排列組合中A和C怎么算
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標(biāo),m為上標(biāo),以下同);
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12;
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
排列組合定義
排列的定義:從n個(gè)不同元素中,任取m(m≤n,m與n均為自然數(shù),下同)個(gè)不同的元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào) A(n,m)表示。
組合的定義:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù)。用符號(hào) C(n,m) 表示。