輔助角公式例題詳解
π/6≤a≤π/4 ,求sin2a 2sinacosa 3cos2a的最小值
解:令f(a)=sin2a 2sinacosa 3cos2a
=1 sin2a 2cos2a
=1 sin2a (1 cos2a)(降冪公式)
=2 (sin2a cos2a)
=2 (√2)sin(2a π/4)(輔助角公式)
因為7π/12≤2a π/4≤3π/4
所以f(a)min=f(3π/4)=2 (√2)sin(3π/4)=3
2021-08-30
輔助角公式例題詳解
π/6≤a≤π/4 ,求sin2a 2sinacosa 3cos2a的最小值
解:令f(a)=sin2a 2sinacosa 3cos2a
=1 sin2a 2cos2a
=1 sin2a (1 cos2a)(降冪公式)
=2 (sin2a cos2a)
=2 (√2)sin(2a π/4)(輔助角公式)
因為7π/12≤2a π/4≤3π/4
所以f(a)min=f(3π/4)=2 (√2)sin(3π/4)=3