編寫者單位:紹興縣錢清鎮(zhèn)中心小學 編寫者姓名:孟彩娟 編號:
教材內(nèi)容:方程的意義
教材分析:
方程是含有未知數(shù)的等式,因此我設計教學方程的概念是從等式引入的,教材采用連環(huán)畫的形式,首先通過天平演示,說明天平平衡的條件是左右兩邊所放物體質(zhì)量相等。同時得出一只空杯正好100克。然后在杯中倒入水,并設水重x克,讓學生說出能用一個什么樣的式子表示出來,讓學生知道方程源于生活。通過引導學生觀察一組圖形的變化,逐步引出等式,從而由不等到相等,引出含有未知數(shù)的等式稱為方程。
在此基礎上,一方面讓學生列舉像方程這樣的式子,并予以區(qū)別,強化方程的意義。另一方面通過三位小朋友寫方程,讓學生初步感知方程的多樣性。
“做一做”讓學生判斷哪些是方程,使學生進一步鞏固方程的意義。在這兒,一般只要求學生初步理解方程的意義,所以只要學生知道什么是方程,能判斷就可,不必在概念上過分糾纏,更不必拓展太多,以免加重學生負擔。
“你知道嗎?”的閱讀資料簡要介紹了有關方程的一些史料。讓學生只需感知,不作記憶的要求。
學情分析:
五年級的學生對方程這塊內(nèi)容是第一次正式接觸,雖然在這學期開始的作業(yè)本中有幾次方程的題出現(xiàn),但對學生來說還是比較陌生的,在他們頭腦中還沒有過方程這樣的表象,所以授新課就要從學生原有的基礎開始,從他們知道的東西,如蹺蹺板到天平,然后再過渡到方程。在教學過程中還要注意把握學生的接受能力,這節(jié)課只要學生能理解和判斷,不能過分糾纏概念上問題和其他課外的知識,如果要學生了解太多會加重學生的負擔,反而使學生因難而失去學習的興趣;A不太好、理解能力不太強的學生在學習過程中可能會遇到對新的內(nèi)容不容易接受,特別是概念課,所以讓學生課前預習會對這些學生有一定的幫助。在課堂上多讓學生看形象的事物,從而理解概念,幫助學生更好的學習。
教學目標:1. 通過天平演示,使學生初步理解方程的意義;
2. 使學生能夠判斷一個式子是不是方程并能解決簡單的實際問題;
3. 培養(yǎng)學生觀察、描述、分類、抽象、概括、應用等能力。
重點難點: 判斷一個式子是不是方程;初步理解方程的意義。
課前準備: 課件、天平、帶有磁鐵的卡紙、彩色記號筆。
教學過程: 修改意見
一、復習舊知,激趣導入
同學們,我們上節(jié)課學了用含有字母的式子表示一些數(shù)量關系,現(xiàn)在老師要考考你們,已知我們學校有3077位同學,再加上所有老師,你能用一個式子來表示師生一共有多少人嗎?(板書:3077+ x)。學得真不錯,今天我們要進一步來研究這些含有未知數(shù)的式子所隱藏著的數(shù)學奧秘,想知道嗎?請你用飽滿的姿態(tài)告訴老師!
二、創(chuàng)設情景,導入新課
1.課件出示第一幅圖:先展示翹翹板,然后以動畫形式分別讓兩只小雞跳到翹翹板左邊(重量分別為300克、200克),一只500克的小鴨跳到翹翹板右邊,翹翹板搖晃后平衡。
師:請同學們仔細看大屏幕。
問:你們觀察到了什么?(學生自由說)
問:誰能用式子表示翹翹板的平衡情況?(卡片出示300+200=500)
師:在數(shù)學中與翹翹板原理一樣的工具,你知道是什么嗎?(生答:天平)
(出示天平)這就是我們這節(jié)課要用到的稱量工具--天平。天平是由天平秤和砝碼組成的。砝碼有不同,越大就越重。把要稱量的物體放在左邊的托盤,右邊的托盤放上相應的砝碼,當天平平衡、指針指在正中央,說明這個物體的重量就是砝碼的重量。
2.課件出示第二幅圖:一個天平左盤上放了一個玻璃杯,右盤上放了100 g重的砝碼,正好平衡。
師:請看這幅圖。
思考:看了這幅圖你知道了什么?生答。
師:對,我們找到了這樣一個等量關系,(課件出示:1個空杯子=100g)
3. 課件出示第三幅圖:一個天平左盤上放了一個加約150毫升水(紅色)的玻璃杯,右盤上放了100 g重的砝碼,天平左低右高。
師:如果我們在杯中加約150毫升的水呢?為了大家看得更清楚,老師在水中滴幾滴紅墨水。
問:這時發(fā)生了什么變化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)
問:如果水重x克,你能用一個式子表示天平兩邊的結果嗎?
生回答后,課件、卡片出示:100+X>100
4.課件出示第四幅圖:一個天平左盤上放了一個加了水的玻璃杯,右盤上加了100 g重的砝碼,天平還是左低右高。
師:天平出現(xiàn)了傾斜,因為杯子和水的質(zhì)量加起來比100克重,要使天平平衡,該怎么做?(增加砝碼)對,要需要增加砝碼的質(zhì)量。
師:怎么樣?剛才左低右高,現(xiàn)在呢?(生能答:還要加砝碼)那就在加100 g重的一個砝碼。(課件演示:右盤上再放100 g重的砝碼,天平出現(xiàn)左高右低。)
師:現(xiàn)在什么情況?(生答:左高右低)這種情況你能用式子來表示嗎?可以同桌討論。
學生回答后課件、卡片出示: 100+X<300
問:觀察列出的兩個式子,有什么共同的地方?
這個問題可能稍有難度,教師可以引導:當天平兩邊不平衡,一邊比一邊重時,要表示兩邊的關系,我們就可以用這樣的不等式表示。(板書:不等式)
問:能再舉幾個這樣的不等式嗎?
(學生列出不等式,教師選擇兩個寫在卡片上貼于黑板。)
5. 課件出示第五幅圖:一個天平左盤上放了一個加了水的玻璃杯,右盤上放了250 g重的砝碼,天平平衡。
師:下面老師把其中一個100 g重的砝碼換成50 g重的砝碼。你再來觀察一下。
(學生看到都說:平衡了)
問:誰來表示這個式子?
學生回答后課件、卡片出示:100+X=250
問:為什么用“=”呢?(平衡就是相等了)
問:哦,那這個式子與剛才兩個不等式比較最大不同是什么?(生能答,不能教師引導:這個式子中間是等號,叫等式。板書:等式)
問:能再舉幾個這樣的等式嗎?
(生舉例,教師選擇三個寫在貼于黑板的卡片上。)
這時黑板上的卡片有:
300+200=500 100+X<300
100+X>100 100+X=250
80+X>100 100+50<300
5×a=40 X+200 X+X=8
三、探究交流,抽象概括
1.分類、建構概念
讓全班觀察黑板上的8個算式,根據(jù)它們的特點,小組討論,試將他它們分類并說明理由。
學生討論。
問:誰來說說你們是按照什么標準分的?
(1)如果學生中有“是否含有未知數(shù)”(板書:含有未知數(shù))“是否是等式”(板書:等式)這兩類的重點說,其余的口頭交流。
(2)讓按“是否含有未知數(shù)”分的學生把式子分成兩堆。
問:按照不同的標準,有不同的結果。這一種分法,我們得到的這幾個式子是什么式子?(含有未知數(shù))那這幾個呢?(沒有未知數(shù))
問:你能把這一種(指含有未知數(shù))再分成兩類嗎?怎么分?指名板演。
(或者讓按“是否是等式”分的學生把式子分成兩堆。
問:按照不同的標準,有不同的結果。這一種分法,我們得到的這幾個式子是什么式子?(是等式)那這幾個呢?(不是等式)
問:你能把這一種(指是等式)再分成兩類嗎?怎么分?指名板演。
根據(jù)學生的思路來講。)
問:你們發(fā)現(xiàn)了這一類式子有什么特點?(揭示:含有未知數(shù)的等式)
師:像這樣,含有未知數(shù)的等式我們把它叫做方程。(板書:像這樣含有未知數(shù)的等式,叫做方程。)一起讀一遍。(學生齊讀)這也是我們今天這堂課要學習的內(nèi)容。(板書課題:方程的意義)
2.理解、鞏固概念
師:自己理解一下方程的概念,方程必須具備哪幾個條件?(未知數(shù)和等式)
師:你會自己寫出一些方程嗎?(生答:會。)請四個學生到黑板上板演寫兩個,其他同學在作業(yè)紙上寫。
寫好后,請同學們用手勢一起判斷對錯,說說你是怎么判斷的。同桌互改。
小結:判斷一個式子是不是方程,一看是不是等式,二看有沒有未知數(shù)。
(出示課件)問:老師這兒也有幾個式子,它們是方程嗎?(用手勢表示,隨機讓學生說說為什么)
6+x=14 3+x 50÷2=25 ab=18
6+x>23 51÷a=17 x+y=18
問:通過這幾道題的練習,你對方程有了哪些新的認識?
(1)未知數(shù)不一定用X表示。
(2)未知數(shù)不一定只有一個。
四、鞏固提高,形成技能
1.判斷
下邊哪些式子是方程?(課本54頁“做一做”)
35+65=100 x -14>72
y+24 5x+32=47
28<16+14 6(a+2)=42
2.你知道嗎?
課件動態(tài)顯示關于方程的小知識。
你知道嗎?早在三千六百多年前,埃及人就會用方程解決數(shù)學問題了。在我國古代,大約兩千年前成書的《九章算術》中,就記載了用一組方程解決實際問題的史料。一直到三百年前,法國數(shù)學家笛卡兒第一個提倡用x、y、z等字母代表未知數(shù),才形成了現(xiàn)在的方程。
3.練練思維
孟老師今年的年齡加上7就是30歲,你知道老師今年幾歲了嗎?
某同學今年的年齡的2倍是22歲,他今年幾歲?
4.提高智慧
小剛集郵共360張,小紅集郵共400張,怎么才能使兩人的郵票張數(shù)一樣多?
5.數(shù)學游戲:小博士用他的手遮住了所寫的內(nèi)容。他想讓你們猜猜他寫的式子是不是方程。(用多媒體設計出手的形狀蓋在方格上)
(1)□ +X > 40 (不是)
(2)X÷□=80 (是)
(3)3×□=24 (不一定)
讓學生判斷并說明理由。
(第三題:如果方格中填的是未知數(shù)這個式子就是方程,如果填的是8就不是方程,填其它的數(shù)就是一個錯誤的算式。)
五、總結提升。
回想一下剛才我們上課開始寫的那個表示我們?nèi)熒側藬?shù)的式子,現(xiàn)在老師告訴你一共有3193人,你能得到怎樣一個方程并知道老師有多少人嗎?(116人)好聰明!這是我們下節(jié)課將要學習的內(nèi)容,希望同學們也能像今天一樣積極動腦,腳踏實地地走好每一步,去解開更多生活中的未知數(shù),去迎接更多新的挑戰(zhàn)!
作業(yè)設計:
1.作業(yè)本25頁。
2.口算一頁。
板書設計:
方程的意義
3077+ x
等式
不等式
像這樣含有未知數(shù)的等式,叫做方程。