- 相關(guān)推薦
初中數(shù)學(xué)方差教案
作為一名教職工,通常需要用到教案來輔助教學(xué),借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么教案應(yīng)該怎么寫才合適呢?下面是小編為大家整理的初中數(shù)學(xué)方差教案,歡迎閱讀與收藏。
初中數(shù)學(xué)方差教案1
15.2 乘法公式
15.2.1平方差公式
教學(xué)目標(biāo)
、俳(jīng)歷探索平方差公式的過程,進(jìn)一步發(fā)展學(xué)生的符號感和推理能力、歸納能力.
②會推導(dǎo)平方差公式并掌握公式的結(jié)構(gòu)特征,能運用公式進(jìn)行簡單的計算.
、哿私馄椒讲罟降膸缀伪尘埃w會數(shù)形結(jié)合的思想方法.
教學(xué)重點與難點
重點:平方差公式的推導(dǎo)及應(yīng)用.
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
教學(xué)準(zhǔn)備
卡片及多媒體課件
教學(xué)設(shè)計
引入
同學(xué)們,前面我們剛剛學(xué)習(xí)了整式的乘法,知道了一般情形下兩個多項式相乘的法則.今天我們要繼續(xù)學(xué)習(xí)某些特殊情形下的多項式相乘.下面請同學(xué)們應(yīng)用你所學(xué)的知識,自己來探究下面的問題:
探究:計算下列多項式的積,你能發(fā)現(xiàn)它們的運算形式與結(jié)果有什么規(guī)律嗎?
(1)(x+1)(x-1)=
(2)(m+2)(m-2)=
(3)(2x+1)(2x-1)=
引導(dǎo)學(xué)生用自己的語言敘述所發(fā)現(xiàn)的規(guī)律,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.
注:平方差公式是多項式乘法運算中一個重要的公式,它的得出可以直接利用多項式與多項式相乘的運算法則,利用多項式乘法推導(dǎo)乘法公式是從一般到特殊的過程,對今后學(xué)習(xí)其他乘法公式的推導(dǎo)有一定的指導(dǎo)意義,同時也可培養(yǎng)學(xué)生觀察、歸納、概括等能力,因此在教學(xué)中,首先應(yīng)讓學(xué)生思考:你能發(fā)現(xiàn)什么?讓學(xué)生經(jīng)歷觀察(每個算式和結(jié)果的特點)、比較(不同算式之間的異同)、歸納(可能具有的規(guī)律)、提出猜想的過程,學(xué)生在發(fā)現(xiàn)規(guī)律后,還應(yīng)通過符號運算對規(guī)律進(jìn)行證明.
舉例
再舉幾個這樣的運算例子.
注:讓學(xué)生獨立思考,每人在組內(nèi)舉一個例子(可口述或書寫),然后由其中一個小組的代表來匯報.
驗證
我們再來計算(a+b)(a-b)=
公式的推導(dǎo)既是對上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué)的思想方法:特例→歸納→猜想→驗證→用數(shù)學(xué)符號表示.
注:這里是對前邊進(jìn)行的運算的討論,目的是讓學(xué)生通過觀察、歸納,鼓勵他們發(fā)現(xiàn)這個公式的一些特點,如公式左右邊的結(jié)構(gòu)特征,為下一步運用公式進(jìn)行簡單計算打下基礎(chǔ).
概括
平方差公式及其形式特征.
教師可以在前面的基礎(chǔ)上繼續(xù)鼓勵學(xué)生發(fā)現(xiàn)這個公式的一些特點:如公式左、右邊的結(jié)構(gòu),并嘗試說明這些特點的原因.
應(yīng)用
教科書第152頁例1運用平方差公式計算:
(1)(3x+2)(3x-2)
(2)(b+2a)(2a-b)
(3)(-x+2y)(-x-2y)
填表:
(a+b)(a-b) a b a2—b2 最后結(jié)果
(3x+2)(3x-2) 2 (3x)2-22
(b+2a)(2a-b)
(-x+2y)(-x-2y)
對本例的前面兩個小題可以采用學(xué)生獨立完成,然后搶答的形式完成;第三小題可采用小組討論的形式,要求學(xué)生在給出表格所提示的解法之后,思考別的解法:提取后一個因式里的負(fù)號,將2y看作“a”,將x看作“b”,然后運用平方差公式計算.
注:(1)正確理解公式中字母的廣泛含義,是正確運用這一公式的關(guān)鍵.設(shè)計本環(huán)節(jié),旨在通過將算式中的各項與公式里的a、b進(jìn)行對照,進(jìn)一步體會字母a、b的含義,加深對字母含義廣泛性的理解:即它們既可以是數(shù),也可以是含字母的整式.
(2)在具體計算時,當(dāng)有一個二項式兩項都負(fù)時,往往不易判明a、b,如第三小題,此時可以通過小組合作交流,放手讓學(xué)生去思考、討論,有助于學(xué)生思維互補(bǔ)、有條理地思考和表達(dá),更有助于學(xué)生合作精神的培養(yǎng).
(3)例1第(3)小題引導(dǎo)學(xué)生多角度思考問題,可以加深對公式的理解.
教科書第152頁例2計算:
(1)102×98
(2)(y+2)(y-2)-(y-1)(y+5)
此處仍先讓學(xué)生獨立思考,然后自主發(fā)言,口述解題思路,允許他們算法的多樣化,然后通過比較,優(yōu)化算法,達(dá)到簡便計算的目的.
注:(1)運用平方差公式進(jìn)行數(shù)的簡便運算的關(guān)鍵是根據(jù)數(shù)的形式特征,把相乘的兩數(shù)化成兩數(shù)和與兩數(shù)差的乘積形式,教學(xué)時可讓學(xué)生自己尋找相乘兩數(shù)的形式特征.
(2)第二小題要引導(dǎo)學(xué)生注意到一般形式的整式乘法與特殊形式的整式乘法的區(qū)別與聯(lián)系,強(qiáng)調(diào):只有符合公式要求的乘法,才能運用公式簡化運算,其余的運算仍按整式乘法法則進(jìn)行.
鞏固
教科書第153頁練習(xí)1、2
練習(xí)1口答完成;練習(xí)2采用大組競賽的形式進(jìn)行,其中(1)(4)由兩個大組完成,(2)(3)由另兩個大組完成.
注:讓學(xué)生通過鞏固練習(xí),達(dá)成本節(jié)課的基本學(xué)習(xí)目標(biāo),并通過豐富的活動形式,激發(fā)學(xué)習(xí)興趣,培養(yǎng)競爭意識和集體榮譽(yù)感.
解釋
你能根據(jù)下面的兩個圖形解釋平方差公式嗎?
多媒體動畫演示圖形的變換過程,體會過程中不變的量,并能用代數(shù)恒等式表示.
注:(1)重視公式的幾何背景,可以幫助學(xué)生運用幾何直觀理解、解決有關(guān)代數(shù)問題.
(2)此處將教科書的圖15.3-1分解為兩個圖形,是考慮到學(xué)生數(shù)與形結(jié)合的思想方法掌握的不夠熟練;利用兩個圖形可以清楚變化的過程,便于聯(lián)想代數(shù)的形式.
小結(jié)
談一談:你這一節(jié)課有什么收獲?
注:這兒采取的是先由每個學(xué)生自己小結(jié),然后由小組代表作答,把教師做小結(jié)變成了課堂上人人做小結(jié),有助于學(xué)生概括能力、抽象能力、表達(dá)能力的提高.同時,由于人人都要做小結(jié),促使學(xué)生注意力集中,學(xué)習(xí)主動性加強(qiáng).
作業(yè)
1.必做題:教科書第156頁習(xí)題15.2第1題
2.選做題:計算:
(1)x2+(y-x)(y+x)
(2)20082-20xx×20xx
(3)(-0.25x-2y)(-0.25x+2y)
(4)(a+ b)(a- b)-(3a-2b)(3a+2b)
教學(xué)后記
初中數(shù)學(xué)方差教案2
一、素質(zhì)教育目標(biāo)
㈠知識教學(xué)點
、笔箤W(xué)生理解直線和圓的位置關(guān)系。
、渤醪秸莆罩本和圓的位置關(guān)系的數(shù)量關(guān)系定理及其運用。
㈡能力訓(xùn)練點
、蓖ㄟ^對直線和圓的三種位置關(guān)系的直觀演示,培養(yǎng)學(xué)生能從直觀演示中歸納出幾何性質(zhì)的能力。⒉在7.1節(jié)我們曾學(xué)習(xí)了“點和圓”的位置關(guān)系。
、劈cP在⊙O上??? OP=r
、泣cP在⊙O內(nèi)OP<r
、屈cP在⊙O外OP>r
初步培養(yǎng)學(xué)生能將這個點和圓的位置關(guān)系和點到圓心的距離的數(shù)量關(guān)系互相對應(yīng)的理論遷移到直線和圓的'位置關(guān)系上來。
、绲掠凉B透點
在用運動的觀點揭示直線和圓的位置關(guān)系的過程中向?qū)W生滲透,世界上的一切事物都是變化著的,并且在變化的過程中在一定的條件下是可以相互轉(zhuǎn)化的。
二、教學(xué)重點、難點和疑點
、敝攸c:使學(xué)生正確理解直線和圓的位置關(guān)系,特別是直線和圓相切的關(guān)系,是以后學(xué)習(xí)中經(jīng)常用到的一種關(guān)系。
、搽y點:直線和圓的位置關(guān)系與圓心到直線的距離和圓的關(guān)徑大小關(guān)系的對應(yīng),它既可做為各種位置關(guān)系的判定,又可作為性質(zhì),學(xué)生不太容易理解。
⒊疑點:為什么能用圓心到直線的距離九圓的關(guān)徑大小關(guān)系判斷直線和圓的位置關(guān)系?為解決這一疑點,必須通過圖形的演示,使學(xué)生理解直線和圓的位置關(guān)系必轉(zhuǎn)化成圓心到直線的距離和圓的關(guān)徑的大小關(guān)系來實現(xiàn)的。
三、教學(xué)過程
、迩榫掣兄
、毙蕾p網(wǎng)頁flash動畫,《海上日出》
提問:動畫給你形成了怎樣的幾何圖形的印象?
、惭菔緕+z超級畫板制作《日出》的簡易動畫,給學(xué)生形成直線和圓的位置關(guān)系的印象,像這樣平面上給定一條定直線和一個運動著的圓,它們之間雖然存在著若干種不同的位置關(guān)系,如果從數(shù)學(xué)角度,它的若干位置關(guān)系能分為幾大類?請同學(xué)們打開練習(xí)本,畫一畫互相研究一下。
、郴顒樱簩W(xué)生動手畫,老師巡視。當(dāng)所有學(xué)生都把三種位置關(guān)系畫出來時,用幻燈機(jī)給同學(xué)們作演示,并引導(dǎo)由現(xiàn)象到本質(zhì)的觀察,最終老師指導(dǎo)學(xué)生從直線和圓的公共點的個數(shù)來完成直線和圓的位置關(guān)系的定義。
、粗本和圓的位置關(guān)系的定義。
、僦本和圓有兩個公共點時,叫做直線和圓相交,直線叫做圓的割線。
、谥本和圓有唯一公共點時,叫做直線和圓相切,直線叫圓的切線,唯一的公共點叫做切點。
③直線和圓沒有公共點時,叫做直線和圓相離。
、嬷攸c、難點的學(xué)習(xí)與目標(biāo)完成過程,
、崩脄+z超級畫板的變量動畫,改變圓的半徑的大小,使直線與圓的位置關(guān)系發(fā)生改變,并請學(xué)生識別,鞏固定義。
⒉提問:剛剛的變化,是什么引起直線與圓的位置關(guān)系的改變的?除從直線和圓的公共點的個數(shù)來判斷直線和圓的位置關(guān)系外,是否還有其它的判定方法呢?
⒊教師引導(dǎo)學(xué)生回憶:怎樣判定點和圓的位置關(guān)系?學(xué)生回答后,提出我們能否在這里套用?
、磳W(xué)生小組討論后,匯總成果。引導(dǎo)學(xué)生從點和圓的位置關(guān)系去考察,特別是從點到圓心的距離與圓的半徑的關(guān)系去考察。若該直線ι到圓心O的距離為d,⊙O半徑為r,利用z+z的超級畫板的變量動畫展示,很容易得到所需的結(jié)果。
①直線ι和⊙O相交d<r
、谥本ι和⊙O相切d=r
、壑本ι和⊙O相離d>r
初中數(shù)學(xué)方差教案3
教學(xué)目標(biāo)
1、使學(xué)生理解和掌握平方差公式,并會用公式進(jìn)行計算;
2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力。
教學(xué)重點和難點
重點:平方差公式的應(yīng)用。
難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
教學(xué)過程設(shè)計
一、師生共同研究平方差公式
我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
讓學(xué)生動腦、動筆進(jìn)行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:
兩個二項式相乘,乘式具備什么特征時,積才會是二項式?為什么具備這些特點的兩個二項式相乘,積會是兩項呢?而它們的積又有什么特征?
。ó(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進(jìn)行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
在此基礎(chǔ)上,讓學(xué)生用語言敘述公式。
二、運用舉例變式練習(xí)
例1計算(1+2x)(1-2x)。
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。
例2計算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進(jìn)行計算。
課堂練習(xí)
運用平方差公式計算:
(1)(x+a)(x-a);
(2)(m+n)(m-n);
(3)(a+3b)(a-3b);
(4)(1-5y)(l+5y)。
例3計算(-4a-1)(-4a+1)。
讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進(jìn)行板演。
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
課堂練習(xí)
1、口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
。3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、計算下列各題:
。1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法。
三、小結(jié)
1、什么是平方差公式?
2、運用公式要注意什么?
。1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
四、作業(yè)
1、運用平方差公式計算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
。5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);