1. <rp id="zsypk"></rp>

      2. 高中數(shù)學(xué)手抄報內(nèi)容

        時間:2024-10-09 06:41:46 板報大全 我要投稿
        • 相關(guān)推薦

        高中數(shù)學(xué)手抄報內(nèi)容

          數(shù)學(xué)不可比擬的永久性和萬能性及他對時間和文化背景的獨立行是其本質(zhì)的直接后果。下文是一些高中數(shù)學(xué)知識的手抄報內(nèi)容,歡迎大家閱讀與了解。

          高中數(shù)學(xué)手抄報內(nèi)容

          高一數(shù)學(xué)知識點總結(jié):指數(shù)函數(shù)

          (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

          (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

          (3)函數(shù)圖形都是下凹的。

          (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

          (5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的'正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

          (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

          (7)函數(shù)總是通過(0,1)這點。

          (8)顯然指數(shù)函數(shù)無界。

          奇偶性

          定義

          一般地,對于函數(shù)f(x)

          (1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

          (2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

          (3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

          (4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

          高一數(shù)學(xué)知識點總結(jié):立體幾何初步

          1、柱、錐、臺、球的結(jié)構(gòu)特征

          (1)棱柱:

          定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

          幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

          分類:以底面多邊形的`邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點字母,如五棱錐

          幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

          (3)棱臺:

          定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

          表示:用各頂點字母,如五棱臺

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

          (4)圓柱:

          定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

          (5)圓錐:

          定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

          幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形。

          (6)圓臺:

          定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形。

          (7)球體:

          定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

          2、空間幾何體的三視圖

          定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

          注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

          俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

          側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

          3、空間幾何體的直觀圖——斜二測畫法

          斜二測畫法特點:

          ①原來與x軸平行的線段仍然與x平行且長度不變;

         、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

          高一數(shù)學(xué)知識點總結(jié):直線與方程

          (1)直線的傾斜角

          定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

          (2)直線的斜率

         、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時,。當(dāng)時,;當(dāng)時,不存在。

         、谶^兩點的直線的斜率公式:

          注意下面四點:

          (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

          (2)k與P1、P2的順序無關(guān);

          (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

          (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。

          高一數(shù)學(xué)知識點總結(jié):冪函數(shù)

          定義:

          形如y=x^a(a為常數(shù))的'函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

          定義域和值域:

          當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

          性質(zhì):

          對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

          排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

          排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

          排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。

        【高中數(shù)學(xué)手抄報內(nèi)容】相關(guān)文章:

        長城手抄報內(nèi)容05-05

        勵志手抄報內(nèi)容02-08

        春季手抄報內(nèi)容02-22

        雷鋒的手抄報內(nèi)容02-26

        雷鋒手抄報的內(nèi)容02-29

        清明手抄報的內(nèi)容04-06

        春天手抄報內(nèi)容02-28

        數(shù)學(xué)手抄報內(nèi)容09-20

        手抄報母愛內(nèi)容04-28

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>