1. <rp id="zsypk"></rp>

      2. 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2024-01-31 08:59:43 知識(shí)點(diǎn)總結(jié) 我要投稿

        北師大版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

          總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),快快來(lái)寫一份總結(jié)吧?偨Y(jié)一般是怎么寫的呢?下面是小編為大家收集的北師大版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

        北師大版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

          三角和的公式

          sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

          cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

          tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

          倍角公式

          tan2A = 2tanA/(1-tan2 A)

          Sin2A=2SinA?CosA

          Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

          三倍角公式

          sin3A = 3sinA-4(sinA)3;

          cos3A = 4(cosA)3 -3cosA

          tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

          三角函數(shù)特殊值

          α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

          α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

          α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

          a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

          α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

          α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

          α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

          α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

          α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

          α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

          α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

          α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

          三角函數(shù)記憶順口溜

          1、三角函數(shù)記憶口訣

          “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

          以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

          2、符號(hào)判斷口訣

          全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

          也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱?谠E中未提及的都是負(fù)值。

          “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

          3、三角函數(shù)順口溜

          三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

          同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

          中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

          計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

          逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

          萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

          一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

          三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

          利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

          北師大版八年級(jí)上冊(cè)數(shù)學(xué)第一單元知識(shí)點(diǎn)

          因式分解

          1、因式分解:把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化。

          2、因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”。

          3、公因式的確定:系數(shù)的公約數(shù),相同因式的低次冪。

          注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.

          4、因式分解的公式:

          (1)平方差公式:a2-b2=(a+b)(a-b);

          (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

          5、因式分解的注意事項(xiàng):

          (1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;

          (2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;

          (3)因式分解的后結(jié)果要求分解到每一個(gè)因式都不能分解為止;

          (4)因式分解的后結(jié)果要求每一個(gè)因式的首項(xiàng)符號(hào)為正;

          (5)因式分解的后結(jié)果要求加以整理;

          (6)因式分解的后結(jié)果要求相同因式寫成乘方的形式。

          6、因式分解的解題技巧:

          (1)換位整理,加括號(hào)或去括號(hào)整理;

          (2)提負(fù)號(hào);

          (3)全變號(hào);

          (4)換元;

          (5)配方;

          (6)把相同的式子看作整體;

          (7)靈活分組;

          (8)提取分?jǐn)?shù)系數(shù);

          (9)展開(kāi)部分括號(hào)或全部括號(hào);

          (10)拆項(xiàng)或補(bǔ)項(xiàng)。

          分式

          1、分式:一般地,用A、B表示兩個(gè)整式,A÷B就可以表示為的形式,如果B中含有字母,式子叫做分式。

          2、有理式:整式與分式統(tǒng)稱有理式;

          3、對(duì)于分式的兩個(gè)重要判斷:

          (1)若分式的分母為零,則分式無(wú)意義,反之有意義;

          (2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無(wú)意義。

          4、分式的基本性質(zhì)與應(yīng)用:

          (1)若分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變;

          (2)注意:在分式中,分子、分母、分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變;

          (3)繁分式化簡(jiǎn)時(shí),采用分子分母同乘小分母的小公倍數(shù)的方法,比較簡(jiǎn)單。

          5、分式的約分:把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解。

          6、簡(jiǎn)分式:一個(gè)分式的分子與分母沒(méi)有公因式,這個(gè)分式叫做簡(jiǎn)分式;注意:分式計(jì)算的后結(jié)果要求化為簡(jiǎn)分式。

          數(shù)學(xué)常用解題技巧有哪些

          第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來(lái)高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。

          第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。

          第三,屬于非智力因素導(dǎo)致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過(guò)去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩(wěn)定下來(lái)以后再回過(guò)頭來(lái)看會(huì)頓悟,豁然開(kāi)朗。

          第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過(guò)程,因此在這個(gè)過(guò)程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_(kāi)始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來(lái)。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說(shuō),規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫、誰(shuí)看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過(guò)程,這是規(guī)范答題。

          學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧

          1、把答案蓋住看例題

          例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。

          所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。

          經(jīng)過(guò)上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì)更大。

          2、研究每題都考什么

          數(shù)學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過(guò)一題聯(lián)想到很多題。

          3、錯(cuò)一次反思一次

          每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來(lái)。

          學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了.

          4、分析試卷總結(jié)經(jīng)驗(yàn)

          每次考試結(jié)束試卷發(fā)下來(lái),要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。

          數(shù)學(xué)解題方法分別有哪些

          1、配方法

          所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

          2、因式分解法

          因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

          3、換元法

          替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。

          4、判別式法與韋達(dá)定理

          一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

          韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。

          5、待定系數(shù)法

          在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

          6、構(gòu)造法

          在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。

        【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)12-12

        初中數(shù)學(xué)《整式》知識(shí)點(diǎn)總結(jié)10-21

        初中數(shù)學(xué)畢業(yè)知識(shí)點(diǎn)總結(jié)07-06

        初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-03

        初中數(shù)學(xué)必學(xué)的知識(shí)點(diǎn)總結(jié)04-24

        數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)04-25

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

        初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)03-01

        初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05

        初中數(shù)學(xué)知識(shí)點(diǎn)圓總結(jié)08-02

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>