1. <rp id="zsypk"></rp>

      2. 圓柱的體積教學設計

        時間:2023-02-24 07:48:47 教學設計 我要投稿

        圓柱的體積教學設計(精選15篇)

          教學設計是根據課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環節。下面是小編整理的圓柱的體積教學設計(精選15篇),歡迎大家分享。

        圓柱的體積教學設計(精選15篇)

          圓柱的體積教學設計 篇1

          一、情景引入

          1、教學開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準備投入水中并讓學生觀察:會發生什么情況?由這個發現你想到了些什么?

          2、提問:“能用一句話說說什么是圓柱的體積嗎?”

         。ㄔO計意圖:在這個環節設計觀察活動,意圖是讓學生通過觀察自主得出圓柱體積的定義,進一步加深對體積概念的理解,并為下面的探究活動提供研究方法。)

          二、自主探究

          1、比較大小、探究圓柱的體積與哪些要素有關。

          (1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?

         。2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。

         。3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結果填入實驗報告1中。(課件出示)

         。4)、學生通過動手操作匯報結論:當底等時,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關。

          (設計意圖:本環節教學讓學生根據已有的知識解決簡單的問題,通過探究活動,引導學生找出決定圓柱體積的兩個因素,為學習新知識作鋪墊,同時也發展了學生的抽象概括能力。)

          2、大膽猜想,感知體積公式,確定探究目標。

         。1)、再次設疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。

         。2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。

         。3)、讓學生思考:怎樣計算圓柱的體積呢,依據學過的知識,你可以做出怎樣的假設?

          (4)、學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。

         。5)、讓學生依據假設結論分組測量圓柱c和圓柱d的有關數據,用計算器計算體積,并填入實驗報告2中。(課件出示)

         。ㄔO計意圖:通過設疑使學生認識到學習圓柱體積公式的必要性,激發學生的探究興趣。接著通過設計猜想的過程,充分運用學生已有的知識經驗,讓學生回憶了學習長方體體積時的實踐方法和將圓形轉化成長方形的過程,學生在如此豐富的.知識經驗基礎上就做到了心中有數,猜想的膽量就更大,假想的合理性就更強。)

          4、確定方法,探究實驗,驗證體積公式。

         。1)、首先要求學生利用實驗工具,自主商討確定研究方法。

         。2)、學生通過討論交流確定了兩種驗證方案。

          方案一:將圓柱c放入水中,驗證圓柱c的體積。

          方案二:將學具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。

         。3)、學生按照自己所設想的方案動手實驗,并記錄有關數據,填入實驗報告2中。(課件出示)

         。4)、實驗后讓學生對數據進行分析:用實驗的方法得出的數據與實驗前假想計算的數據進行比較,你發現了什么?

         。5)、學生匯報:實驗的結果與猜想的結果基本相同。

         。6)、教師用課件演示將圓柱體轉化成長方體的過程,向學生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。(課件出示)

          (7)、小結:要想求出一個圓柱的體積,需要知道什么條件?

         。8)、學生自學第8頁例4上面的一段話:用字母表示公式。

          學生反饋自學情況:

          v=sh(設計意圖這部分教學采用以小組合作探究的學習方式進行數學活動,充分調動學生各種感官,完成從操作→觀察、比較→歸納推理的認知過程,讓學生通過自己動手、動腦得到結論。通過讓學生自己設計實驗方案和自主實驗探究的活動,培養了學生的創新精神和實踐能力。)

          圓柱的體積教學設計 篇2

          教學目標:

          1.結合實際,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

          2.讓學生經歷觀察、猜想、驗證等數學活動過程,培養學生探究推理能力,體驗數學研究的方法。

          3.通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。

          教學重點:

          掌握和運用圓柱體積計算公式。

          教學準點:

          掌握圓柱體積公式的推導過程。

          教學設想:

          1.課前互動,我們做一個吹氣球的游戲,讓學生來對比氣球變大后所占用空間的變化。在熱烈的氣氛中讓學生感受物體的體積就是物體所占用空間的大小。

          2.教學伊始我創設學具槽做圓柱學具這一睛境,讓學生感知圓柱體積的概念,再通過讓學生給這4個圓柱學具排序這一問題設疑,讓學生明確學習目標。

          3.動手實踐是學生體驗的主要方式,合作交流是學生體驗的有效途徑。所以在教學中我為圖形轉化、猜想推理創設有助于學生自主探究的三步曲:第一步:選擇轉化的方法。第二步:體驗轉化的過程、第三步:驗證轉化的結果。引導學生開展觀察、操作、猜想、交流、轉化的.活動,讓學生在數學活動中經歷數學、體驗數學。

          4.用字母表示公式已經是學生很熟知的幾何知識,因此我為學生提供了與圓柱體積有關的字母,讓他們寫出相應的公式并在接下來的環節中引導學生發現公式與習題的聯系,讓他們對號入座。學生根據不同的公式進行計算,給4個圓柱學具排序。這樣可以深入理解不同的條件、不同的方法,同樣可以得到圓柱的體積,在對比算法中掌握新知。

          5.體積和容積這兩個概念在五年級已經學過,學生會說意義,但是通過了解,學生并不是真正理解圓柱的體積和容積。所以我在第一次探究中安排了這樣的環節,讓學生在學習實踐中區別圓柱的容積和體積。從形象到抽象建立圓柱的體積概念,符合學生的認知規律。第二次探究則是加入表面積這一剛剛學過的內容,讓學生在為3道選擇問題的練習中達到區別體積、容積、表面積的目的,從而實現學習運用的最佳狀態。

          6.最后的思維訓練是計算正方體中最大圓柱體的體積,給學生以生動、形象、直觀的認識,此題算法多樣,富于啟發地清晰揭示了知識的內在規律,使它和教學過程有機組合,把學習延伸到實際,讓知識在體驗中生成。

          7.由于每個學生的知識經驗、生活情景、思維方式的不同,對知識的學習也有獨特的理解和感受。所以我讓他們用今天的知識去解決生活中的問題,并寫成數學日記,讓他們用自己的方式去體驗、探究學習過程。

          教學過程:

          一、問題導入,質疑問難

          師:老師這里有兩個氣球,(師從兜里掏出兩個氣球,將其中一個遞給學生。)你試試把它們變大。(老師再把兩個氣球放回兜里。)為什么這個放不回去了?(因為其中一個的體積變大了。)看來它占據了很大的空間。教室中還有哪些物體占據空間?

          師:這是一個制作學具的學具槽,想一想,它可以做出什么樣的學具來?

          生:圓柱學具。

          師:是的。仔細觀察,你有什么發現?

          生:圓柱學具占據了學具槽的空間。

          師:這就是圓柱學具的體積。你真善于發現!能用你的話說說,什么是圓柱的體積嗎?

          生:圓柱的體積就是圓柱所占空間的大小。

          師:誰來試著給這4個圓柱學具按體積從大到小排排序?你來試試。

          生:體積大小接近,不能確定。

          師:老師聽懂了,無法判斷的原因是不知道圓柱體積的大小,現在我們就來研究圓柱的體積。(師板書。)

          二、圖形轉化。猜想推理

          師:想一想,你有辦法得到這4個圓柱學具的體積嗎?(圓柱課件再從槽中跳出。)

          生:用公式計算。

          生:用水或沙子轉化計算。

          師:你們是怎樣轉化的,具體說說。

          生:用橡皮泥轉化計算。

          生:用圓形紙片疊加計算……

          師:嗯,這些方法都很好,就在今天的課堂你會選擇哪種方法?

          生:因為沒有實驗學具,所以只能用公式計算。

          師:其他的方法可以在課后進行。

          師:想用公式計算的同學,你想怎樣推導圓柱的體積公式呢?結合你們以往學習幾何圖形的經驗,舉例說明。

          生:大部分圖形公式的推導都是把新學的轉化為學過的。例如:圓形可以轉化為長方形。

          師:聯系舊知識,采用轉化法,確實不錯。

          師:那現在它是一個圓柱,你想怎么辦?

          生:像剛才一樣進行平均分。

          師:你能具體說說嗎?

          生:沿著圓柱的底面直徑平均切分成16個小扇形。

          師:都說實踐出真知,接下來就請同學們拿出學具,動手嘗試著進行轉化,并說說轉化后的結果。

          生:將圓柱沿底面直徑平均分成16個小扇形,切分之后,可以拼成一個近似的長方體。

          師:(剛才我們將圓柱沿底面直徑平均分成16個小扇形,拼成一個近似的長方體。)如果想讓它更近似于長方體,你想分成多少份?(32)更近似一點。(64)你呢?(128)……

          師:這是同學們剛才的轉化過程。

          師:打開書,自由讀,用直線標記,找出關鍵詞,依照關鍵詞自由讀讀轉化的過程。

          師:現在再請一名同學到前面來演示轉化過程,其他同學注意觀察,圓柱轉化為長方體后什么變了,什么沒變7(圓柱轉化為長方體時形狀變了,但是它們底面積、高和體積都沒變。)

          總結文字公式:長方體體積=底面積×高

          圓柱體體積=底面積×高

          師:恭喜大家,我們已經成功地推導出圓柱的體積公式。(掌聲鼓勵一下)老師這有一些字母:d、s、r、c、h、v、π。它們與圓柱體體積的計算公式息息相關,請你們用字母表示出圓柱的體積公式。

          生:v=shv=(d/2)2π×hv=π2×hv=(c÷π/2)2π×h

          師:對比這四個公式你又有什么新發現?(彩色粉筆畫線。)

          生:相同之處都是底面積乘以高,不同是底面積求法不同。

          師:謝謝你精彩的發現,你叫什么名字,認識一下,老師會記住你的。

          三、運用公式,解決問題

          師:現在我們已經知道了圓柱的體積公式,快來解決剛才的實際問題吧!這是我們要由大到小排序的4個圓柱學具,請你們拿出題卡計算出它們的體積并排序。

          1號底面積50平方厘米,高2.1分米:

          2號直徑是10厘米,高20厘米;

          3號半徑是4厘米,高22厘米;

          4號底面周長31.4厘米,高18厘米。

          師:匯報一下你的計算和排序結果,并說說你應用了哪個公式?

          師:與他答案相同的同學舉手示意一下,你是怎樣做的?現在你清楚了嗎?

          師:看來,靈活運用公式,并選擇合理的算法。會使我們的學習更高效。

          四、巧用公式,多重探究

          師:同學們到現在為止,你都學到了哪些關于圓柱的知識?

          生:表面積、體積、容積。

          師:老師這里有一組習題。請你們選擇合適的問題。

          師:讀完之后,你認為求什么就可以大聲地說出來。

          (生:體積、容積、表面積。)

          學具廠有一個制作學具的圓柱形鐵皮桶。它的底面直徑是22厘米,高是25厘米________?從里面量底面直徑是20厘米,高是25厘米______________9底面積是380平方厘米。側面積是1727平方厘米_________________?

          師:說說你選擇問題的根據是什么?

          生:體積是圓柱所占空間的大小。容積是圓柱能容納物體的大小,表面積是圓柱所有面積的總和。

          五、開放訓練,拓展提升

          師:學習很愉快,我們來慶祝一下:在一個棱長為a分米正方體盒中,放一個最大的圓柱體蛋糕,系上x分米長的絲帶,(打結部分忽略不計)挖去1根直徑為x厘米,高是x厘米的圓柱蠟燭空隙,這個蛋糕體積到底是多少呢?這次我們男女生比賽,列式不計算,看誰解法多并說明解題思路。

          圓柱的體積教學設計 篇3

          學情分析:

          根據六年級的教學情況來看,班中絕大部分同學都能跟上現有的進度,通過本節課教學要使靈活運用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。

          教學目標:

          1.通過切割圓柱體,拼成近似的長方體,從而推導出圓柱的體積公式這一教學過程,向學生滲透轉化思想。

          2.通過圓柱體體積公式的推導,培養學生的分析推理能力。

          3.理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。

          教學重點:

          圓柱體體積的計算

          教學難點:

          圓柱體體積公式的推導

          教學用具:

          圓柱體學具

          教學過程:

          一、復習引新

          1.求下面各圓的面積(回答)。

          (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

          要求說出解題思路。

          2.提問:什么叫體積?常用的體積單位有哪些?

          3.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)

          二、探索新知

          1、根據學過的體積概念,說說什么是圓柱的體積。(板書課題)

          2、公式推導。(有條件的可分小組進行)

          (1)請同學指出圓柱體的底面積和高。

          (2)回顧圓面積公式的推導。(切拼轉化)

          3、回顧了圓的面積公式推導,你有什么啟發?

          生答:把圓柱轉化成長方體計算體積。

          4、動手操作。

          請2位同學上臺用教具來演示,邊演示邊講解。

          把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。

          多請幾組同學上臺講解,完善語言。

          提問:為什么用“近似”這個詞?

          5、教師演示。

          把圓柱拼成了一個近似的長方體。

          6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?

          生答:拼成的物體越來越接近長方體。

          追問:為什么?

          生答:平均分的份數越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。

          7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。

          師:拼成的長方體和原來的圓柱有什么聯系?請與同學們進行交流?

          出示討論題。

          (1)、拼成的長方體的底面積與原來圓柱的底面積有什么關系?為什么是相等的?

         。2)、拼成的長方體的高與原來圓柱的高有什么關系?為什么是相等的?

          (3)、拼成的長方體的體積與原來圓柱的'體積有什么關系?為什么?

          板書:

          長方體體積底面積高

          圓柱體積底面積高

          8、根據上面的實驗和討論,想一想,可以怎樣求圓柱的體積?

          生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。

          9、用字母如何表示。

          V=sh

          10、小結。

          圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條件?

          11、教學算一算

          審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據是什么?應注意哪些問題?最后結果用體積單位)

          12、教學“試一試”

          小結:求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。

          三、鞏固練習

          課后“練一練”里的練習題。

          四、課堂小結

          這節課學習了什么內容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節課,我們通過轉化,把圓柱體切拼轉化成長方體,(在課題下板書:圓柱轉化長方體)得出了圓柱體的體積計算公式V=Sh。

          圓柱的體積教學設計 篇4

          教學目標:

          1.知識與技能:運用遷移規律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,會用圓柱的體積公式計算圓柱形物體的體積。

          2.方法與過程:經歷猜測、驗證、合作、動手操作等過程,體驗和理解圓柱體體積公式的推導過程。

          3.情感、態度、價值觀:創設情境,激發學生學習的積極性。讓學生在主動學習的基礎上,逐步學會轉化的數學思想和數學法,培養學生解決實際問題的能力和培養學生抽象、概括的思維能力。

          教學重點和難點:

          圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。

          教具:

          圓柱的體積公式演示教具,圓柱的體積公式演示課件

          教學過程:

          一、教學回顧

          1、交代任務:這節課我們來學習《圓柱的體積》。

          2、回憶導入

          (1)、請大家想一想,我們在學習圓的面積時,是怎樣把圓變成已學過的圖形再計算面積的?

          (2)、我們都學過那些立體圖形的體積公式。

          二、積極參與探究感受

          1、猜測圓柱的體積和那些條件有關。(電腦演示)

          2、探究推導圓柱的體積計算公式。

          小組合作討論:

          (1)將圓柱體切割拼成我們學過的什么立體圖形?

          (2)切拼前后的兩個物體什么變了?什么沒變?

          (3)切拼前后的兩個物體有什么聯系?

          課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。

          ①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)

         、谄闯傻拈L方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內容。)

         、蹐A柱的體積=底面積×高字母公式是V=Sh(板書公式)

          2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?

          3、要用這個公式計算圓柱的體積必須知道什么條件?

          三、練習

          1、填空

          (1)、圓柱體通過切拼轉化成近似的()體。這個長方體的底面積等于圓柱體的(),這個長方體的高等于圓柱體()。因為長方體的體積等于(),所以,圓柱體的體積等于()用字母表示()。

          (2)、底面積是10平方米,高是2米,體積是()。

          (3)、底面半徑是2分米,高是5分米,體積是()。

          2討論:

          (1)已知圓柱底面的半徑和高,怎樣求圓柱的體積V=兀r2×h

          (2)已知圓柱底面的直徑和高,怎樣求圓柱的體積V=兀(d÷2)2×h

          (3)已知圓柱底面的`周長和高,怎樣求圓柱的體積V=兀(C÷!2)×h

          3、練習:已知半徑和高求體積,已知直徑和高求體積。

          四、小結或質疑

          五、作業

          課后做一做第1、2、3題。

          板書設計:

          圓柱的體積

          長方體的體積=底面積x高

          圓柱的體積=底面積x高

          V=Sh

          本節課的設計思考:

          一、讓學生在現實情境中體驗和理解數學

          《課程標準》指出:要創設與學生生活環境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數學知識的產生、形成與發展的過程,獲得積極的情感體驗,感受數學的力量,同時掌握必要的基礎知識與基本技能。在本節課中,我給學生創設了生活情景(裝在杯子中的水的體積你會求嗎?)學生聽到教師提的問題訓在身邊的生活中,頗感興趣。學生經過思考、討論、交流,找到了解決的方法。而且此環節還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創設,激發學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

          二、鼓勵學生獨立思考,引導學生自主探索、合作交流

          數學學習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導的數學學習的主要方式。在本節課提示課題后,我先引導學生獨立思考要解決圓柱的體積問題,可以怎么辦?學生通過思考很快確定打算把圓柱轉化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同學們有了圓面積計算公式推導的經驗,經過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎上,小組拿出學具進行了動手操作,拼成了一個近似的長方體。同學們在操作、比較中,圍繞圓柱體和長方體之間的聯系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。

          不足之處:

          在學生們動手操作時,我處理的有點急,沒有給學生充分的思考和探究的時間。在今后的教學中我要特別關注學生的學習過程,優化課堂教學,對教材進行適當的加工處理。數學知識的教學,必須抓住各部分內容之間的內在聯系,遵循教材特點和學生的認知規律。圓柱體積的教學,要借助于學生已經學過的長方體體積的計算方法,通過分析、推導、演示,發現新知識。推導出圓柱體積的計算公式,實現教學目的。圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯系,通過想象、實際操作,從經歷和體驗中思考,培養學生科學的思維方法;貼近學生生活實際,創設情境,解決問題,體現數學知識“從生活中來到生活中去”的理念,激發學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。在新的課改形勢下,死記硬背這種膚淺的、教條的、機械的學習方式已經完全不適應教學改革的需要,不利于學生健康的成長發展的需要,教師要重視引導學生去探索,思考,發現規律,培養學生分析問題和解決問題的能力。反思本節課的教學,覺得在練習設計上還可以下一番功夫。比如可以設計開放性習題:給一個圓柱形積木,讓學生先測量相關數據再計算體積等等。

          三、教師的語言非常貧乏

          在課堂教學中,評價語言是非常重要,它總是伴隨在教學的始終,貫穿于整個課堂,缺乏激勵的課堂就會像一潭死水,毫無生機。而精妙的評價語言就像是催化劑,能使課堂掀起層層波瀾,讓學生思維的火花時刻被點燃。教師準確,生動,親切的評價語言大大調動了學生學習的主動性和積極性,讓學生在激勵中學、自信中學、快樂中學,讓教師與學生零距離地接觸,我想學生的心理更能感覺到更大的鼓舞。

          蘇霍姆林斯基指出:“教育的藝術首先包括談話的藝術!苯處煹慕虒W效果,很大程度上取決于他的語言表達能力。數學課堂教學過程就是數學知識的傳遞過程。在整個課堂教學過程中,數學知識的傳遞、學生接受知識情況的反饋,師生間的情感交流等,都必須依靠數學語言。教師的語言表達方式和質量直接影響著學生對知識的接受,教師語言的情感引發著學生的情感,所以說教師的語言藝術是課堂教學藝術的核心。我這節課最大的失誤是語言沒有發揮出調控課堂駕馭課堂的作用。

          圓柱的體積教學設計 篇5

          教學內容:教材第25、26頁例4、“試一試”、“練一練”和練習七的1、2題

          教學目標:

          1、進一步深入地引導學生去了解圓柱,讓學生掌握圓柱的體積計算公式,并能解決實際問題。

          2、培養學生自學能力,動手能力,觀察分析和歸納知識的能力,讓學生理解“轉化”的方法。

          教學重點:理解和掌握圓柱體積的計算公式。

          教學難點:圓柱體積計算公式的推導。

          教學準備:圓柱體模具。

          教學過程:

          預習作業檢測

          學習計算圓的面積時,是怎樣得出圓面積的'計算公式的?

          求下面各圓的面積

          R=1厘米求Sd=4分米求Sc=6.28米求S

          長方體與正方體的體積都可以用什么公式來表示?

          圓柱底面積/平方米高/米體積/立方米

          0.61.2

          0.253

          合作探究

          你們是怎么知道圓柱的體積=底面積×高的呢?生答預習得知。

          課本上是怎么把圓柱體和長方體聯系在一起的呢?

          生答,同時師相機用課件展示圓柱體和長方體相互轉化的畫面。

          用切拼法把圓柱體切成16等份、32等份、64等份,由此得出結論:

          1等份越多,拼成的物體越接近于長方體。

          2長方體與圓柱體等底等高。

          3長方體體積=圓柱體體積

          4圓柱的體積=底面積×高(V=sh)。

          根據剛才的結論完成下面的題目:

          1一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,

          它的體積是多少?生獨立完成后,師有選擇的找幾位學生

          的作業進行投影展示,全班交流評價。

          2一個圓柱形狀的零件,底面半徑5厘米,高8厘米,這

          個圓柱的體積是多少立方厘米?

          引導學生讀題,思考。指名說出自己想的過程。生獨立解

          答,展示、交流、評價。

          當堂達標檢測

          1、“練一練”第1題。

          2、練習七第2題。

          3、“練一練”第2題。

          圓柱的體積教學設計 篇6

          一、教學目標

         。ㄒ唬┲R與技能

          用已學的圓柱體積知識解決生活中的實際問題,并滲透轉化思想。

         。ǘ┻^程與方法

          經歷探究不規則物體體積的轉化、測量和計算過程,讓學生在動手操作中初步建立“轉化”的數學思想,體驗“等積變形”的轉化過程。

         。ㄈ┣楦袘B度和價值觀

          通過實踐,讓學生在合作中建立協作精神,并增強學生“用數學”的意識。

          二、教學重難點

          教學重點:利用所學知識合理靈活地分析、解決不規則物體的體積的計算方法。

          教學難點:轉化前后的溝通。

          三、教學準備

          每組一個礦泉水瓶(課前統一搜集農夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。

          四、教學過程

         。ㄒ唬⿵土暸f知,做好鋪墊

          1.板書:圓柱的體積。

          問:圓柱的體積怎么計算?體積和容積有什么區別?

          2.揭題:這節課,我們要根據這些體積和容積的知識來解決生活中的實際問題。(完整板書:用圓柱的體積解決問題。)

          【設計意圖】通過復習圓柱的體積計算方法以及體積和容積之間的聯系和區別,為學習新知做好知識上的準備。

         。ǘ┨剿鲗嵺`,體驗轉化過程

          1.創設情境,提出問題。

          每個小組桌子上有一個沒有裝滿水的礦泉水瓶。

          教師:原本這是一瓶裝滿水的礦泉水,已經喝了一部分,你能根據它來提一個數學問題嗎?(隨機板書)

          預設1:瓶子還有多少水?(剩下多少水?)

          預設2:喝了多少水?(也就是瓶子的空氣部分。)

          預設3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)

          2.你覺得你能輕松解決什么問題?

          (1)預設1:瓶子有多少水?(怎么解決?)

          學生:瓶子里剩下的水呈圓柱狀,只要量出這個圓柱的底面直徑和高就能算出它的體積。

          教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數據?(底面直徑、水的高度)

          小結:知道了底面直徑和水的高度,要解決這個問題的確輕而易舉。請你準備好直尺,或許等會兒有用哦!

         。2)預設2:喝了多少水?

          學生:喝掉部分的形狀是不規則,沒有辦法計算。

          教師:當物體形狀不規則時,我們想求出它的體積可以怎么辦?

          教師相機引導:能否將空氣部分變成一個規則的立體圖形呢?

          學生能說出方法更好,不能說出則引導:我們不妨把瓶子倒過來看看,你發現了什么?

          引導學生發現:在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個圓柱,要求出它的體積需要哪些數據?(倒置后空氣的高度)

          小結:這個方法不錯,我們利用水的流動性成功地將不規則的空氣部分轉化成了一個圓柱體,得到所需數據后能求出它的體積。這樣一來,第3個問題還難得到你嗎?

         。3)怎么求這個礦泉水瓶的容積?引導學生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。

          【設計意圖】課本中的例題呈現如下,

          例題是直接呈現轉化方法的,我是想先屏蔽相關數據信息和方法,通過激發學生解決問題的內在需求,根據自己的生活學習經驗來想辦法解決,才有了對數學情境的改編,以期通過轉化、觀察、對比,讓學生發現倒置前后兩部分立體圖形之間的相同點,溝通兩部分體積之間的內在聯系,順利地把新知轉化為舊知,分散了難點,從而找到解決問題的方法。

          3.小組合作,測量計算。

          (礦泉水瓶內直徑為6cm)

          教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!

         。1)課件出示:

          一個內直徑是()的瓶子里,水的高度是(),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是()。這個瓶子的容積是多少?(測量時取整厘米數)

          (2)四人小組合作:

          A.組長安排好分工:

          要量出所需數據,其他組員要監督好測量方法與結果是否正確,要按要求把題目填完整。

          B.組內互相說一說:倒置前后哪兩部分的體積不變?

          礦泉水瓶的容積=()+()。

          C.做好以上準備工作后,利用所得數據獨立計算,再組內校對結果是否正確。

          【設計意圖】這一環節讓學生大膽動手操作,在實踐中不斷發現解決問題,在同伴的交流中拓展自己的思維,讓學生在合作中建立協作精神。

          4.交流反饋。

          教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學板演。

          瓶中水高度為6厘米的:

          3.14×(6÷2)2×6+3.14×(6÷2)2×13

          =3.14×9×(6+13)

          ≈537(毫升)。

          瓶中水高度為7厘米的:

          3.14×(6÷2)2×7+3.14×(6÷2)2×12

          =3.14×9×(7+12)

          ≈537(毫升)。

          瓶中水高度為8厘米的:

          3.14×(6÷2)2×8+3.14×(6÷2)2×11

          =3.14×9×(8+11)

          ≈537(毫升)。

          瓶中水高度為9厘米的:

          3.14×(6÷2)2×9+3.14×(6÷2)2×10

          =3.14×9×(9+10)

          ≈537(毫升)。

          教師:出示某品牌礦泉水瓶的標簽,上面寫著凈含量為550毫升,基本符合。

          5.解答正確嗎?

          教師引導學生回顧反思:剛才我們是怎樣解決問題的?

          小結:根據具體情況選擇合適的轉化方法,像這樣不規則立體圖形的體積可以轉化為規則的立體圖形來計算。

          【設計意圖】通過回顧解決問題的過程,幫助學生把本環節的數學活動經驗進行總結,引導學生在后續的學習中碰到相似的問題也可同樣利用轉化的思想來解決。

         。ㄈ┚毩曥柟,學以致用

          1.數學書P27做一做。

         。1)學生獨立思考,解決問題。

         。2)把自己的想法與同桌說一說。

          (3)交流反饋:重點交流如何轉化,倒置后哪兩部分體積不變?

          求小明喝了多少水實際上是求礦泉水瓶上面無水部分的體積,這部分為不規則的立體圖形。

          將水瓶倒置后不規則容器轉化成了圓柱:該圓柱體積=小明喝了的水。

          3.14×(6÷2)2×10=282.6(毫升)。

          2.輸液100毫升,每分鐘輸2.5毫升,請觀察第12分鐘時吊瓶圖像中的數據。問整個吊瓶的容積是多少毫升?

         。1)請學生計算,并反饋訂正。

         。2)反饋要點:

          整個吊瓶容積=圖像中空氣部分的'容積+還剩下液體的體積。

          根據圖象,可以得出在第12分鐘吊瓶有80毫升是空的。

          剩下液體的體積=100-2.5×12=70(毫升)。

          即整個吊瓶容積=80+70=150(毫升)。

          【設計意圖】從生活中常見的吊瓶問題引出,感受數學與生活的密切聯系,能根據圖像提取解決問題的有效信息,既提升了所學知識,又關注了學生的思考,培養學生的分析、解決問題能力。

          3.如下圖,一個底面周長為9.42厘米的圓柱體,從中間斜著截去一段后,它的體積是多少?

          (1)思考:這是一個不規則的立體圖形,要求它的體積,它不能像瓶子里的水一樣可以流動變形轉化,怎么辦?

          (2)討論方法:

          A.重疊:假設把兩個大小一樣的斜截體拼成一個底面周長為9.42厘米,高為(4+6)厘米的圓柱,這個立體圖形的體積是新圓柱體積的一半。

          B.切割:把這個立體圖形分為兩部分,下面是一個底面周長為9.42厘米,高為4厘米的圓柱體,上面是一個高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。

         。3)用自己認可的方法計算,并進行反饋。

          解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。

          解法二:3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。

         。4)反饋小結:可以有不同的轉化方法來解決問題。

          【設計意圖】不滿足于一種方法的轉化,展示多種方法,開拓學生的思維。

         。ㄋ模┤n總結,提升認識

          教師:回憶一下,今天這節課有什么收獲?

          教師和學生共同小結:求不規則的立體圖形的體積可以將它轉化成為規則的立體圖形,這節課我們主要是將不規則的立體圖形轉化成為圓柱,用圓柱的體積計算方法來解決問題。

          在解決問題時,主要要弄清楚轉化前后兩部分之間的關系。

          【設計意圖】通過小結,讓學生自主地對回顧本課所學知識進行梳理總結,通過歸納與提煉,讓學生明確轉化思想在數學學習中的重要性。

          圓柱的體積教學設計 篇7

          【教材簡析】:

          本節內容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。

          【教學內容】:

          p19-20頁的內容和例題,完成“做一做”及練習三第1~4題。

          【教學目標】:

          1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

          2、初步學會用轉化的數學思想和方法,解決實際問題的能力

          3、滲透轉化思想,培養學生的自主探索意識。

          【教學重點】:掌握圓柱體積的計算公式。

          【教學難點】:圓柱體積的計算公式的推導。

          【教學過程】:

          第一課時本冊總課時:12課時

          一、復習

          1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統一公式“底面積×高”,即長方體的體積=底面積×高)

          2、什么叫做物體的體積?你會計算下面那些圖形的體積?

          3、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。

          4、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。

          二、新課

          1、圓柱體積計算公式的推導。

          (1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的.12塊,把它們拼成一個近似長方體的立體圖形——課件演示)

          (2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)

          (1)拼成近似長方體的體積與原來的圓柱體積有什么關系?(相等)

          (2)拼成的近似長方體的底面積與原來圓柱的底面積有什么關系?(相等)

          (3)拼成的近似長方體的高與原來的圓柱的高有什么關系?(相等)

         。3)通過觀察,使學生明確:

          長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

          長方體的體積=底面積×高,所以圓柱的體積=底面積×高,v=sh

          圓柱的體積計算公式是:v=sh

          2、課堂練習:

         。1)出示做一做:一根圓柱形鋼材,底面積是75平方厘米,長90厘米。它的體積是多少?

         。2)指名學生分別回答下面的問題:

         、龠@道題已知什么?求什么?

          ②能不能根據公式直接計算?

         、塾嬎阒耙⒁馐裁矗浚ㄓ嬎銜r既要分析已知條件和問題,還要注意要先統一計量單位)

          (3)讓學生解答和板算,最后師生共同完成.

          解:v=sh=75×90=675(立方厘米)

          答:它的體積是675立方厘米。

          3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的(v=πrh)

          圓柱的體積教學設計 篇8

          《圓柱的體積》是青島版標準實驗數學課本第十二冊第二單元《圓柱和圓錐》中信息窗3的內容,它包括圓柱體的體積計算公式的推導和運用公式計算圓柱的體積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體轉化成已學過的立體圖形,再通過觀察、比較找出兩個圖形之間的關系,來推導出圓柱的體積計算公式!秷A柱和圓錐》這一單元是小學階段學習幾何形體知識的最后部分,是幾何知識的綜合運用。在此之前,學生已掌握了一定的幾何知識與數學方法,部分學生思維活躍,數學成績較好,加上“圓的面積公式”的推導的學習,輔以多媒體的教學,學生應該容易完成圓柱體體積計算公式的推導過程,為今后學習復雜的形體知識打下扎實的基矗

          [教學目的]

          1、運用遷移規律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,并理解其推導過程。

          2、會用圓柱的體積計算公式計算圓柱形物體的體積或容積。

          3、引導學生逐步學會轉化的數學思想和數學方法,培養學生解決實際問題的能力。

          4、借助遠程教育的課件資源演示,培養學生抽象、概括的思維能力。

          [教學重難點]

          圓柱體體積計算公式的推導過程

          [設計理念及策略]

          《數學課程標準》指出:“有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式!奔匆笪覀冊诮虒W中,要讓學生通過自主的知識建構活動,學生的潛能得以開發,情感、態度、價值觀得以培養,從而提高學生的數學素養。因此根據本節課內容的特點,這節課的教學將通過對圓柱體積知識的探究,重點培養學生探究數學知識的能力和方法。為了把“一切為了學生的發展”這一新的教學理念融入到了課堂教學之中。在課堂教學中將以學生的活動為主,讓學生通過親身體驗、實際操作來找出數學知識之間的內在聯系。在學生學習過程中,充分運用了遠程教育資源中動畫、聲音、視頻文件,并進行了有效地整合。本節課將使用以下策略:

          1、利用遷移規律引入新課,借助遠程資源為學生創設良好的學習情境。

          2、以合作探究為主要的學習方式,充分發揮學生的自主性,體現學生的主體地位。

          3、練習多樣化,層次化。

          4、引導學生把知識轉化成相應的技能,從而提高靈活運用的能力,培養學生的綜合素質。

          [教學準備]

          多媒體課件、圓柱體體積演示器

          [教學過程]

          一、回憶舊知,實現遷移。

          1、學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?利用多媒體課件動態演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關系,進而推導出圓面積計算公式的過程。

          2、計算圓的面積。

          A.半徑5厘米

          B.直徑6分米

          二、指名說說自己想法。

          教師引入:這節課我們就來研究如何將圓柱轉化成我們已經學過的圖形來求出它的體積。(板書課題:圓柱的體積)

          1、交流猜測談話:通過剛才的回顧,你們能想辦法將圓柱轉化成我們已經學過的立體圖形來求體積嗎?怎樣轉化呢?

          2、生討論,交流。

          三、驗證。

          教師演示:

          (1)屏幕上呈現一個圓柱體變為一個長方體(圓柱與長方體等底等高)的動畫。提問:變化過程中,圓柱的什么變了(截面)?什么沒有變(高、體積)?

          (2)將圓柱的底面、長方體的底面閃爍后移出來。提問:你學過將圓變成長方形嗎?

          (3)再次出示圓柱形物體,動畫演示圓柱拼成近似長方體。讓學生取出圓柱體學具拼成近似長方體。

          四、探索圓柱與所拼成的近似長方體之間的關系。

          1、學生動手進行實驗。請每個小組拿出學具,并研究轉化后的`長方體和原來圓柱體積、底面積、高之間的關系。

          2、學生利用學具獨立操作(教師巡視、指導操作有困難的學生),思考并討論。

          3、通過剛才的實驗你發現了什么?

          ①拼成的近似長方體的體積與原來的圓柱體積有什么關系?

         、谄闯傻慕崎L方體的底面積與原來圓柱的底面積有何關系?

         、燮闯傻慕崎L方體的高與原來的圓柱的高有什么關系?

          4、學生匯報交流。

          五、分析關系,總結公式引導學生發現并說出:

          圓柱體轉化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高?偨Y公式。

          長方體的體積=底面積×高

          圓柱的體積=底面積×高

          V=Sh

          六、拓展訓練。

          一個圓柱形量桶,底面半徑是5厘米,把一塊鐵塊從這個量桶里取出后,水面下降3厘米,這塊鐵塊的體積是多少?

          七、課堂總結。

          [附:板書設計]圓柱的體積

          長方體的體積=底面積×高

          圓柱的體積=底面積×高

          V=Sh

          [教學反思]

          1、這節課是通過觀察、猜想、操作驗證、鞏固、應用這幾個環節來完成的。學生在最佳的情景中通過實踐、探索、發現,得到了“活”的知識,學到有價值的數學。

          2、操作驗證是本節課的關鍵,為體現活動教學中學生“主動探索”的特點,我從問題入手,組織學生圍繞觀察猜想后展開驗證性的操作活動。學生以活動小組為單位,思維活躍,積極探索,學習能力、抽象概括能力和邏輯思維能力得到了提高。

          3、充分利用媒體資源,化解難點,提高課堂效果;注重習題多樣化、層次化,拓展學生思維。

          圓柱的體積教學設計 篇9

          一、情景引入

          1、教學開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準備投入水中并讓學生觀察:會發生什么情況?由這個發現你想到了些什么?

          2、提問:“能用一句話說說什么是圓柱的體積嗎?”

          (學生互相討論后匯報,教師設疑)

          二、自主探究、

          1、比較大小、探究圓柱的體積與哪些要素有關。

          (1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?

         。2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。

         。3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結果填入實驗報告1中。(課件出示)

          (4)、學生通過動手操作匯報結論:當底等時,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關。

          2、大膽猜想,感知體積公式,確定探究目標。

         。1)、再次設疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學生想如何計算圓柱的體積。

         。2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。

         。3)、讓學生思考:怎樣計算圓柱的體積呢,依據學過的知識,你可以做出怎樣的假設?

          (4)、學生小組討論交流并匯報:圓柱平均分成若干小扇形體后應該也能夠轉化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。

         。5)、讓學生依據假設結論分組測量圓柱c和圓柱d的有關數據,用計算器計算體積,并填入實驗報告2中。(課件出示)

          4、確定方法,探究實驗,驗證體積公式。

         。1)、首先要求學生利用實驗工具,自主商討確定研究方法。

         。2)、學生通過討論交流確定了兩種驗證方案。

          方案一:將圓柱c放入水中,驗證圓柱c的體積。

          方案二:將學具中已分成若干分扇形塊的`圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。

         。3)、學生按照自己所設想的方案動手實驗,并記錄有關數據,填入實驗報告2中。

         。4)、實驗后讓學生對數據進行分析:用實驗的方法得出的數據與實驗前假想計算的數據進行比較,你發現了什么?

         。5)、學生匯報:實驗的結果與猜想的結果基本相同。

         。6)、教師用課件演示將圓柱體轉化成長方體的過程,向學生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。

         。7)、小結:

          要想求出一個圓柱的體積,需要知道什么條件?

         。8)、學生自學第8頁例4上面的一段話:用字母表示公式。

          學生反饋自學情況:v=sh

          三、鞏固發展

          1、課件出示例4,學生獨立完成。

          指名說說這樣列式的依據是什么。

          2、鞏固反饋

          3、完成第9頁的“試一試”和練一練”中的兩道題。

         。ā熬氁痪殹敝涣惺剑挥嬎悖

          集體訂正,說一說圓柱體的體積還可以怎樣算?

          4、一個圓柱形水杯的底面直徑是10厘米,高是15厘米,已知水杯中水的體積是整個水杯體積的2/3,計算水杯中水的體積?

          5、拓展練習

         。1)、一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數保留兩位小數)

         。2)、一個底面直徑是20厘米的圓柱形容器里,放進一個不規則的鑄鐵零件后,容器里的水面升高4厘米,求這鑄鐵零件的體積是多少?

          四、全課小結:

          談談這節課你有哪些收獲。

          1、結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

          2、讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。

          3、通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。

          教學重點:掌握和運用圓柱體積計算公式。

          教學難點:圓柱體積計算公式的推導過程。

          圓柱的體積教學設計 篇10

          一、揭示課題,確定目標

          談話:前面我們認識了圓柱,學習了圓柱的底面積、側面積和表面積,今天學習“圓柱的體積”。(教師板書,學生齊讀)

          啟發:看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學生會提出以下幾個問題)

          引導:

         。1)什么是圓柱的體積?

         。2)圓柱的體積和什么有關?

          (3)圓柱的體積公式是怎樣推導出來的?

         。4)圓柱的體積是怎樣求出來的?

          (5)學習圓柱的體積公式有什么用?

          談話:對!剛才這幾位同學跟老師想的一樣。

          啟發:圓柱的體積就是圓柱所占空間的大小

          談話:這堂課我們主要解決三個問題:(出示探究問題)

          1、圓柱的體積和什么有關?

          2、這個公式是怎樣推導出來的?

          3、學習了圓柱的體積能解決什么實際問題?

          【設計意圖】直接揭示課題,啟發學生自己提出教學的要求,這樣既創設了問題情境,激發學生學習的興趣,又使學生明確這堂課的教學目標。

          二、溫故知新,自學課本

          1、提出問題

          談話:現在請大家回憶一下,我們以前學過哪些立體圖形的體積計算。是怎樣計算的?

          引導:我們已經學過長方體、正方體的體積計算。(教師隨著學生的回答,逐一出示出上述圖形)。

          談話:長方體的體積=長×寬×高

          正方體的體積=棱長×棱長×棱長

          統一為:長方體或正方體的體積=底面積×高

          談話:長方體和正方體和今天學習的圓柱有什么顯著的區別?

          引導:長方體的面都是平面圖形,圓柱的側面是一個曲面。

          談話:因為圓柱的側面是一個曲面,計算圓柱的體積就比較困難了。能不能直接用體積單位去量呢?

          引導:它的側面是一個曲面,用體積單位直接量是有困難的。

          2、引發猜想

          談話:圓柱的體積和什么有關系呢?(準備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)

          引導:圓柱體的體積既和底面積有關,又和高有關。

          3、自學課本

          談話:圓柱體的體積和底面積、高到底有什么關系呢?如何求圓柱體的體積?

          啟發:請大家閱讀課本,在課本中尋找答案。(教師要求學生利用預先準備好的平均分成16份圓柱學具拼一拼,學生一邊看書,一邊操作。學生閱讀課本后,全班交流。)

          引導:我們用圖形轉化的方法,求圓柱的體積。

          談話:這個辦法很好。那么把圓柱轉化成什么圖形呢?

          引導:長方體。

          談話:以前我們學習圓的面積時也是運用轉化的策略,把圓轉化成近似的長方形,“化曲為直”、“化圓為方”推導出圓的面積計算公式。

         。ㄓ枚嗝襟w演示圓形的轉化過程,邊出示、邊交流)

          【設計意圖】在不能用體積單位直接量的情況下,啟發學生運用轉化的數學思想解決問題。通過復習了舊知識,又為學習新知識作好鋪墊,能夠促進學生充分運用遷移規律把新舊知識聯系起來組成一個新的知識結構。

          三、合作交流發展能力

          談話:同學們觀察一下,拼成的是什么圖形?

          引導:近似的長方體。

          啟發:說得很好,為什么說是近似的長方體,哪里不太像?

          引導:長都是許多弧線組成,不是直的。

          談話:這里我們把圓柱分成16等分,還能分嗎?

          談話:究竟能分多少份呢?

          引導:無數份,可以永遠分下去。

          談話:對。這就是說,分的份數是無限的。你們可以閉上眼睛想一想,如果分的份數越多,長就越接近于直線段,這個圖形就越接近于長方體。

          四、師生合作歸納結論

          談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發現了什么?

          匯報:把圓柱體轉化為近似的長方體,形狀變了,體積沒有變。

          談話:要求圓柱的.體積,我們只要求轉化后的長方體的體積就可以了。

          匯報:

         。1)轉化后的近似長方體的底面積與原來的圓柱體的底面積相等。

          (2)轉化后的近似長方體的高與原來的圓柱體的高相等。

          因為:長方體的體積=底面積×高

          所以:圓柱的體積=底面積×高

          (教師要求學生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)

          長方體的體積=底面積×高

          圓柱的體積=底面積×高

          交流:我們也可以用字母表示圓柱的體積計算公式:v=sh(板書)

          引導:剛才我們的猜想是正確的,圓柱的體積既和底面積有關,又和高有關。

          現在請同學們把圓柱體積公式的推導過程再完整地說一遍。

          談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關。

          通過分一分、拼一拼我們把圓柱轉化成了近似的長方體。

          通過比一比、算一算成功地推導出圓柱的體積計算公式,解決了我們前兩個要探究的問題。

          【設計意圖】要求每個學生動手操作,打破了過去教師演示教具學生看的框框,并滲透轉化、無限等數學思想,讓學生自己從嘗試中推導圓柱體積的公式。

          圓柱的體積教學設計 篇11

          一、教學對象及學習內容特點分析:

          圓柱的體積是小學立體幾何圖形中的重要內容之一,是已學的長方體知識和將學的圓椎體知識的橋梁,其公式是長方體、正方體體積公式V=Sh的延續。

          二、教學目的:

          學生能借助媒體提供的資源理解和掌握圓柱體積的計算公式。

          學生能應用圓柱體積公式進行圓柱體積的計算。

          學生能利用知識之間相互"轉化"的思想探索解決新的問題。

          三、教學基本指導思想、教學策略和方法:

          整個過程,充分利用計算機的優點,以小組學習的形式,發揮學生的主體作用,教師是學生學習過程的組織者和輔導者。長方體的體積公式和平面圖形的面積公式已學過,因此引導學生用轉化的思想去學習,并創設情景,讓學生自己發現問題,利用電腦、課本、實物提供的資源協商解決問題,使全體學生都成為學習的主人。

          四、教學運用的主要手段、技術、材料:

          電腦網絡、實物投影、圓柱體。

          五、教學過程的設想和點評

          教師的教學行為學生的學習行為點評

          第一階段:創設情景,設疑引趣。

          教師故事引入:圓柱形狀的"轉筆刀"和"漿糊筆"迎著朝陽高高興興上學了,走著走著,它們就為哪個體積大而爭論起來,"轉筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭論了很久還沒個結果。

          提問:小組討論尋找解決這兩個圓柱體積大小的方法。

          1、學生小組討論解決的方法。

          2、小結歸納:解決圓柱的體積的方法:尋找一種方法,導出圓柱的體積公式,然后應用公式求圓柱的體積。

          通過情景的創設,激發學生的學習熱情,讓他們發現問題,并通過討論找出解決的方法,使學生從被動學習變為主動學習,學生對這節課的學習也從宏觀上得到了解。學生解決問題的方法有出人意料的回答,老師根據情況,給予恰當的'鼓勵性的評價,以激發學生的思維。

          第二階段:自主探究。概括規律

          1、電腦提供學生探索資源:

         。1)平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長方體、正方體)體積公式的導出過程。

          (2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個近似的長方體。

          2、學生反饋自學內容,師生共同導出圓柱的體積公式V=Sh1、學生打開電腦"自能學習"中的"尋方法",有選擇地看學過的平面圖形的面積公式和立體圖形體積公式的導出過程,從中找到推導圓柱體積公式的方法。

          2、學生通過觀察圓柱公式的推導過程。

          3、小組討論填寫實驗報告。

          4、師生導出圓柱的體積公式后,學生自學課本例題,并完成例4內容。通過利用資源、自能學習,讓全體學生都能動腦、動口、動手參與到學習中去,使學生學會學習、學會協作,所學知識的理解更為深刻、透徹。在自學的過程中教師通過監控密切觀察著學生的學習情況,發現問題及時解決。

          圓柱體積公式的推導過程,學生會有不同的方法,如用課本的方法或用類比的方法,教師應給予恰當的評價。

          第三階段:拓展公式,自能訓練。

          1、公式拓展。

          在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?

          2、教師小結:無論已知圓柱的底面半徑、直徑還是底面周長,我們都必須根據V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。

          3、質疑

          1、學生可根據已學的"圓的面積"公式導出。

         。ó斠阎獔A柱底面的半徑時V=∏r2h、當已知直徑時V=∏(d÷2)2h、當已知周長時,先求半徑,再求底面積,然后求圓柱體積。

          2、判斷。并說明原因

          (1)一個圓柱體的底面積是8平方厘米,高是6厘米,這個圓柱體的體積是48立方厘米。

         。2)一個圓柱的底面積是10平方米,高是10米,它的體積是100平方米。

         。3)一個圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。列式是:3.14×22×3

          1、根據生活實際,當知道圓柱底面半徑、直徑或周長時,怎樣求圓柱的體積這個問題,可以讓學生充分拓展思維,不要停留在只會死記公式、生搬硬套的低層次上。并大力鼓勵、表揚愛動腦筋的同學

          2、通過練習,學生對基本知識有一定的理解,教師也了解了學生對知識的掌握情況。

          第四階段:反饋學習、應用提高。

          1、提出練習要求:先做"鞏固"練習,有余力的再做"提高"練習。

          2、小結練習情況,及時表揚對而快的同學及小組

          3、回應開頭,解決"漿糊筆"和"轉筆刀"爭論的問題。學生在電腦上完成。

          1、賽車游戲:看誰跑得快。

          (1)圓柱的底面積是15平方米,高是3米,體積是()立方米。

         。2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是()平方厘米。

         。3)一個圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個糧囤能裝稻谷()立方米。

         。4)一個圓柱的體積是80立方分米,底面積是16平方分米,它的高是()分米。

          2、提高練習?寄阒腔郏嚎凑l攀得高。

         。1)一個圓柱,它的底面直徑4厘米,高是3米,體積是()立方厘米。

         。2)一個圓柱體鐵架,它的底面周長是62.8分米,高是6分米,它的體積是()立方分米。

          在計算過程中,學生會遇到不少問題,可通過師生交流或小組互相幫助解決,從而實現互幫、互學共同提高。

          六、歸納總結、自我評價。

          1、提出要求,學生談收獲。

          2、總結本節情況。談收獲,并作出自我評價。通過談收獲,體現學習的自主性,體驗獲得成功的樂趣。

          七、對教學過程的設想和點評:

          新課程標準注重小學生對周圍世界與生俱來的探究興趣和需要,在小學階段,學生的知識積累與思維能力較為有限,強調用符合小學生年齡特點的方式學習,提倡課程貼近小學生的生活,這節課從學生身邊學習用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學過程中引起的爭論導出學習的內容,激發學生學習的積極性。這樣在教學進程中安排好相關的情景組織學生參與其中,親歷過程,自主地開展活動,通過看、做、玩、想等方式,讓學生既學會知識與技能,又培養智能、情感態度與價值觀,促進學生科學素養的形成。

          新課標還積極倡導讓學生親身經歷以探究為主的學習活動,培養他們的好奇心和探究欲,使他們學會探究解決問題的策略,為他們終身的學習和生活打好基礎。這是一節在網絡環境下開展的探究型數學課,引入后,教師則大膽放手,營造了一個開放的探究空間,通過學生小組討論尋找比較圓柱大小的方法,引導學生通過自主、合作探究這種學習方式進行實踐活動,觀察由圓柱轉變成已學過長方體的過程,在觀察中相互啟發,共同提高,形成共識后并加以記錄。再將大家的記錄結果對比、討論、從而得出結論:圓柱的體積=轉變成的長方體的體積,從而導出圓柱的體積公式V=SH。在這一過程中,教師以學生的發展為本,關注每一位的發展,珍視每位學生的探究體驗及獨特見解,在學生探究結果的表述過程中,對同一個問題,不同的人可以得出不同的結論,他們通過互相交流互相討論,思維更是得到發展與創新。不僅激發了每一位學生主動參與探究實踐活動,更讓學生在探究中學會合作、懂得思考、大膽發表自己的獨特見解,更學會傾聽、尊重他人的意見,從而實現互幫、互學共同提高,并在探究中發現、學習,激發學生學習的興趣,培養了實踐的能力。

          網絡環境下的教學方式不僅改變了以往教師滿堂灌的現象,在拓寬學生知識面的同時,更培養了學生搜集信息、處理信息并進行合理解釋的能力,大大地激發了學生自主學習的積極性,學生的創新意識日漸增強,真正實現了利用信息技術為教學內容服務。

          圓柱的體積教學設計 篇12

          教學目標

          1.使學生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應用分式解答一些實際問題。

          2.在充分展示體積公式推導過程的基礎上,培養學生推理歸納能力和自學能力。

          教學重點:

          圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。

          教學難點:

          圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。

          教法:啟發點撥,歸納總結,直觀演示

          學法:自學歸納法,小組交流法

          課前準備:課件

          教學過程:

          一、定向導學(5分)

          (一)導學

          1、什么叫體積?(指名回答)

          生:物體所占空間的大小叫做體積。

          師:你學過哪些體積的計算公式?(指名回答)

          根據學生的回答,板書:

          長方體體積=底面積×高

          2、圓面積公式是怎樣推導出來的?

          生:把一個圓,平均分成數個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑,(根據學生的敘述,邊用幻燈片演示。)得到圓面積公式s=2πr。

          3、動腦筋想一想,圓柱的體積,能不能轉化成你學過的形體,推導出計算圓柱體積的公式?

          4、導入

          我們已經認識了圓柱體,學會了圓柱體側面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)

         。ǘ┒ㄏ

          出示學習目標:

          1、理解和掌握圓柱的體積計算公式。

          2、會用公式計算圓柱的體積,并能運用公式解答一些實際問題。

          二、合作交流(15分)

          1.閱讀書25頁。

          2、看書回答:

          (1)圓柱體是怎樣變成近似長方體的?

          (2)切拼成的長方體的體積、底面積和高分別與圓柱體的體積、底面積、高有什么關系?

          (3)怎樣計算切拼成的長方體體積?為什么?用字母怎樣表示?

          3、小組展評交流結果。

          (1)展評題(1)。圓柱體是怎樣變成長方體的?把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數越多,拼成的`立體圖形越接近長方體。)

          (2)展評題2。

          切拼成的長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。

         。3)展評題3

          圓柱體積=底面積×高

          v=sh

          4、公式檢測

          學生獨立完成書上做一做1、2題。

          三、自主學習(5)

          1、出示例6

          下面這個杯子能不能裝下這袋奶直徑8厘米高10厘米這袋奶498毫升

          2、嘗試列式計算.

          3、學生展示自學結果。

          4、小結

          四、質疑探究(2)

          已知圓柱的底面周長和高又怎樣求圓柱的體積?

          五、小結檢測(13分)

         。ㄒ唬┬〗Y

          讓學生說出圓柱體積的推導過程,體積公式。

         。ǘz測

          1、把圓柱切開,可拼成一個(),圓柱的體積等于近似長方體的(),圓柱的底面積等于(),圓柱的高等于(),所以圓柱的體積=()。

          2、圓柱體的底面積3.14平方分米,高40厘米。它的體積是多少?

          3、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?

          4、判斷正誤,對的畫“√”,錯誤的畫“×”。

         。1)圓柱體的底面積越大,它的體積越大。()

         。2)圓柱體的高越長,它的體積越大。()

         。3)圓柱體的體積與長方體的體積相等。()

         。4)圓柱體的底面直徑和高可以相等。()

          5、一張長方形的紙長6.28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。

          板書設計:

          圓柱的體積

          圓柱體積=底面積×高

          v=sh

          75×90=6750(立方厘米)杯子的底面積:3.14×(8/2)×(8/2)×10=502.4(ml)

          答:它的體積是6750立方米。答:這個杯子能裝下這袋奶。

          圓柱的體積教學設計 篇13

          教學目標

          1、理解圓柱體體積公式的推導過程,掌握計算公式。

          2、會運用公式計算圓柱的體積。

          教學重點

          圓柱體體積的計算。

          教學難點

          理解圓柱體體積公式的推導過程。

          教學過程

          一、復習準備

          (一)教師提問

          1、什么叫體積?怎樣求長方體的體積?

          2、圓的面積公式是什么?

          3、圓的面積公式是怎樣推導的?

         。ǘ┱勗拰

          同學們,我們在研究圓面積公式的推導時,是把它轉化成我們學過的長方形知識的來解決的。那圓柱的體積怎樣計算呢?能不能也把它轉化成我們學過的立體圖形來計算呢?這節課我們就來研究這個問題。(板書:圓柱的體積)

          二、新授教學

         。ㄒ唬┙虒W圓柱體的體積公式。(演示動畫“圓柱體的體積1”)

          1、教師演示

          把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體。

          2、學生利用學具操作。

          3、啟發學生思考、討論:

          (1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)

         。2)通過剛才的.實驗你發現了什么?

         、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了。

          ②拼成的近似的長方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發生變化。

         、劢崎L方體的高就是圓柱的高,沒有變化。

          4、學生根據圓的面積公式推導過程,進行猜想。

         。1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?

         。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?

         。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?

          5、啟發學生說出通過以上的觀察,發現了什么?

         。1)平均分的份數越多,拼起來的形體越近似于長方體。

         。2)平均分的份數越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。

          6、推導圓柱的體積公式

          (1)學生分組討論:圓柱體的體積怎樣計算?

         。2)學生匯報討論結果,并說明理由。

          因為長方體的體積等于底面積乘高。(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)

          (3)用字母表示圓柱的體積公式。(板書:V=Sh)

          (二)教學例4。

          1、出示例4

          例4。一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?

          2.1米=210厘米

          50×210=10500(立方厘米)

          答:它的體積是10500立方厘米。

          2、反饋練習

         。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?

          (2)一個圓柱形罐頭盒的內底面半徑是5厘米,高15厘米,它的容積是多少?

         。ㄈ┙虒W例5。

          1、出示例5

          例5、一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?

          水桶的底面積:

          3.14×100=314(平方厘米)

          水桶的容積:

          314×25=7850(立方厘米)=7.8(立方分米)

          答:這個水桶的容積大約是7.8立方分米。

          三、課堂小結

          通過本節課的學習,你有什么收獲?

          1、圓柱體體積公式的推導方法。

          2、公式的應用。

          四、課堂練習。

          圓柱的體積教學設計 篇14

          教學內容:

          青教版九年義務教育六年制小學數學六年級下冊第23—28頁。

          教材簡析:

          該信息窗呈現的是圓柱和圓錐形狀的冰淇淋盒,并分別標出了它們的底面直徑和高。引導學生提出問題,引入對圓柱、圓錐體積計算的探索和學習。“合作探索”中第一個紅點部分是學習圓柱的體積。

          教學目標:

          1、結合具體情境,通過探索與發現,理解并掌握圓柱并能解決簡單的實際問題。

          2、經歷探索圓柱計算公式的過程,進一步發展空間觀念。

          3、在觀察與實驗、猜測與驗證、交流與反思等活動中,初步體會數學知識的產生、形成與發展的過程,體驗數學活動充滿著探索與創造,初步了解并掌握一些數學思想方法。

          教學重點和難點:

          圓柱、圓錐體積的計算方法,以及體積公式的探索推導過程。

          教具準備:

          多媒體課件、圓柱體積學具、沙子等。

          第一課時

          教學過程:

          一、創設情境,激趣引入。

          談話:同學們,天氣漸漸熱了,在夏季同學們最喜歡的冷飲是什么?(生回答)

          課件出示:兩個圓柱體冰淇淋。

          談話:看,小明買了兩個冰淇淋,你能猜猜哪種包裝盒體積大嗎?

         。ㄉ聹y)這節課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)

          設計意圖:

          從生活中常見的例子導入新課,從中培養學生在生活中發現數學問題、提出問題的意識。學生的猜測為后面的實驗驗證做好了鋪墊,激發學生探究新知的欲望。

          二、回憶舊知,實現遷移。

          談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?

         。▽W生回答后,教師利用多媒體課件動態演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關系,進而推導出圓面積計算公式的過程。)

          設計意圖:

          通過回顧圓的面積的推導方法,巧妙地運用舊知識進行遷移。

          三、利用素材,探索新知。

          ㈠交流猜測

          談話:通過剛才的回顧,你們能想辦法將圓柱轉化成我們已經學過的立體圖形來求體積嗎?

          生:我們學過長方體的體積,可不可以將圓柱轉化成長方體呢?

          師談話:你的.想法很好,怎樣轉化呢?

          生討論,交流。

          生匯報,可能會有以下幾種想法:

          1、先在圓柱的底面上畫一個最大的正方形,再豎著切掉四周,得到一個長方體,然后把切下的四塊拼在一起。

          2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。

          3、如果是橡皮泥那樣的,可以把它重新捏成一個長方體,就能計算出它的體積了。

          談話:請同學討論和評價一下,哪一種方法更合理呢?引導學生按照第二種方法進行驗證。

         、鎸嶒烌炞C

          學生動手進行實驗。

          談話:請每個小組拿出學具,按照剛才第3小組的方法把它轉化為近似的長方體,并研究轉化后的長方體和原來圓柱體積、底面積、高之間的關系。

          學生合作操作,集體研究、討論、記錄。

          設計意圖本環節讓學生親自動手操作,再次感受“化圓為方”的思想。動手操作,是學生發現規律和獲取數學思想的重要途徑。

          四、分析關系,總結公式

          1、全班交流

          談話:哪個小組愿意展示一下你們小組的研究結果?

          引導學生發現:

          轉化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。

          2、分析關系

          引導說出:圓柱體轉化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。

          3、總結公式。

          談話:同學們真了不起!你們的發現非常正確。我們來看一看課件演示。

         。ㄕn件分別演示將圓柱等分成16份、32份、64份的割拼過程,學生觀察、思考。)

          談話:你發現了什么?

          引導觀察:分的份數越多,拼成的圖形就越接近長方體。

         。ㄕn件動態演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)

          談話:其實大家剛才又采用了“化圓為方”的方法將圓柱轉化成了長方體。你現在能總結出圓柱體積的計算公式嗎?說一說你是怎樣想的。

          根據學生的回答教師板書:

          長方體的體積=底面積×高

          圓柱的體積=底面積×高

          談話:你能用字母表示圓柱的體積計算公式嗎?V=Sh

          設計意圖教師給予適當的演示,溝通圓面積計算公式的推導方法與圓柱體積計算公式推導方法的共同點——轉化法,便于學生順利推導出圓柱體積的計算公式。

          五、利用公式,解決問題。

          自主練習第1題、第2題、第3題

          設計意圖鞏固練習及時讓學生利用結論解決問題,感受自己研究的重要價值,激發學習數學的興趣。

          六、課堂總結

          圓柱的體積教學設計 篇15

          一、創設現實情境,增強探究欲望。

          1、出示橡皮泥做的圓柱體:怎樣求出這個圓柱體橡皮泥的體積?你能想出幾種辦法?

          如果要求(出示百家姓廣場上的圓柱形大鼎底座圖片)圓柱形大鼎底座的體積,還能用剛才那樣的方法嗎?那怎么辦?(學生試說出自己的辦法。)

          看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,對嗎?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

          二、親歷建構過程,提高探索能力。

          1、提出問題,大膽猜想

          你能猜一猜圓柱的體積怎樣計算嗎?你覺得圓柱體積的大小和什么有關?

         。ü膭顚W生大膽猜測,說出自己的想法)

          2、回顧舊知,幫助遷移

          同學們都很會大膽猜想,但還要小心地論證猜想的科學性。你還記得圓面積轉化什么圖形的面積來求它的公式的嗎?

          (演示課件:圓轉化成長方形)

          3、引發思考:我們能否把圓柱體也轉化成學過的立體圖形來計算它的體積呢?如果能,猜一猜能轉化成哪種立體圖形?

          4、小組合作,驗證猜想

          下面請大家四人一組,借助手中的學具或用蘿卜和土豆做成的圓柱分組進行探討。

          (出示合作提綱)小組長做好分工,并完成記錄表。

          思考:

          1、圓柱體可以轉化成哪種立體圖形?

          2、兩種立體圖形之間有怎樣的'聯系?你們發現了什么?得出了什么結論?

          3、怎樣用簡捷的形式表示你推導出來的公式呢?

          活動過程:

          1、我們用方法,把圓柱體轉化成了體。

          2、在這個轉化的過程中,變了,沒有變。

          3、通過觀察比較,我們發現:把一個圓柱體的底面分成許多相等的扇形,然后切、拼,就能得到一個近似的長方體。這個長方體的底面積等于圓柱體的(),高就是圓柱體的()。因為,長方體體積=(),所以,圓柱體的體積計算公式是v=()。

          4、全班交流,展示評價。

          評價交流中,借助評價樣題。同時課件演示切拼的過程,同時演示將圓柱底面等分成32份、64份……讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。

          5、根據學生的發現引導學生推導出:圓柱的體積=底面積×高,用字母表示v=sh。

          6、反饋練習。

          (1)要求圓柱體積,必須知道哪些條件?

         。2)出示例5,學生借助圓柱體積公式自主完成,并及時訂正反饋。

        【圓柱的體積教學設計】相關文章:

        《圓柱的體積》教學設計04-10

        圓柱的體積教學設計07-12

        圓柱的體積教學設計08-19

        圓柱的體積教學設計03-08

        圓柱的體積教學設計(15篇)03-16

        《圓柱的體積》教學設計(15篇)04-26

        《圓柱的體積》教學設計(精選15篇)01-26

        圓柱體積教學設計03-21

        《圓柱的體積》微課教學設計08-09

        《圓柱的體積》教學設計15篇05-13

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>