人教版軸對稱圖形課件
教學(xué)目標(biāo):
1、經(jīng)歷探索簡單圖形軸對稱性的過程,進(jìn)一步體會軸對稱的特征,發(fā)展空間觀念
2、探索并了解角的平分線、線段垂直平分線的有關(guān)性質(zhì).
教學(xué)重點:
1、角、線段是軸對稱圖形
2、角的平分線、線段垂直平分線的有關(guān)性質(zhì)
教學(xué)難點:
角的平分線、線段垂直平分線的有關(guān)性質(zhì)
準(zhǔn)備活動:
準(zhǔn)備一個三角形、一張畫好一條線段的紙張
教學(xué)過程:
先復(fù)習(xí)軸對稱圖形的知識,提問:角是不是軸對稱圖形呢?如果是,它的對稱軸在哪里?引起學(xué)生思考并通過動手操作,尋找答案.
教師示范:(按以下步驟折紙)
1、在準(zhǔn)備好的三角形的每個頂點上標(biāo)好字母;A、B、C.把角A對折,使得這個角的兩邊重合.
2、在折痕(即平分線)上任意找一點C,
3、過點C折OA邊的垂線,得到新的折痕CD,其中,點D是折痕與OA的交點,即垂足.
4、將紙打開,新的折痕與OB邊交點為E.
教師要引導(dǎo)學(xué)生思考:我們現(xiàn)在觀察到的只是角的一部分.注意角的概念.
學(xué)生通過思考應(yīng)該大部分都能明白角是軸對稱圖形這個結(jié)論.
問題2:在上述的操作過程中,你發(fā)現(xiàn)了哪些相等的線段?說明你的理由,在角平分線上在另找一點試一試.是否也有同樣的發(fā)現(xiàn)?
學(xué)生應(yīng)該很快就找到相等的線段.
下面用我們學(xué)過的知識證明發(fā)現(xiàn):
如圖,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求證:OE=OD.
鞏固練習(xí):在Rt△ABC中,BD是角平分線,DE⊥AB,垂足為E,DE與DC相等嗎?為什么?
(1)如圖,OC是∠AOB的平分線,點P在OC上,PO⊥OA,PE⊥OB,垂足分別是D、E,PD=4cm,則PE=__________cm.
(2)如圖,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,點D到AB的距離為5cm,則CD=_____cm.
內(nèi)容二:線段是軸對稱圖形嗎?
做一做:按下面步驟做:
1、用準(zhǔn)備的線段AB,對折AB,使得點A、B重合,折痕與AB的交點為O.
2、在折痕上任取一點C,沿CA將紙折疊;
3、把紙展開,得到折痕CA和CB.
觀察自己手中的圖形,回答下列問題:
(1)CO與AB有什么樣的位置關(guān)系?
(2)AO與OB相等嗎?CA與CB呢?能說明你的理由嗎?
在折痕上另取一點,再試一試,你又有什么發(fā)現(xiàn)?
學(xué)生會得到下面的結(jié)論:
(1)線段是軸對稱圖形.
(2)它的對稱軸垂直于這條線段并且平分它.
(3)對稱軸上的點到這條線段的距離相等.
應(yīng)用:
(1)如圖,AB是△ABC的.一條邊,,DE是AB的垂直平分線,垂足為E,并交BC于點D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.
(2)如圖,在△ABC中,AB=AC=16cm,AB的垂直平分線交AC于D,如果BC=10cm,那么△BCD的周長是_______cm.
小結(jié):
(1)角是軸對稱圖形.
(2)角平分線上的點到這個角的兩邊的距離相等.
(3)線段是軸對稱圖形.
(4)垂直并且平分線段的直線叫做這條線段的垂直平分線.簡稱中垂線.
(5)線段垂直平分線上的點到這條線段的兩個端點距離相等.
【人教版軸對稱圖形課件】相關(guān)文章:
軸對稱圖形剪紙03-24
軸對稱剪紙圖形03-22
軸對稱圖形剪紙簡單04-26
軸對稱圖形剪紙步驟03-23
軸對稱圖形剪紙教程03-24
簡單軸對稱圖形剪紙03-17
剪紙軸對稱圖形方法03-11
軸對稱圖形剪紙法03-19
軸對稱圖形天鵝剪紙03-18