1. <rp id="zsypk"></rp>

      2. 高中三角函數(shù)公式總結(jié)

        時(shí)間:2022-08-08 18:21:45 總結(jié) 我要投稿
        • 相關(guān)推薦

        高中三角函數(shù)公式總結(jié)

          總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,讓我們好好寫一份總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?以下是小編整理的高中三角函數(shù)公式總結(jié),僅供參考,希望能夠幫助到大家。

        高中三角函數(shù)公式總結(jié)

          高中三角函數(shù)公式總結(jié) 篇1

          銳角三角函數(shù)公式

          sin α=∠α的對(duì)邊 / 斜邊

          cos α=∠α的鄰邊 / 斜邊

          tan α=∠α的對(duì)邊 / ∠α的鄰邊

          cot α=∠α的'鄰邊 / ∠α的對(duì)邊

          倍角公式

          Sin2A=2SinA?CosA

          Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

          tan2A=(2tanA)/(1-tanA^2)

          (注:SinA^2 是sinA的平方 sin2(A) )

          三倍角公式

          sin3α=4sinα·sin(π/3+α)sin(π/3-α)

          cos3α=4cosα·cos(π/3+α)cos(π/3-α)

          tan3a = tan a · tan(π/3+a)· tan(π/3-a)

          三倍角公式推導(dǎo)

          sin3a

          =sin(2a+a)

          =sin2acosa+cos2asina

          輔助角公式

          Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

          sint=B/(A^2+B^2)^(1/2)

          cost=A/(A^2+B^2)^(1/2)

          tant=B/A

          Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

          降冪公式

          sin^2(α)=(1-cos(2α))/2=versin(2α)/2

          cos^2(α)=(1+cos(2α))/2=covers(2α)/2

          tan^2(α)=(1-cos(2α))/(1+cos(2α))

          推導(dǎo)公式

          tanα+cotα=2/sin2α

          tanα-cotα=-2cot2α

          1+cos2α=2cos^2α

          1-cos2α=2sin^2α

          1+sinα=(sinα/2+cosα/2)^2

          =2sina(1-sina)+(1-2sina)sina

          =3sina-4sina

          cos3a

          =cos(2a+a)

          =cos2acosa-sin2asina

          =(2cosa-1)cosa-2(1-sina)cosa

          =4cosa-3cosa

          sin3a=3sina-4sina

          =4sina(3/4-sina)

          =4sina[(√3/2)-sina]

          =4sina(sin60°-sina)

          =4sina(sin60°+sina)(sin60°-sina)

          =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

          =4sinasin(60°+a)sin(60°-a)

          cos3a=4cosa-3cosa

          =4cosa(cosa-3/4)

          =4cosa[cosa-(√3/2)]

          =4cosa(cosa-cos30°)

          =4cosa(cosa+cos30°)(cosa-cos30°)

          =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

          =-4cosasin(a+30°)sin(a-30°)

          =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

          =-4cosacos(60°-a)[-cos(60°+a)]

          =4cosacos(60°-a)cos(60°+a)

          上述兩式相比可得

          tan3a=tanatan(60°-a)tan(60°+a)

          半角公式

          tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

          cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

          sin^2(a/2)=(1-cos(a))/2

          cos^2(a/2)=(1+cos(a))/2

          tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

          三角和

          sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

          cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

          tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

          兩角和差

          cos(α+β)=cosα·cosβ-sinα·sinβ

          cos(α-β)=cosα·cosβ+sinα·sinβ

          sin(α±β)=sinα·cosβ±cosα·sinβ

          tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

          tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

          和差化積

          sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

          sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

          cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

          cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

          tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

          tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

          積化和差

          sinαsinβ = [cos(α-β)-cos(α+β)] /2

          cosαcosβ = [cos(α+β)+cos(α-β)]/2

          sinαcosβ = [sin(α+β)+sin(α-β)]/2

          cosαsinβ = [sin(α+β)-sin(α-β)]/2

          誘導(dǎo)公式

          sin(-α) = -sinα

          cos(-α) = cosα

          tan (—a)=-tanα

          sin(π/2-α) = cosα

          cos(π/2-α) = sinα

          sin(π/2+α) = cosα

          cos(π/2+α) = -sinα

          sin(π-α) = sinα

          cos(π-α) = -cosα

          sin(π+α) = -sinα

          cos(π+α) = -cosα

          tanA= sinA/cosA

          tan(π/2+α)=-cotα

          tan(π/2-α)=cotα

          tan(π-α)=-tanα

          tan(π+α)=tanα

          誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

          萬能公式

          sinα=2tan(α/2)/[1+tan^(α/2)]

          cosα=[1-tan^(α/2)]/1+tan^(α/2)]

          tanα=2tan(α/2)/[1-tan^(α/2)]

          其它公式

          (1)(sinα)^2+(cosα)^2=1

          (2)1+(tanα)^2=(secα)^2

          (3)1+(cotα)^2=(cscα)^2

          證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

          (4)對(duì)于任意非直角三角形,總有

          tanA+tanB+tanC=tanAtanBtanC

          證:

          A+B=π-C

          tan(A+B)=tan(π-C)

          (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

          整理可得

          tanA+tanB+tanC=tanAtanBtanC

          得證

          同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

          由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

          (5)cotAcotB+cotAcotC+cotBcotC=1

          (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

          (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

          (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

          (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

          cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

          sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

          tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

          高中三角函數(shù)公式總結(jié) 篇2

          三角形與三角函數(shù)

          1、正弦定理:在三角形中,各邊和它所對(duì)的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R 。(其中R為外接圓的半徑)

          2、第一余弦定理:三角形中任意一邊等于其他兩邊以及對(duì)應(yīng)角余弦的'交叉乘積的和,即a=c cosB + b cosC

          3、第二余弦定理:三角形中任何一邊的平方等于其它兩邊的平方之和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2—2bc·cosA

          4、正切定理(napier比擬):三角形中任意兩邊差和的比值等于對(duì)應(yīng)角半角差和的正切比值,即(a—b)/(a+b)=tan[(A—B)/2]/tan[(A+B)/2]=tan[(A—B)/2]/cot(C/2)

          5、三角形中的恒等式:

          對(duì)于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC

          證明:

          已知(A+B)=(π—C)

          所以tan(A+B)=tan(π—C)

          則(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/(1+tanπtanC)

          整理可得

          tanA+tanB+tanC=tanAtanBtanC

          類似地,我們同樣也可以求證:當(dāng)α+β+γ=nπ(n∈Z)時(shí),總有tanα+tanβ+tanγ=tanαtanβtanγ

        【高中三角函數(shù)公式總結(jié)】相關(guān)文章:

        《三角函數(shù)的誘導(dǎo)公式》教學(xué)反思04-22

        高中數(shù)列公式總結(jié)12-07

        高中階乘公式總結(jié)大全12-06

        高中物理復(fù)習(xí)公式總結(jié):平拋運(yùn)動(dòng)公式總結(jié)06-26

        高中物理部分公式總結(jié)11-10

        高中物理電場公式總結(jié)06-16

        高中的物理公式及其重點(diǎn)內(nèi)容的總結(jié)10-20

        高中物理復(fù)習(xí)公式大全總結(jié)06-26

        氣體的性質(zhì)高中物理復(fù)習(xí)公式總結(jié)06-26

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>