1. <rp id="zsypk"></rp>

      2. 函數知識點總結

        時間:2024-09-19 18:24:22 知識點總結 我要投稿

        函數知識點總結合集(15篇)

          總結是把一定階段內的有關情況分析研究,做出有指導性的經驗方法以及結論的書面材料,通過它可以全面地、系統地了解以往的學習和工作情況,不妨坐下來好好寫寫總結吧。我們該怎么寫總結呢?下面是小編幫大家整理的函數知識點總結,希望能夠幫助到大家。

        函數知識點總結合集(15篇)

        函數知識點總結1

          本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的.圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。

          一、函數的單調性

          1、函數單調性的定義

          2、函數單調性的判斷和證明:

          (1)定義法

          (2)復合函數分析法

          (3)導數證明法

          (4)圖象法

          二、函數的奇偶性和周期性

          1、函數的奇偶性和周期性的定義

          2、函數的奇偶性的判定和證明方法

          3、函數的周期性的判定方法

          三、函數的圖象

          1、函數圖象的作法

          (1)描點法

          (2)圖象變換法

          2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

          常見考法

          本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。

          誤區提醒

          1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問題定義域優先的原則”。

          2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。

          3、在多個單調區間之間不能用“或”和“ ”連接,只能用逗號隔開。

          4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關于原點對稱,則函數一定是非奇非偶函數。

          5、作函數的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數的圖象。

        函數知識點總結2

          一次函數

          一、定義與定義式:

          自變量x和因變量y有如下關系:

          y=kx+b

          則此時稱y是x的一次函數。

          特別地,當b=0時,y是x的正比例函數。

          即:y=kx (k為常數,k0)

          二、一次函數的性質:

          1、y的變化值與對應的x的變化值成正比例,比值為k

          即:y=kx+b (k為任意不為零的實數b取任何實數)

          2、當x=0時,b為函數在y軸上的截距。

          三、一次函數的圖像及性質:

          1、作法與圖形:通過如下3個步驟

          (1)列表;

         。2)描點;

         。3)連線,可以作出一次函數的圖像一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

          2、性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過原點。

          3、k,b與函數圖像所在象限:

          當k0時,直線必通過一、三象限,y隨x的增大而增大;

          當k0時,直線必通過二、四象限,y隨x的增大而減小。

          當b0時,直線必通過一、二象限;

          當b=0時,直線通過原點

          當b0時,直線必通過三、四象限。

          特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

          這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。

          四、確定一次函數的表達式:

          已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

          (1)設一次函數的表達式(也叫解析式)為y=kx+b。

          (2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②

         。3)解這個二元一次方程,得到k,b的值。

          (4)最后得到一次函數的表達式。

          五、一次函數在生活中的應用:

          1、當時間t一定,距離s是速度v的一次函數。s=vt。

          2、當水池抽水速度f一定,水池中水量g是抽水時間t的.一次函數。設水池中原有水量S。g=S—ft。

          六、常用公式:(不全,希望有人補充)

          1、求函數圖像的k值:(y1—y2)/(x1—x2)

          2、求與x軸平行線段的中點:|x1—x2|/2

          3、求與y軸平行線段的中點:|y1—y2|/2

          4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)

          二次函數

          I、定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關系:

          y=ax^2+bx+c

         。╝,b,c為常數,a0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

          則稱y為x的二次函數。

          二次函數表達式的右邊通常為二次三項式。

          II、二次函數的三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數,a0)

          頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]

          交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

          注:在3種形式的互相轉化中,有如下關系:

          h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

          III、二次函數的圖像

          在平面直角坐標系中作出二次函數y=x^2的圖像,

          可以看出,二次函數的圖像是一條拋物線。

          IV、拋物線的性質

          1、拋物線是軸對稱圖形。對稱軸為直線

          x= —b/2a。

          對稱軸與拋物線唯一的交點為拋物線的頂點P。

          特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2、拋物線有一個頂點P,坐標為

          P( —b/2a,(4ac—b^2)/4a )

          當—b/2a=0時,P在y軸上;當= b^2—4ac=0時,P在x軸上。

          3、二次項系數a決定拋物線的開口方向和大小。

          當a0時,拋物線向上開口;當a0時,拋物線向下開口。

          |a|越大,則拋物線的開口越小。

          4、一次項系數b和二次項系數a共同決定對稱軸的位置。

          當a與b同號時(即ab0),對稱軸在y軸左;

          當a與b異號時(即ab0),對稱軸在y軸右。

          5、常數項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6、拋物線與x軸交點個數

          = b^2—4ac0時,拋物線與x軸有2個交點。

          = b^2—4ac=0時,拋物線與x軸有1個交點。

          = b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

          V、二次函數與一元二次方程

          特別地,二次函數(以下稱函數)y=ax^2+bx+c,

          當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

          即ax^2+bx+c=0

          此時,函數圖像與x軸有無交點即方程有無實數根。

          函數與x軸交點的橫坐標即為方程的根。

          1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

          解析式頂點坐標對稱軸

          y=ax^2(0,0) x=0

          y=a(x—h)^2(h,0) x=h

          y=a(x—h)^2+k(h,k) x=h

          y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

          當h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

          當h0時,則向左平行移動|h|個單位得到、

          當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x—h)^2+k的圖象;

          當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

          當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x—h)^2+k的圖象;

          當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

          因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、

          2、拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)、

          3、拋物線y=ax^2+bx+c(a0),若a0,當x —b/2a時,y隨x的增大而減;當x —b/2a時,y隨x的增大而增大、若a0,當x —b/2a時,y隨x的增大而增大;當x —b/2a時,y隨x的增大而減小、

          4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

         。1)圖象與y軸一定相交,交點坐標為(0,c);

          (2)當△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

         。╝0)的兩根、這兩點間的距離AB=|x—x|

          當△=0、圖象與x軸只有一個交點;

          當△0、圖象與x軸沒有交點、當a0時,圖象落在x軸的上方,x為任何實數時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數時,都有y0、

          5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時,y最小(大)值=(4ac—b^2)/4a、

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值、

          6、用待定系數法求二次函數的解析式

          (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

          y=ax^2+bx+c(a0)、

         。2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x—h)^2+k(a0)、

          (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x—x)(x—x)(a0)、

          7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現、

          反比例函數

          形如y=k/x(k為常數且k0)的函數,叫做反比例函數。

          自變量x的取值范圍是不等于0的一切實數。

          反比例函數圖像性質:

          反比例函數的圖像為雙曲線。

          由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。

          另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

          如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。

          當K0時,反比例函數圖像經過一,三象限,是減函數

          當K0時,反比例函數圖像經過二,四象限,是增函數

          反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

          知識點:

          1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。

          2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(xm)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

        函數知識點總結3

          余割函數

          對于任意一個實數x,都對應著唯一的角(弧度制中等于這個實數),而這個角又對應著唯一確定的余割值cscx與它對應,按照這個對應法則建立的'函數稱為余割函數。

          記作f(x)=cscx

          f(x)=cscx=1/sinx

          1、定義域:{x|x≠kπ,k∈Z}

          2、值域:{y|y≤-1或y≥1}

          3、奇偶性:奇函數

          4、周期性:最小正周期為2π

          5、圖像:

          圖像漸近線為:x=kπ ,k∈Z

          其實有一點需要注意,就是余割函數與正弦函數互為倒數。

        函數知識點總結4

          (一)函數

          1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。

          2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。一個X對應兩個Y值是錯誤的x判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應;

          3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。

          4、確定函數定義域的方法:

         。1)關系式為整式時,函數定義域為全體實數;

         。2)關系式含有分式時,分式的分母不等于零;

          (3)關系式含有二次根式時,被開放方數大于等于零;

         。4)關系式中含有指數為零的式子時,底數不等于零;

         。5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。

          5、函數的解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做函數的解析式

          6、函數的圖像(函數圖像上的點一定符合函數表達式,符合函數表達式的點一定在函數圖像上)

          一般來說,對于一個函數,如果把自變量與函數的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數的圖象;

          運用:求解析式中的參數、求函數解釋式;

          7、描點法畫函數圖形的一般步驟

          第一步:列表(表中給出一些自變量的值及其對應的函數值);函數表達式為y=3X-2-1-20xx-6-3-6036

          第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);

          第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。

          8、函數的表示方法

          列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。

          解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。

          圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。

         。ǘ┮淮魏瘮1、一次函數的定義

          一般地,形如ykxb(k,b是常數(其中k與b的形式較為靈活,但只要抓住函數基本形式,準確找到k與b,根據題意求的常數的取值范圍),且k0)的.函數,叫做一次函數,其中x是自變量。當b0時,一次函數ykx,又叫做正比例函數。

          ⑴一次函數的解析式的形式是ykxb,要判斷一個函數是否是一次函數,就是判斷是否能化成以上形式;

         、飘攂0,k0時,ykx仍是一次函數;

          ⑶當b0,k0時,它不是一次函數;

         、日壤瘮凳且淮魏瘮档奶乩,一次函數包括正比例函數;

          2、正比例函數及性質

          一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.注:正比例函數一般形式y=kx(k不為零)①k不為零②x指數為1③b取零

          當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,y隨x的增大而增大();k4、一次函數y=kx+b的圖象的畫法.

          在實際做題中只需要倆點就可以確定函數圖像,一般我們令X=0求出阿Y的值再令Y=0求出X的值.如圖

          y=kx+b(0,b)解析:(兩點確定一條直線,這兩點我們一般確定在坐標軸上,因為X軸上所有坐標點的縱坐標為0即(x,0)Y軸上所有點的

          (-b/k,0)橫坐標為0即(0,y)這樣作圖既快又準確

          5、正比例函數與一次函數之間的關系

          一次函數y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b0時,直線經過一、三象限;k0,y隨x的增大而增大;(從左向右上升)k0時,將直線y=kx的圖象向上平移b個單位;b。

        函數知識點總結5

          首先,把主要精力放在基礎知識、基本技能、基本方法這三個方面上、因為每次考試占絕大部分的是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納,調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁情緒、特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能把我打垮的自豪感、

          在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前在保證正確率的前提下提高解題速度、對于一些容易的基礎題,要有十二分的把握拿滿分;對于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的水平正常甚至超常發揮、

          要想學好初中數學,多做題目是難免的.,熟悉掌握各種題型的解題思路、剛開始要以基礎題目入手,以課上的題目為準,提高自己的分析解決能力,掌握一般的解題思路、對于一些易錯題,可備有錯題集,寫出自己的解題思路、正確的解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正、在平時養成良好的解題習慣、讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進入最佳狀態,在考試中能運用自如、實踐證明:越到關鍵的時候,你所表現的解題習慣與平時解題無異、如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的、

          初中數學解題方法

          第一點:卓絕點:熟悉數學習題中常設計的內容,定義、公式、原理等等

          第二點:做題有步驟,先易后難

          初中數學做題技巧有一點,那就是先易后難、正所謂“一屋不掃何以掃天下?”,如果同學們連那些簡單容易的數學題目都解答不出來又怎么能夠解答那些疑難的數學題目呢?先易后難的做數學題目不僅能夠增加同學們做數學題的信心,還能夠讓同學享受解答數學題的那個過程、

          第三點:認真做好歸納總結

        函數知識點總結6

          一、函數的概念與表示

          1、映射

          (1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

          注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

          2、函數

          構成函數概念的三要素

          ①定義域②對應法則③值域

          兩個函數是同一個函數的條件:三要素有兩個相同

          二、函數的解析式與定義域

          1、求函數定義域的主要依據:

          (1)分式的分母不為零;

          (2)偶次方根的被開方數不小于零,零取零次方沒有意義;

          (3)對數函數的'真數必須大于零;

          (4)指數函數和對數函數的底數必須大于零且不等于1;

          三、函數的值域

          1求函數值域的方法

         、僦苯臃ǎ簭淖宰兞縳的范圍出發,推出y=f(x)的取值范圍,適合于簡單的復合函數;

          ②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

         、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

         、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);

         、輪握{性法:利用函數的單調性求值域;

         、迗D象法:二次函數必畫草圖求其值域;

         、呃脤μ柡瘮

         、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數

          四.函數的奇偶性

          1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數。

          如果對于任意∈A,都有,則稱y=f(x)為奇

          函數。

          2.性質:

         、賧=f(x)是偶函數y=f(x)的圖象關于軸對稱,y=f(x)是奇函數y=f(x)的圖象關于原點對稱,

         、谌艉瘮礷(x)的定義域關于原點對稱,則f(0)=0

          ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關于原點對稱]

          3.奇偶性的判斷

          ①看定義域是否關于原點對稱②看f(x)與f(-x)的關系

          五、函數的單調性

          1、函數單調性的定義:

          2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

        函數知識點總結7

          ∴當x1時函數取得最大值,且ymax(1)2(1)13例4、已知函數f(x)x22(a1)x2

          4],求實數a的取值(1)若函數f(x)的遞減區間是(,4]上是減函數,求實數a的取值范圍(2)若函數f(x)在區間(,分析:二次函數的單調區間是由其開口方向及對稱軸決定的,要分清函數在區間A上是單調函數及單調區間是A的區別與聯系

          解:(1)f(x)的對稱軸是x可得函數圖像開口向上

          2(a1)21a,且二次項系數為1>0

          1a]∴f(x)的單調減區間為(,∴依題設條件可得1a4,解得a3

          4]上是減函數(2)∵f(x)在區間(,4]是遞減區間(,1a]的子區間∴(,∴1a4,解得a3

          例5、函數f(x)x2bx2,滿足:f(3x)f(3x)

         。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數圖像的.對稱軸為x(3x)(3x)23

          b3可得b62f(x)x26x2(x3)211

          而f(x)的圖像與x軸交點(x1,0)、(x2,0)關于對稱軸x3對稱

          x1x223,可得x1x26

          第三章第32頁由二次項系數為1>0,可知拋物線開口向上又134,132,431

          ∴依二次函數的對稱性及單調性可f(4)f(1)f(1)(III)課后作業練習六

          (Ⅳ)教學后記:

          第三章第33頁

          擴展閱讀:初中數學函數知識點歸納

          學大教育

          初中數學函數板塊的知識點總結與歸類學習方法

          初中數學知識大綱中,函數知識占了很大的知識體系比例,學好了函數,掌握了函數的基本性質及其應用,真正精通了函數的每一個模塊知識,會做每一類函數題型,就讀于中考中數學成功了一大半,數學成績自然上高峰,同時,函數的思想是學好其他理科類學科的基礎。初中數學從性質上分,可以分為:一次函數、反比例函數、二次函數和銳角三角函數,下面介紹各類函數的定義、基本性質、函數圖象及函數應用思維方式方法。

          一、一次函數

          1.定義:在定義中應注意的問題y=kx+b中,k、b為常數,且k≠0,x的指數一定為1。2.圖象及其性質(1)形狀、直線

        函數知識點總結8

          基本概念

          1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。

          2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。

          *判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。(x的取值范圍)一次函數

          1..自變量x和因變量y有如下關系:

          y=kx+b(k為任意不為零實數,b為任意實數)則此時稱y是x的一次函數。特別的,當b=0時,y是x的正比例函數。即:y=kx(k為任意不為零實數)

          定義域:自變量的取值范圍,自變量的取值應使函數有意義;要與實際有意義。2.當x=0時,b為函數在y軸上的截距。一次函數性質:

          1在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

          2一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。3.函數不是數,它是指某一變量過程中兩個變量之間的關系。

          特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系

          當平面直角坐標系中兩直線平行時,其函數解析式中K值(即一次項系數)相等

          當平面直角坐標系中兩直線垂直時,其函數解析式中K值互為負倒數(即兩個K值的乘積為-1)

          應用

          一次函數y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當ky2,則x1與x2的大小關系是()

          A.x1>x2B.x10,且y1>y2。根據一次函數的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。

          判斷函數圖象的位置例3.一次函數y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數的圖象不經過()A.第一象限B.第二象限C.第三象限D.第四象限

          解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k

         。5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。5、函數的圖像

          一般來說,對于一個函數,如果把自變量與函數的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數的圖象.

          6、函數解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做解析式。7、描點法畫函數圖形的一般步驟

          第一步:列表(表中給出一些自變量的值及其對應的函數值);

          第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。8、函數的表示方法

          列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。

          解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。

          圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。9、正比例函數及性質

          一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.注:正比例函數一般形式y=kx(k不為零)①k不為零②x指數為1③b取零解析式:y=kx(k是常數,k≠0)必過點:(0,0)、(1,k)

          走向:k>0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經過第一、三象限;k0,圖象經過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b

          .函數y=ax+b與y=bx+a的圖象在同一坐標系內的'大致位置正確的是()

          將直線y=3x向下平移5個單位,得到直線;將直線y=-x-5向上平移5個單位,得到直線.若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.

          已知函數y=3x+1,當自變量增加m時,相應的函數值增加()A.3m+1B.3mC.mD.3m-111、一次函數y=kx+b的圖象的畫法.根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.

          b>0經過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經過第一、二、四象限經過第二、三、四象限經過第二、四象限k0時,向上平移;當b

         。1)設一次函數的表達式(也叫解析式)為y=kx+b。(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b①

          和y2=kx2+b②

         。3)解這個二元一次方程,得到k,b的值。(4)最后得到一次函數的表達式。15、一元一次方程與一次函數的關系

          任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.

        函數知識點總結9

          反比例函數的表達式

          X是自變量,Y是X的函數

          y=k/x=k·1/x

          xy=k

          y=k·x^(-1)(即:y等于x的負一次方,此處X必須為一次方)

          y=kx(k為常數且k≠0,x≠0)若y=k/nx此時比例系數為:k/n

          函數式中自變量取值的范圍

         、賙≠0;②在一般的情況下,自變量x的取值范圍可以是不等于0的任意實數;③函數y的取值范圍也是任意非零實數。  解析式y=k/x其中X是自變量,Y是X的'函數,其定義域是不等于0的一切實數

          y=k/x=k·1/x  xy=k  y=k·x^(-1)  y=kx(k為常數(k≠0),x不等于0)

          反比例函數圖象

          反比例函數的圖像屬于以原點為對稱中心的中心對稱的雙曲線,反比例函數圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(K≠0)。

          反比例函數中k的幾何意義是什么?有哪些應用

          過反比例函數y=k/x(k≠0),圖像上一點P(x,y),作兩坐標軸的垂線,兩垂足、原點、P點組成一個矩形,矩形的面積S=x的絕對值*y的絕對值=(x*y)的絕對值=|k|

          研究函數問題要透視函數的本質特征。反比例函數中,比例系數k有一個很重要的幾何意義,那就是:過反比例函數圖象上任一點P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的面積S=PM·PN=|y|·|x|=|xy|=|k|。

          所以,對雙曲線上任意一點作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數。從而有k的絕對值。在解有關反比例函數的問題時,若能靈活運用反比例函數中k的幾何意義,會給解題帶來很多方便。

        函數知識點總結10

          一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。

          主要考察內容:

         、贂嬕淮魏瘮档膱D像,并掌握其性質。

         、跁鶕阎獥l件,利用待定系數法確定一次函數的解析式。

          ③能用一次函數解決實際問題。

         、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關系。

          突破方法:

         、僬_理解掌握一次函數的概念,圖像和性質。

          ②運用數學結合的思想解與一次函數圖像有關的問題。

         、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪。

         、茏鲆恍┚C合題的訓練,提高分析問題的能力。

          函數性質:

          1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。

          2.當x=0時,b為函數在y軸上的點,坐標為(0,b)。

          3當b=0時(即y=kx),一次函數圖像變為正比例函數,正比例函數是特殊的一次函數。

          4.在兩個一次函數表達式中:

          當兩一次函數表達式中的k相同,b也相同時,兩一次函數圖像重合;當兩一次函數表達式中的'k相同,b不相同時,兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時,兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時,兩一次函數圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱y是x的一次函數圖像性質

          1、作法與圖形:通過如下3個步驟:

         。1)列表.

         。2)描點;[一般取兩個點,根據“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。

          正比例函數y=kx(k≠0)的圖象是過坐標原點的一條直線,一般取(0,0)和(1,k)兩點。(3)連線,可以作出一次函數的圖象一條直線。因此,作一次函數的圖象只需知道2點,并連成直線即可。(通常找函數圖象與x軸和y軸的交點分別是-k分之b與0,0與b).

          2、性質:

         。1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

         。2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過原點。

          3、函數不是數,它是指某一變化過程中兩個變量之間的關系。

          4、k,b與函數圖像所在象限:

          y=kx時(即b等于0,y與x成正比例):

          當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數的圖象經過第一、二、三象限;當k>0,b

        函數知識點總結11

          1.函數的定義

          函數是高考數學中的重點內容,學習函數需要首先掌握函數的各個知識點,然后運用函數的各種性質來解決具體的問題。

          設A、B是非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A-B為從集合A到集合B的`一個函數,記作y=f(x),xA

          2.函數的定義域

          函數的定義域分為自然定義域和實際定義域兩種,如果給定的函數的解析式(不注明定義域),其定義域應指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數是有實際問題確定的,這時應根據自變量的實際意義來確定,函數的值域是由全體函數值組成的集合。

          3.求解析式

          求函數的解析式一般有三種種情況:

         。1)根據實際問題建立函數關系式,這種情況需引入合適的變量,根據數學的有關知識找出函數關系式。

         。2)有時體中給出函數特征,求函數的解析式,可用待定系數法。

         。3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數解析式的前提是,需要對各種函數的性質了解且熟悉。

          目前我們已經學習了常數函數、指數與指數函數、對數與對數函數、冪函數、三角函數、反比例函數、二次函數以及由以上幾種函數加減乘除,或者復合的一些相對較復雜的函數,但是這種函數也是初等函數。

        函數知識點總結12

          特別地,二次函數(以下稱函數)y=ax+bx+c。

          當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax+bx+c=0。

          此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。

          1.二次函數y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當h>0時,y=a(x-h)的圖象可由拋物線y=ax向右平行移動h個單位得到。

          當h<0時,則向xxx移動|h|個單位得到。

          當h>0,k>0時,將拋物線y=ax向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)+k的圖象。

          當h>0,k<0時,將拋物線y=ax向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)+k的圖象。

          當h<0,k>0時,將拋物線向xxx移動|h|個單位,再向上移動k個單位可得到y=a(x-h)+k的圖象。

          當h<0,k<0時,將拋物線向xxx移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)+k的圖象。

          因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

          2.拋物線y=ax+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b]/4a)。

          3.拋物線y=ax+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。

          4.拋物線y=ax+bx+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c)。

          (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點間的距離AB=|x-x|。

          當△=0.圖象與x軸只有一個交點;當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的.下方,x為任何實數時,都有y<0。

          5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b)/4a。

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

          6.用待定系數法求二次函數的解析式

          (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:y=ax+bx+c(a≠0)。

          (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)+k(a≠0)。

          (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

        函數知識點總結13

          1、定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

          (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a

          二次函數表達式的右邊通常為二次三項式。

          2、二次函數的三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

          頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)]

          交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點a(x,0)和b(x,0)的拋物線]

          注:在3種形式的互相轉化中,有如下關系:

          h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

          3、二次函數的圖像

          在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

          4、拋物線的性質

          1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。

          對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的'對稱軸是y軸(即直線x=0)

          2.拋物線有一個頂點p,坐標為:p ( -b/2a,(4ac-b^2)/4a )當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

          3.二次項系數a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a

          4.一次項系數b和二次項系數a共同決定對稱軸的位置。

          當a與b同號時(即ab>0),對稱軸在y軸左;

          當a與b異號時(即ab

          5.常數項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6.拋物線與x軸交點個數

          δ= b^2-4ac>0時,拋物線與x軸有2個交點。

          δ= b^2-4ac=0時,拋物線與x軸有1個交點。

          δ= b^2-4ac

          5、二次函數與一元二次方程

          特別地,二次函數(以下稱函數)y=ax^2+bx+c,

          當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

          此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。

          1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸:

          當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

          當h

          當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2 +k的圖象;

          當h>0,k

          當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

          當h

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a

          4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

          (1)圖象與y軸一定相交,交點坐標為(0,c);

          (2)當△=b^2-4ac>0,圖象與x軸交于兩點a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點間的距離ab=|x-x|

          當△=0.圖象與x軸只有一個交點;

          當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a

          5.拋物線y=ax^2+bx+c的最值:如果a>0(a

          頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值

          6.用待定系數法求二次函數的解析式

          (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

          (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).

          7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

        函數知識點總結14

          (一)、映射、函數、反函數

          1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。

          2、對于函數的概念,應注意如下幾點:

         。1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數。

         。2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式。

         。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數。

          3、求函數y=f(x)的反函數的一般步驟:

         。1)確定原函數的值域,也就是反函數的定義域;

         。2)由y=f(x)的解析式求出x=f—1(y);

         。3)將x,y對換,得反函數的習慣表達式y=f—1(x),并注明定義域。

          注意:

         、賹τ诜侄魏瘮档姆春瘮,先分別求出在各段上的反函數,然后再合并到一起。

         、谑煜さ膽,求f—1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算。

         。ǘ⒑瘮档慕馕鍪脚c定義域

          1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變量間的對應法則的同時,求出函數的定義域。求函數的定義域一般有三種類型:

         。1)有時一個函數來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;

         。2)已知一個函數的解析式求其定義域,只要使解析式有意義即可。如:

         、俜质降姆帜覆坏脼榱;

          ②偶次方根的被開方數不小于零;

         、蹖岛瘮档恼鏀当仨毚笥诹;

         、苤笖岛瘮岛蛯岛瘮档牡讛当仨毚笥诹闱也坏扔1;

         、萑呛瘮抵械恼泻瘮祔=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等。

          應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。

         。3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可。

          已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。

          2、求函數的解析式一般有四種情況

         。1)根據某實際問題需建立一種函數關系時,必須引入合適的變量,根據數學的有關知識尋求函數的解析式。

         。2)有時題設給出函數特征,求函數的解析式,可采用待定系數法。比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可。

         。3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數的定義域。

         。4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。

         。ㄈ、函數的值域與最值

          1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

         。1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。

         。2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。

         。3)反函數法:利用函數f(x)與其反函數f—1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。

         。4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法。

         。5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

          (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

         。7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域。

         。8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。

          2、求函數的最值與值域的區別和聯系

          求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值。因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

          如函數的值域是(0,16],最大值是16,無最小值。再如函數的值域是(—∞,—2]∪[2,+∞),但此函數無最大值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2。可見定義域對函數的值域或最值的影響。

          3、函數的最值在實際問題中的應用

          函數的`最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤最大”或“面積(體積)最大(最。钡戎T多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。

         。ㄋ模、函數的奇偶性

          1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數)。

          正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關于原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數定義域上的整體性質)。

          2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:

          注意如下結論的運用:

         。1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

         。2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

         。3)奇偶函數的復合函數的奇偶性通常是偶函數;

         。4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

          3、有關奇偶性的幾個性質及結論

         。1)一個函數為奇函數的充要條件是它的圖象關于原點對稱;一個函數為偶函數的充要條件是它的圖象關于y軸對稱。

         。2)如要函數的定義域關于原點對稱且函數值恒為零,那么它既是奇函數又是偶函數。

         。3)若奇函數f(x)在x=0處有意義,則f(0)=0成立。

         。4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。

          (5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(—x)是偶函數,G(x)=f(x)—f(—x)是奇函數。

         。6)奇偶性的推廣

          函數y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數。函數y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。

         。ㄎ澹、函數的單調性

          1、單調函數

          對于函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數。

          對于函數單調性的定義的理解,要注意以下三點:

         。1)單調性是與“區間”緊密相關的概念。一個函數在不同的區間上可以有不同的單調性。

         。2)單調性是函數在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替。

         。3)單調區間是定義域的子集,討論單調性必須在定義域范圍內。

          (4)注意定義的兩種等價形式:

          設x1、x2∈[a,b],那么:

         、僭赱a、b]上是增函數;

          在[a、b]上是減函數。

          ②在[a、b]上是增函數。

          在[a、b]上是減函數。

          需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。

         。5)由于定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說明單調性使得自變量間的不等關系和函數值之間的不等關系可以“正逆互推”。

          5、復合函數y=f[g(x)]的單調性

          若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡稱“同增、異減”。

          在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握并熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程。

          6、證明函數的單調性的方法

         。1)依定義進行證明。其步驟為:

         、偃稳1、x2∈M且x1(或<)f(x2);

          ②根據定義,得出結論。

          (2)設函數y=f(x)在某區間內可導。

          如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數。

         。⒑瘮档膱D象

          函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識。

          求作圖象的函數表達式

          與f(x)的關系

          由f(x)的圖象需經過的變換

          y=f(x)±b(b>0)

          沿y軸向平移b個單位

          y=f(x±a)(a>0)

          沿x軸向平移a個單位

          y=—f(x)

          作關于x軸的對稱圖形

          y=f(|x|)

          右不動、左右關于y軸對稱

          y=|f(x)|

          上不動、下沿x軸翻折

          y=f—1(x)

          作關于直線y=x的對稱圖形

          y=f(ax)(a>0)

          橫坐標縮短到原來的,縱坐標不變

          y=af(x)

          縱坐標伸長到原來的|a|倍,橫坐標不變

          y=f(—x)

          作關于y軸對稱的圖形

          【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

         、偾笞C:f(0)=1;

         、谇笞C:y=f(x)是偶函數;

          ③若存在常數c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由。

          思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般采用賦值法。

          解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。

         、诹顇=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函數。

         、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=

          所以,所以f(x+c)=—f(x)。

          兩邊應用中的結論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數,2c就是它的一個周期。

        函數知識點總結15

          I.定義與定義表達式

          一般地,自變量_和因變量y之間存在如下關系:y=a_^2+b_+c

          (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數。

          二次函數表達式的右邊通常為二次三項式。

          II.二次函數的三種表達式

          一般式:y=a_^2+b_+c(a,b,c為常數,a≠0)

          頂點式:y=a(_-h)^2+k[拋物線的頂點P(h,k)]

          交點式:y=a(_-_?)(_-_?)[僅限于與_軸有交點A(_?,0)和B(_?,0)的'拋物線]

          注:在3種形式的互相轉化中,有如下關系:

          h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

          III.二次函數的圖像

          在平面直角坐標系中作出二次函數y=_^2的圖像,可以看出,二次函數的圖像是一條拋物線。

          IV.拋物線的性質

          1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。

          對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)

          2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。

          3.二次項系數a決定拋物線的開口方向和大小。

          當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

          4.一次項系數b和二次項系數a共同決定對稱軸的位置。

          當a與b同號時(即ab>0),對稱軸在y軸左;

          當a與b異號時(即ab<0),對稱軸在y軸右。

          5.常數項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6.拋物線與_軸交點個數

          Δ=b^2-4ac>0時,拋物線與_軸有2個交點。

          Δ=b^2-4ac=0時,拋物線與_軸有1個交點。

          Δ=b^2-4ac<0時,拋物線與_軸沒有交點。

          _的取值是虛數(_=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

          V.二次函數與一元二次方程

          特別地,二次函數(以下稱函數)y=a_^2+b_+c,

          當y=0時,二次函數為關于_的一元二次方程(以下稱方程),即a_^2+b_+c=0

          此時,函數圖像與_軸有無交點即方程有無實數根。函數與_軸交點的橫坐標即為方程的根。

        【函數知識點總結】相關文章:

        函數知識點總結02-10

        函數知識點總結06-23

        [精華]函數知識點總結08-28

        函數知識點總結(精)08-21

        (精品)函數知識點總結08-22

        (精)函數知識點總結08-25

        (精)函數知識點總結08-25

        函數知識點總結【熱門】08-21

        [集合]函數知識點總結09-19

        函數知識點總結(熱門)09-19

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>