1. <rp id="zsypk"></rp>

      2. 數(shù)學(xué)的復(fù)習(xí)計劃與方法

        時間:2021-06-11 15:41:43 學(xué)習(xí)計劃 我要投稿

        數(shù)學(xué)的復(fù)習(xí)計劃與方法

          1 第一階段復(fù)習(xí)計劃:

        數(shù)學(xué)的復(fù)習(xí)計劃與方法

          復(fù)習(xí)高數(shù)書上冊第一章,需要達到以下目標:

          1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系.

          2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.

          3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.

          4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.

          5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系.

          6.掌握極限的性質(zhì)及四則運算法則.

          7.掌握極限存在的兩個準則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.

          8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.

          9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.

          10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì).

          本階段主要任務(wù)是掌握函數(shù)的有界性、單調(diào)性、周期性和奇偶性;基本初等函數(shù)的性質(zhì)及其圖形;數(shù)列極限與函數(shù)極限的定義及其性質(zhì);無窮小量的比較;兩個重要極限;函數(shù)連續(xù)的概念、函數(shù)間斷點的類型;閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。

          2第二階段復(fù)習(xí)計劃:

          復(fù)習(xí)高數(shù)書上冊第二章1-3節(jié),需達到以下目標:

          1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.

          2.掌握導(dǎo)數(shù)的四則運算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分.

          3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù).

          本周主要任務(wù)是掌握導(dǎo)數(shù)的幾何意義;函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系;平面曲線的切線和法線;牢記 基本初等函數(shù)的導(dǎo)數(shù)公式;會用遞推法計算高階導(dǎo)數(shù)。

          3 第三階段復(fù)習(xí)計劃:

          復(fù)習(xí)高數(shù)書上冊第二章 4-5節(jié),第三章1-5節(jié)。需達到以下目標:

          1.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).

          2.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

          3.掌握用洛必達法則求未定式極限的方法.

          4.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.

          5.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性。(注:在區(qū)間[a,b]內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)。當(dāng) 時,圖形是凹的;當(dāng) 時,圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.

          本周主要任務(wù)是掌握分段函數(shù),反函數(shù),隱函數(shù),由參數(shù)方程確定函數(shù)的導(dǎo)數(shù)。會根據(jù)函數(shù)在一點的'導(dǎo)數(shù)判斷函數(shù)的增減性。會應(yīng)用微分中值定理證明。會根據(jù)洛比達法則的幾種情況應(yīng)用法則求極限。掌握極值存在的必要條件,第一和第二充分條件。會計算函數(shù)的極值和最值以及函數(shù)的凸凹性。會計算函數(shù)的漸近線。會計算與導(dǎo)數(shù)有關(guān)的應(yīng)用題[邊際問題、彈性問題、經(jīng)濟問題和幾何問題的最值]。

          4 第四階段復(fù)習(xí)計劃

          復(fù)習(xí)高數(shù)書上冊第四章 第1-3節(jié)。需達到以下目標:

          1.理解原函數(shù)的概念,理解不定積分的概念.

          2.掌握不定積分的基本公式,掌握不定積分的性質(zhì),掌握不定積分換元積分法與分部積分法.會求簡單函數(shù)的不定積分。

          本周主要任務(wù)是掌握不定積分的性質(zhì),不定積分的公式[牢記一個函數(shù)的原函數(shù)有無窮多個,注意+C],會運用第一,第二換元法求函數(shù)的不定積分。掌握不定積分分部積分公式并應(yīng)用。

          5 第五階段復(fù)習(xí)計劃

          復(fù)習(xí)高數(shù)書上冊第五章第1-3節(jié)。達到以下目標:

          1.理解定積分的幾何意義。

          2.掌握定積分的性質(zhì)及定積分中值定理。

          3.掌握定積分換元積分法與定積分廣義換元法.

          本周的主要任務(wù)是掌握不定積分的性質(zhì),會根據(jù)不定積分的性質(zhì)做題。尤其注意積分上下限互換后積分值變?yōu)槠湎喾磾?shù),定積分與變量無關(guān),可根據(jù)函數(shù)奇偶性計算定積分等性質(zhì)。

          6 第六階段復(fù)習(xí)計劃

          復(fù)習(xí)高數(shù)書上冊第五章第4節(jié),第六章第2節(jié)。達到以下目標:

          1.掌握積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.

          2.掌握定積分換元法與定積分廣義換元法. 會求分段函數(shù)的定積分。

          3.掌握用定積分計算一些幾何量 (如平面圖形的面積、旋轉(zhuǎn)體的體積)。了解廣義積分與無窮限積分。

          本周主要任務(wù)是掌握積分上限函數(shù)的性質(zhì),掌握牛頓-萊布尼茨公式,應(yīng)用定積分換元法求定積分。會根據(jù)定積分的幾何意義計算平面圖形的面積、旋轉(zhuǎn)體的體積。

        【數(shù)學(xué)的復(fù)習(xí)計劃與方法】相關(guān)文章:

        小升初數(shù)學(xué)復(fù)習(xí)計劃方法分析06-12

        復(fù)習(xí)計劃與方法技巧04-18

        關(guān)于復(fù)習(xí)計劃與方法06-12

        數(shù)學(xué)復(fù)習(xí)計劃04-20

        數(shù)學(xué)的復(fù)習(xí)計劃04-12

        數(shù)學(xué)復(fù)習(xí)計劃05-30

        寒假復(fù)習(xí)計劃制定方法06-11

        高考英語復(fù)習(xí)計劃與方法04-12

        高考語文復(fù)習(xí)計劃及方法04-15

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>