叫做向量的坐標(biāo)(或數(shù)量),用表示。這里同學(xué)們要分清,三個(gè)符號(hào)的含義。
對(duì)于數(shù)軸上任意三點(diǎn),都有成立。該等式左邊表示在數(shù)軸上點(diǎn)向點(diǎn)作一次位移,等式右邊表示點(diǎn)先向點(diǎn)作一次位移,再由點(diǎn)向點(diǎn)作一次位移,它們的最終結(jié)果是相同的。
向量的坐標(biāo)公式(或數(shù)量公式),它表示向量的數(shù)量等于終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo),這個(gè)公式非常重要。
有相等坐標(biāo)的兩個(gè)向量相等,看做同一個(gè)向量;反之,兩個(gè)相等向量坐標(biāo)必相等。
注意:①相等的所有向量看做一個(gè)整體,作為同一向量,都等于以原點(diǎn)為起點(diǎn),坐標(biāo)與這所有向量相等的那個(gè)向量。②向量與數(shù)軸上的實(shí)數(shù)(或點(diǎn))是一一對(duì)應(yīng)的,零向量即原點(diǎn)。
四、兩點(diǎn)的距離公式和中點(diǎn)公式
1、對(duì)于數(shù)軸上的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,則的距離為,的中點(diǎn)的坐標(biāo)為。
由于表示數(shù)軸上兩點(diǎn)與的距離,所以在解一些簡單的含絕對(duì)值的方程或不等式時(shí),常借助于數(shù)形結(jié)合思想,將問題轉(zhuǎn)化為數(shù)軸上的距離問題加以解決。例如,解方程時(shí),可以將問題看作在數(shù)軸上求一點(diǎn),使它到,的距離之和等于。
2、對(duì)于直角坐標(biāo)系中的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,則兩點(diǎn)的距離為,的中點(diǎn)的坐標(biāo)滿足。
兩點(diǎn)的距離公式和中點(diǎn)公式是解析幾何中最基本、最常用的公式之一,要求同學(xué)們能熟練掌握并能靈活運(yùn)用。
五、坐標(biāo)法
坐標(biāo)法是數(shù)學(xué)中一種重要的數(shù)學(xué)思想方法,它是借助于坐標(biāo)系來研究幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)所滿足的方程表示曲線,通過研究方程,間接地來研究曲線的性質(zhì)。
【初一數(shù)學(xué)平面直角坐標(biāo)系知識(shí)點(diǎn)大全】相關(guān)文章:
空間直角坐標(biāo)系說課稿11-12
中考數(shù)學(xué)知識(shí)點(diǎn)資料復(fù)習(xí)大全07-30
直角生活哲理作文07-28
數(shù)學(xué)小謎語大全05-04
數(shù)學(xué)的謎語大全04-27
螞蟻-初一作文大全01-17
貓初一作文大全03-05
小鳥-初一作文大全02-14
漢語拼音知識(shí)點(diǎn)大全06-24