1. <rp id="zsypk"></rp>

      2. 初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2022-11-24 15:06:03 知識(shí)點(diǎn)總結(jié) 我要投稿

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)6篇

          總結(jié)是在某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,讓我們抽出時(shí)間寫寫總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編整理的初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來看看吧。

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)6篇

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)1

          課題

          3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

          教學(xué)目標(biāo)

          1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式

          教學(xué)重點(diǎn)

          掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

          教學(xué)難點(diǎn)

          掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

          教學(xué)方法

          講練結(jié)合法

          教學(xué)過程

         。↖)知識(shí)要點(diǎn)(見下表:)

          第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無無無b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

          第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對(duì)稱軸x,頂點(diǎn)(,)

          2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解

          例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過點(diǎn)Q(3,3)

         。3)拋物線對(duì)稱軸是x2,它在x軸上截出的線段AB長(zhǎng)為2且拋物線過點(diǎn)(1,7)。2,

          解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為

          abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得

          a2,故y2(x1)252x24x3

         。3)∵拋物線對(duì)稱軸為x2;

          ∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對(duì)稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

          ∴所求二次函數(shù)為yx24x2,

          2,0)、B(222,0)

          2)(x22)a(x2)22a,將(1,7)

          5),例2:二次函數(shù)的圖像過點(diǎn)(0,8),(1,(4,0)

         。1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

          例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

          113x1(x)2,知函數(shù)的圖像開口向上,對(duì)稱軸為x

          224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)2

          三角和的公式

          sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

          cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

          tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

          倍角公式

          tan2A = 2tanA/(1-tan2 A)

          Sin2A=2SinA?CosA

          Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

          三倍角公式

          sin3A = 3sinA-4(sinA)3;

          cos3A = 4(cosA)3 -3cosA

          tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

          三角函數(shù)特殊值

          α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

          α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

          α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

          a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

          α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

          α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

          α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

          α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

          α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

          α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

          α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

          α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

          三角函數(shù)記憶順口溜

          1三角函數(shù)記憶口訣

          “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

          以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

          2符號(hào)判斷口訣

          全,S,T,C,正。這五個(gè)字口訣的意思就是說:第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

          也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱?谠E中未提及的都是負(fù)值。

          “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

          3三角函數(shù)順口溜

          三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

          同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

          中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,

          頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

          變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

          將其后者視銳角,符號(hào)原來函數(shù)判。兩角和的余弦值,化為單角好求值,

          余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

          計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。

          逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

          萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

          一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

          三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

          利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)3

          1.常量和變量

          在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

          2.函數(shù)

          設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù).

          3.自變量的取值范圍

          (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

          (3)偶次方根:被開方數(shù)為非負(fù)數(shù).

          (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

          4.函數(shù)值

          對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.

          5.函數(shù)的表示法

          (1)解析法;(2)列表法;(3)圖象法.

          6.函數(shù)的圖象

          把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

          (1)寫出函數(shù)解析式及自變量的取值范圍;

          (2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;

          (3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

          (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來.

          7.一次函數(shù)

          (1)一次函數(shù)

          如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

          特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

          (2)一次函數(shù)的圖象

          一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點(diǎn)的直線.需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

          (3)一次函數(shù)的性質(zhì)

          當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

          (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

          ①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

         、诙淮畏匠探M對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

         、廴魏我辉淮尾坏仁蕉伎梢赞D(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

          8.反比例函數(shù)(1)反比例函數(shù)

         。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

          (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

          (3)反比例函數(shù)的性質(zhì)

         、佼(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.

         、诋(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

         、鄯幢壤瘮(shù)圖象關(guān)于直線y=±x對(duì)稱,關(guān)于原點(diǎn)對(duì)稱.

          (4)k的兩種求法

         、偃酎c(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

          若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

          (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問題

          若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無交點(diǎn);

          當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱.

          1.二次函數(shù)

          如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

          幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

          2.二次函數(shù)的圖象

          二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

          3.二次函數(shù)的性質(zhì)

          二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):

          (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱軸是直線,頂點(diǎn)必在對(duì)稱軸上;

          (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減。划(dāng)x=時(shí),y有最大值;

          (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

          (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

         。0時(shí),拋物線y=ax2+bx+c與x軸沒有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

          拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)4

          k0時(shí),y隨x的增大而減小,直線一定過二、四象限(3)若直線l1:yk1xb1l2:yk2xb2

          當(dāng)k1k2時(shí),l1//l2;當(dāng)b1b2b時(shí),l1與l2交于(0,b)點(diǎn)。

         。4)當(dāng)b>0時(shí)直線與y軸交于原點(diǎn)上方;當(dāng)b學(xué)大教育

          (1)是中心對(duì)稱圖形,對(duì)中稱心是原點(diǎn)(2)對(duì)稱性:是軸直線yx和yx(2)是軸對(duì)稱圖形,對(duì)稱k0時(shí)兩支曲線分別位于一、三象限且每一象限內(nèi)y隨x的增大而減。3)

          k0時(shí)兩支曲線分別位于二、四象限且每一象限內(nèi)y隨x的增大而增大(4)過圖象上任一點(diǎn)作x軸與y軸的垂線與坐標(biāo)軸構(gòu)成的矩形面積為|k|。

          P(1)應(yīng)用在u3.應(yīng)用(2)應(yīng)用在(3)其它F上SS上t其要點(diǎn)是會(huì)進(jìn)行“數(shù)結(jié)形合”來解決問題二、二次函數(shù)

          1.定義:應(yīng)注意的問題

          (1)在表達(dá)式y(tǒng)=ax2+bx+c中(a、b、c為常數(shù)且a≠0)(2)二次項(xiàng)指數(shù)一定為22.圖象:拋物線

          3.圖象的性質(zhì):分五種情況可用表格來說明表達(dá)式(1)y=ax2頂點(diǎn)坐標(biāo)對(duì)稱軸(0,0)最大(。┲祔最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線x=0(y軸)①若a>0,則x=0時(shí),若a>0,則x>0時(shí),y②若a0,則x=0時(shí),①若a>0,則x>0時(shí),y②若a0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a學(xué)大教育

          表達(dá)式h)2+k頂點(diǎn)坐標(biāo)對(duì)稱軸直線x=h最大(。┲祔最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時(shí),①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a0,則x=4acb24ay最小=4acb24ab時(shí),y隨x的增大而增大時(shí),②若a2a2a時(shí),y隨x的增大而減小b②若a學(xué)大教育

          一次函數(shù)圖象和性質(zhì)

          【知識(shí)梳理】

          1.正比例函數(shù)的一般形式是y=kx(k≠0),一次函數(shù)的一般形式是y=kx+b(k≠0).2.一次函數(shù)ykxb的圖象是經(jīng)過(3.一次函數(shù)ykxb的圖象與性質(zhì)

          圖像的大致位置經(jīng)過象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質(zhì)而而而而

          【思想方法】數(shù)形結(jié)合

          k、b的符號(hào)k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點(diǎn)的一條直線.k反比例函數(shù)圖象和性質(zhì)

          【知識(shí)梳理】

          1.反比例函數(shù):一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=或(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).2.反比例函數(shù)的圖象和性質(zhì)

          k的.符號(hào)k>0yoxk<0yox

          圖像的大致位置經(jīng)過象限性質(zhì)

          第象限在每一象限內(nèi),y隨x的增大而第象限在每一象限內(nèi),y隨x的增大而3.k的幾何含義:反比例函數(shù)y=的幾何意義,即過雙曲線y=

          k(k≠0)中比例系數(shù)kxk(k≠0)上任意一點(diǎn)P作x4

          x軸、y軸垂線,設(shè)垂足分別為A、B,則所得矩形OAPB

          函數(shù)學(xué)習(xí)方法學(xué)大教育

          的面積為.

          【思想方法】數(shù)形結(jié)合

          二次函數(shù)圖象和性質(zhì)

          【知識(shí)梳理】

          1.二次函數(shù)ya(xh)2k的圖像和性質(zhì)

          圖象開口對(duì)稱軸頂點(diǎn)坐標(biāo)最值增減性

          在對(duì)稱軸左側(cè)在對(duì)稱軸右側(cè)當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而銳角三角函數(shù)

          【思想方法】

          1.常用解題方法設(shè)k法2.常用基本圖形雙直角

          【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=

          14,則tanB=______;(2)若cosA=,則tanB=______.255

          函數(shù)學(xué)習(xí)方法學(xué)大教育

          例題2.(1)已知:cosα=

          23,則銳角α的取值范圍是()A.0°

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)5

          誘導(dǎo)公式的本質(zhì)

          所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

          常用的誘導(dǎo)公式

          公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

          sin(2k)=sin kz

          cos(2k)=cos kz

          tan(2k)=tan kz

          cot(2k)=cot kz

          公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

          sin()=-sin

          cos()=-cos

          tan()=tan

          cot()=cot

          公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

          sin(-)=-sin

          cos(-)=cos

          tan(-)=-tan

          cot(-)=-cot

          公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

          sin()=sin

          cos()=-cos

          tan()=-tan

          cot()=-cot

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)6

          ∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

          4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開口方向及對(duì)稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

          解:(1)f(x)的對(duì)稱軸是x可得函數(shù)圖像開口向上

          2(a1)21a,且二次項(xiàng)系數(shù)為1>0

          1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

          4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

          例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

         。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對(duì)稱軸為x(3x)(3x)23

          b3可得b62f(x)x26x2(x3)211

          而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對(duì)稱軸x3對(duì)稱

          x1x223,可得x1x26

          第三章第32頁由二次項(xiàng)系數(shù)為1>0,可知拋物線開口向上又134,132,431

          ∴依二次函數(shù)的對(duì)稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

         。á簦┙虒W(xué)后記:

          第三章第33頁

          擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

          學(xué)大教育

          初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類學(xué)習(xí)方法

          初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績(jī)自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

          一、一次函數(shù)

          1.定義:在定義中應(yīng)注意的問題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

        【初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

        初中函數(shù)知識(shí)點(diǎn)總結(jié)03-30

        函數(shù)初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)報(bào)告11-23

        初中數(shù)學(xué)二次函數(shù)的知識(shí)點(diǎn)總結(jié)12-02

        初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)02-08

        數(shù)學(xué)高一函數(shù)知識(shí)點(diǎn)總結(jié)11-03

        初中2次函數(shù)知識(shí)點(diǎn)總結(jié)04-11

        高一數(shù)學(xué)函數(shù)的知識(shí)點(diǎn)總結(jié)01-15

        初中數(shù)學(xué)函數(shù)的說課稿11-14

        初中數(shù)學(xué)函數(shù)的說課稿04-12

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>