介值定理和零點定理的區(qū)別
介值定理,又名中間值定理,是閉區(qū)間上連續(xù)函數(shù)的性質(zhì)之一,閉區(qū)間連續(xù)函數(shù)的重要性質(zhì)之一。在數(shù)學分析中,介值定理表明,如果定義域為[a,b]的連續(xù)函數(shù)f,那么在區(qū)間內(nèi)的某個點,它可以在f(a)和f(b)之間取任何值,也就是說,介值定理是在連續(xù)函數(shù)的一個區(qū)間內(nèi)的'函數(shù)值肯定介于最大值和最小值之間。
零點定理與介值定理意思差不多,零點定理是與x軸的交點介值定理是與兩數(shù)之間的交點 其實質(zhì)都是講函數(shù)連續(xù)性的。 只要是連續(xù)函數(shù),問題就明了。 連續(xù)在于一個 x 有一個y值的對應性。