1. <rp id="zsypk"></rp>

      2. 《三角形內(nèi)角和》的教學(xué)設(shè)計

        時間:2022-05-09 10:20:32 教學(xué)設(shè)計 我要投稿

        關(guān)于《三角形內(nèi)角和》的教學(xué)設(shè)計(通用15篇)

          作為一名教師,就不得不需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動的計劃。那么什么樣的教學(xué)設(shè)計才是好的呢?以下是小編幫大家整理的關(guān)于《三角形內(nèi)角和》的教學(xué)設(shè)計(通用15篇),希望對大家有所幫助。

        關(guān)于《三角形內(nèi)角和》的教學(xué)設(shè)計(通用15篇)

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇1

          【教學(xué)內(nèi)容】

          《人教版九年義務(wù)教育教科書數(shù)學(xué)》四年級下冊《三角形的內(nèi)角和》

          【教學(xué)目標】

          1.使學(xué)生知道三角形的內(nèi)角和是180,并能運用三角形的內(nèi)角和是180解決生活中常見的問題。

          2.讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內(nèi)角和是180。

          3.培養(yǎng)學(xué)生自主學(xué)習(xí)、互動交流、合作探究的能力和習(xí)慣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣。

          【教學(xué)重點】

          使學(xué)生知道三角形的內(nèi)角和是180,并能運用它解決生活中常見的問題。

          【教學(xué)難點】

          通過多種方法驗證三角形的內(nèi)角和是180。

          【教學(xué)準備】

          課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾。

          【教學(xué)過程】

          一、激趣導(dǎo)入,提煉學(xué)習(xí)方法

          1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

          2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

          3.選擇工具,總結(jié)方法。

          讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

          師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

          4.導(dǎo)入新課。

          圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學(xué)過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

          二、動手操作,探索交流新知

          1.分組活動,探索新知

          根據(jù)學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

          量一量組同學(xué)發(fā)給以下幾種學(xué)具:

          折一折組同學(xué)發(fā)給上面的三角形一組。

          拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

          在學(xué)生探索的過程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時候要適當給予引導(dǎo)。

          2.多方互動,交流新知

          師:請我的大徒弟(量一量組)的同學(xué)先來匯報你們的研究成果。

          (1)首先要求學(xué)生說一說你們小組是怎樣進行探究的。

          (2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學(xué)生不正確的結(jié)論,因為這是知識的形成過程。)

          (3)請學(xué)生說說通過探究活動你們組得出的結(jié)論是什么。

          師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

          引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。

          師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

          同樣引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。

          3.思想碰撞,夯實新知

          師:三個徒弟你們能說說誰的方法最好嗎?

          學(xué)生都會說自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導(dǎo)學(xué)生說出量一量的方法可能由于量的不夠準確,所以結(jié)果可能比180大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

          師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準確。三角形的內(nèi)角和就是180。(板書:三角形的內(nèi)角和是180)

          四、走進生活,提升運用能力

          1.出示課前那架柁標出它的頂角是120,求它的一個底角是多少度?

          2.給你三根木條,能做出一個有兩個直角的三角形嗎?

          五、總結(jié)

          師:徒弟們你們經(jīng)過三年的苦學(xué),終于學(xué)有所成了。今天,能說說你們在我這里都學(xué)到了什么手藝嗎?

          六、拓展新知,課外延伸

          師:俗話說“活到老,學(xué)到老!蹦銈兿律胶筮要繼續(xù)探索,所以我要把我畢生都沒有完成的任務(wù)交給你們?nèi)パ芯俊?/p>

          大屏幕出示:

          能用你今天學(xué)過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇2

          教學(xué)目標:

          1、讓學(xué)生通過量、剪、拼、折等活動,主動探究推導(dǎo)出三角形內(nèi)角和是180度,并運用所學(xué)知識解決簡單的實際問題。

          2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透"轉(zhuǎn)化"數(shù)學(xué)思想。

          3、在學(xué)生親自動手和歸納中,使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

          教學(xué)重點:

          讓學(xué)生經(jīng)歷"三角形內(nèi)角和是180°"這一知識的形成、發(fā)展和應(yīng)用的全過程。

          教學(xué)難點:

          通過小組內(nèi)量一量、折一折、撕一撕等活動,驗證"三角形的內(nèi)角和是180°。"

          教師準備:

          4組學(xué)具、課件

          學(xué)生準備:

          量角器、練習(xí)本

          教學(xué)過程:

          一、興趣導(dǎo)入,揭示課題

          1、導(dǎo)入:"同學(xué)們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?"

         。ㄉ鍪救切尾R報各類三角形及特點)

          2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來了?快聽聽它們?yōu)槭裁闯称饋砹耍?quot;"哦,它們?yōu)榱巳齻內(nèi)角和的大小而吵起來。"(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

          3、我們來幫幫它們好嗎?

          4、那么什么叫內(nèi)角啊?你們明白嗎?誰來說說?來指指。

          你能標出三角形的三個角嗎?(生快速標好)

          數(shù)學(xué)中把三角形的這三個角稱為三角形的內(nèi)角,三個內(nèi)角加起來就叫內(nèi)角和。這節(jié)課我們就來研究一下"三角形的內(nèi)角和"(課件片頭1)

          "同學(xué)們,用什么方法能知道三角形的內(nèi)角和?"

          二、猜想驗證,探究規(guī)律(動手操作,探究新知)

          1、量角求和法證明:

          先聽合作要求:拿出準備的一大一小的兩個三角形,現(xiàn)在我們以小組為單位來量一量它們的內(nèi)角,注意分工:最好兩個人量,一人記錄,一人計算,看哪一小組完成的好?

         。1)學(xué)生聽合作要求后分組合作,將各種三角形的內(nèi)角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。

         。2)指名匯報各組度量和計算內(nèi)角和的結(jié)果。

         。3)觀察:從大家量、算的結(jié)果中,你發(fā)現(xiàn)什么?

          歸納:大家算出的三角形內(nèi)角和都等于或接近180°。

         。5)思考、討論:

          通過測量計算,我們發(fā)現(xiàn)三角形的內(nèi)角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?

          大家討論討論。

          現(xiàn)在各小組就行動起來吧,看哪些小組的方法巧妙。看看能得出什么結(jié)論?

          看同學(xué)們拼得這樣開心,老師也想拼拼,行嗎?演示課件。

          看老師最終把三個角拼成了一個什么角?平角。是多少角?

          "180°是一個什么角?想一想,怎樣可以把三角形的三個內(nèi)角拼在一起?如果拼成一個180度的平角就可以驗證這個結(jié)論,對嗎?"(課件3)

          現(xiàn)在,我們可驗證三角形的內(nèi)角和是(180度)?

          2、那么對任意三角形都是這個結(jié)論?請看大屏幕。

          演示銳角三角形折角。(三個頂點重合后是一個平角,折好后是一個長方形。)

          你們想不想去試一試。

          1、小組探究活動,師巡視過程中加入探究、指導(dǎo)(如生有困難,師可引導(dǎo)、有可能出現(xiàn)折不到一起的情況,可演示以幫助學(xué)生)

          2、"你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)

          a、驗證直角三角形的內(nèi)角和

          折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?

          引導(dǎo)生歸納出:直角三角形的內(nèi)角和是180°

          折法2我們還可以得出什么結(jié)論?

          引導(dǎo)生歸納出:直角三角形中兩個銳角的和是90°。

         。矗翰槐厝齻角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)

          b、驗證銳角、鈍角三角形的內(nèi)角和。

          歸納:銳角、鈍角三角形的內(nèi)角和也是180°。

          放手發(fā)動學(xué)生獨立完成,逐一種類匯報師給予鼓勵

          三、總結(jié)規(guī)律

          剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角量、剪、撕,能不能給三角形內(nèi)角下一個結(jié)論呢?(生:三角形的內(nèi)角和是180°)對!不論是哪種三角形,不論大。∥覀兛梢缘贸鲆粋怎樣的結(jié)論?

          (三角形的內(nèi)角和是180°。)

          (教師板書:三角形的內(nèi)角和是180°學(xué)生齊讀一遍。)

          為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?

         。康牟粶。有的量角器有誤差。)

          老師的大三角形內(nèi)角和大小三角形內(nèi)角和大呀?(一樣大)首尾呼應(yīng)

          四、應(yīng)用新知,知識升華。

         。ㄗ寣W(xué)生體驗成功的喜悅)

          現(xiàn)在,我們已經(jīng)知道了三角形的內(nèi)角和是180°,它又能幫助我們解決那些問題呢?

          (課件5……)

          在一個三角形中,有沒有可能有兩個鈍角呢?

         。ú豢赡堋#

          追問:為什么?

         。ㄒ驗閮蓚銳角和已經(jīng)超過了180°。)

          有兩個直角的一個三角形

         。ㄒ驗槿切蔚膬(nèi)角和是180°,在一個三角形中如果有兩個直角,它的內(nèi)角和就大于180°。)

          問:那有沒有可能有兩個銳角呢?

         。ㄓ,在一個三角形中最少有兩個內(nèi)角是銳角。)

          1、看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學(xué)信息很淺顯)

          2、做一做:

          在一個三角形中,∠1=140度,∠3=35度,求∠2的度數(shù)、

          3、27頁第3題(數(shù)學(xué)信息較為隱藏和生活中的實際問題)

          4、思考題、

          五、總結(jié)

          今天,我們在研究三角形的內(nèi)角和時經(jīng)歷了猜想、驗證、得出結(jié)論的過程,并且運用這一結(jié)論解決了一些問題。人們在進行科學(xué)研究中,常常都要經(jīng)歷這樣的過程,同時,它也是一種科學(xué)的研究方法。

          板書設(shè)計:

          三角形內(nèi)角和

          量一量拼一拼折一折

          三角形內(nèi)角和是180°

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇3

          【教學(xué)目標】

          1、學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

          2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

          3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

          【教學(xué)重點】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

          【教學(xué)難點】對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

          【教具準備】課件、表格、學(xué)生準備不同類型的三角形各一個,量角器。

          【教學(xué)過程】

          一、激趣引入。

          1、猜謎語

          師:同學(xué)們喜歡猜謎語嗎?

          生:喜歡。

          師:那么,下面老師給大家出個謎語。請聽謎面:

          形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單。(打一圖形)大家一起說是什么?

          生:三角形

          2、介紹三角形按角的分類

          師:真聰明。“鍟叭切巍!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

          師分別出示卡片貼于黑板。

          3、激發(fā)學(xué)生探知心里

          師:大家會不會畫三角形啊?

          生:會

          師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

          生:試著畫

          師:畫出來沒有?

          生:沒有

          師:畫不出來了,是嗎?

          生:是

          師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學(xué)習(xí)有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)

          二、探究新知。

          1、認識三角形的內(nèi)角

          看看這三個字,說說看,什么是三角形的內(nèi)角?

          生:就是三角形里面的角。

          師:三角形有幾個內(nèi)角啊?

          生:3個。

          師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學(xué)們也拿出桌子上三角形標出(教師標出)

          師:你知道什么是三角形“內(nèi)角和”嗎?

          生:三角形里面的角加起來的度數(shù)。

          2、研究特殊三角形的內(nèi)角和

          師:分別拿出一個直角三角板,請同學(xué)們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

          生:算一算:90°+60°+30°=180°90°+45°+45°=180°

          師:180°也是我們學(xué)習(xí)過的什么角?

          生:平角

          師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

          3、研究一般三角形的內(nèi)角和

          師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

          生:

          4、操作、驗證

          師:同學(xué)們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

          要求:

         。1)每4人為一個小組。

         。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?

          (3)驗證的方法不只一種,同學(xué)們要多動動腦子。

          師:好,開始活動!

          師:巡視指導(dǎo)

          師:好!請一組匯報測量結(jié)果。

          生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

          師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準確。

          生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。

          師:好!非常好!

          師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

          生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

          師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)

          現(xiàn)在老師問同學(xué)們,三角形的內(nèi)角和是多少?

          生:180度。

          師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

          三、解決疑問

          師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫出有兩個直角的三角形畫出來了嗎?

          生:沒有

          師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

          生:兩個直角是180度,沒有第三個角了。

          師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

          生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

          師:學(xué)會了知識,我們就要懂得去運用。

          四、鞏固提高。

          1、填空。

         。1)三角形的內(nèi)角和是()度。

         。2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

          2、求下面各角的度數(shù)。

         。1)∠1=27°∠2=53°∠3=()這是一個()三角形。

         。2)∠1=70°∠2=50°∠3=()這是一個()三角形。

          3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

         。1)80°95°5°()

         。2)60°70°90°()

         。3)30°40°50°()

          4、紅領(lǐng)巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)

          對學(xué)生進行思品教育。

          5、思考延伸。

          根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

          6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

          五、總結(jié)。

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇4

          教學(xué)目標:

          1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

          2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

          3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。

          教學(xué)重點:

          1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

          2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

          教學(xué)難點:掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。

          教學(xué)用具:表格、課件。

          學(xué)具準備:各種三角形、剪刀、量角器。

          一、創(chuàng)設(shè)情境揭示課題。

          1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大!。誰說得有道理呢?今天讓我們來做一回裁判吧。

          生1:大三角形大(個子大)

          生2:小三角形大(有鈍角)

          (教師不做判斷,讓學(xué)生帶著問題進入新課)

          2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

          講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

          二、自主探究,合作交流。

          (一)提出問題:

          1、你認為誰說得對?你是怎么想的?

          2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

          生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

          生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

          生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

          (二)探索與發(fā)現(xiàn)

          活動一:量一量

         。1)①了解活動要求:(屏幕顯示)

          A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標注。(測量時要認真,力求準確)

          B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

          C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

         。ㄒ龑(dǎo)生回顧活動要求)

         、谛〗M合作。

          ③匯報交流。

          你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

         。ㄒ龑(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

         。2)提出猜想

          剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

          活動二:拼一拼,驗證猜想

          這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

          引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

         。1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。

          (2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

          (3)分組匯報,討論質(zhì)疑

         。4)課件演示,驗證結(jié)果

          活動三:折一折

          師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

         。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。

          討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

          提問:還有沒有其它的方法?

          3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

          (1)引導(dǎo)學(xué)生得出結(jié)論。

          孩子們,三角形內(nèi)角和到底等于多少度呢?”

          學(xué)生答:“180°!”

          (2)總結(jié)方法,齊讀結(jié)論

          我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼!齊讀結(jié)論。(板書:得到結(jié)論)

         。3)解釋測量誤差

          為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

          那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

         。ㄈ┗仡檰栴}:

          現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。

          為什么?請大家一起,自信肯定的告訴我。

          生:因為三角形內(nèi)角和等于1800180°。(齊讀)

          三、鞏固深化,加深理解。

          1、試一試:數(shù)學(xué)書28頁第3題

          ∠A=180°-90°-30°

          2、練一練:數(shù)學(xué)書29頁第一題(生獨立解決)

          ∠A=180°-75°-28°

          3、小法官:數(shù)學(xué)書29頁第二題

          四、回顧課堂,滲透數(shù)學(xué)方法。

          1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學(xué)方法。

          2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

          3、課堂延伸活動:探索——多邊形內(nèi)角和

          板書設(shè)計:

          探索與發(fā)現(xiàn)(一)

          三角形內(nèi)角和等于180°

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇5

          教學(xué)內(nèi)容:

          本節(jié)課的教學(xué)內(nèi)容是義務(wù)教育課程標準實驗教科書數(shù)學(xué)四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。

          教學(xué)內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)的基礎(chǔ)。

          教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎(chǔ)上和利用他們已掌握的學(xué)習(xí)方法,教師把課堂教學(xué)組織生動、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習(xí)。

          教學(xué)目標:

          1、知識目標:學(xué)生通過量、剪、拼、擺等操作學(xué)具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學(xué)知識解決簡單的實際問題。

          2、能力目標:培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

          3、情感目標:培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力,在學(xué)生親自動手和歸納中,感受到理性的美。

          教學(xué)重點:理解并掌握三角形的內(nèi)角和是180°。

          教學(xué)難點:驗證所有三角形的內(nèi)角之和都是180°。

          教具準備:多媒體課件、各種三角形等。

          學(xué)具準備:三角形、剪刀、量角器等。

          教學(xué)過程:

          一、出示課題,復(fù)習(xí)舊知

          1、認識三角形的內(nèi)角。

         。ǎ保⿵(fù)習(xí)三角形的概念。

         。ǎ玻┙榻B三角形的“內(nèi)角”。

          2、理解三角形的內(nèi)角“和”。

          【設(shè)計理念】通過復(fù)習(xí)三角形的概念的過程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。

          二、動手操作,探究新知

          1、通過預(yù)習(xí),認識結(jié)論,提出疑問

          2、驗證三角形的內(nèi)角和

          (1)用“量一量、算一算”的方法進行驗證

         、賲R報測量結(jié)果

          ②產(chǎn)生疑問:為什么結(jié)果不統(tǒng)一?

         、劢鉀Q疑問:因為存在測量誤差。

          (2)用“剪一剪、拼一拼”的方法進行驗證

          ①指導(dǎo)剪法。

          ①分別拼:銳角三角形、直角三角形、鈍角三角形。

          ③驗證得出:三角形的內(nèi)角和是180°。

         。3)用“折一折”的方法進行驗證

         、僦笇(dǎo)折法。

         、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

         、墼俅悟炞C得出:三角形的內(nèi)角和是180°。

          3、看書質(zhì)疑

          【設(shè)計理念】此過程采用直觀教學(xué)手段。通過讓學(xué)生動手量、拼等直觀演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認識由具體到抽象的轉(zhuǎn)化。從而明確三角形的內(nèi)角和是180°。

          三、實踐應(yīng)用,解決問題:

          1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

          2、求出三角形各個角的度數(shù)。(圖略)

          3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是

          70°,它的頂角是多少度?

          4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

          5、數(shù)學(xué)游戲。

          【設(shè)計理念】練習(xí)設(shè)計的優(yōu)化是優(yōu)化教學(xué)過程的一個重要方向,所以在新授后的鞏固練習(xí)中注意設(shè)計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。

          四、總結(jié)全課、延伸知識:

          1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺學(xué)得怎樣?

          2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉(zhuǎn)化。

          【設(shè)計理念】課堂總結(jié)不僅要關(guān)注學(xué)生學(xué)會了什么,更要關(guān)注用什么方法學(xué),要有意識的促進學(xué)生反思。

          板書設(shè)計:三角形的內(nèi)角和是180°

          方法:①量一量拼角(略)

          ②拼一拼

         、壅垡徽

          【設(shè)計理念】此板書設(shè)計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學(xué)生的眼前,起了畫龍點睛的作用。

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇6

          一、教學(xué)目標

          1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實際應(yīng)用。

          2.能力目標:培養(yǎng)學(xué)生主動探索、動手操作的能力。使學(xué)生養(yǎng)成良好的合作習(xí)慣。

          3.情感目標:讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。并充分體會到學(xué)習(xí)數(shù)學(xué)的快樂。

          二、教學(xué)過程

         。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

          1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?

         。▽W(xué)生暢所欲言。)

          2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!

          師口述:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”。

          3、到底誰說的對呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識。(板書課題:三角形內(nèi)角和)

         。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

          1、認識什么是三角形的內(nèi)角和。

          師:你知道什么是三角形的內(nèi)角和嗎?

          通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

          2、探究三角形內(nèi)角和的特點。

          ①讓學(xué)生想一想、說一說怎樣才能知道三角形的內(nèi)角和?

          學(xué)生會想到量一量每個三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)

         、谛〗M合作。

          通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結(jié)果)讓學(xué)生們發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。

          引導(dǎo)學(xué)生推測出三角形的內(nèi)角和可能都是180°。

          3、驗證推測。

          讓學(xué)生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。

         。ㄐ〗M合作驗證,教師參與其中。)

          4、全班交流,共同發(fā)現(xiàn)規(guī)律。

          當學(xué)生匯報用折拼或剪拼的方法的時候,指名學(xué)生上黑板展示結(jié)果。

          學(xué)生交流、師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時板書(三角形內(nèi)角和等于180°。)

          5、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

         。ㄈ╈柟叹毩(xí),拓展應(yīng)用

          根據(jù)發(fā)現(xiàn)的三角形的新知識來解決問題。

          1、完成“試一試”

          讓學(xué)生獨立完成后,集體交流。

          2、游戲:選度數(shù),組三角形。

          請選出三個角的度數(shù)來組成一個三角形。

          150°10°15°18°20°32°

          35°50°52°54°56°58°

          130°70°72°75°60°

          學(xué)生回答的同時,教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。

          3、“想想做做”第1題

          生獨立完成,集體訂正,并說說解題方法。

          4、“想想做做”第2題

          提問:為什么兩個三角形拼成一個三角形后,內(nèi)角和還是180度?

          5、“想想做做”第3題

          生動手折折看,填空。

          提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?

          6、“想想做做”第5題

          生獨立完成,說說不同的解題方法。

          7、“想想做做”第6題

          學(xué)生說說自己的想法。

          8、思考題

          教師拿一個大三角形,提問學(xué)生內(nèi)角和是多少?用剪刀剪成兩個三角形,提問學(xué)生內(nèi)角和是多少?為什么?再剪下一個小三角形,提問學(xué)生內(nèi)角和是多少?為什么?最后建成一個四邊形,提問學(xué)生內(nèi)角和是多少?你能推導(dǎo)

          出四邊形的內(nèi)角和公式嗎?

         。ㄋ模┱n堂總結(jié)

          本節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?(生自由說),同學(xué)們說得真好,我們要勇于從事實中尋找規(guī)律,再將規(guī)律運用到實踐當中去。

          三教后反思:

          “三角形的內(nèi)角和”是小學(xué)數(shù)學(xué)教材第八冊“認識圖形”這一單元中的一個內(nèi)容。通過鉆研教材,研究學(xué)情和學(xué)法,與同組老師交流,我將本課的教學(xué)目標確定為:

          1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。

          2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

          本節(jié)教學(xué)是在學(xué)生在學(xué)習(xí)“認識三角形”的基礎(chǔ)上進行的,“三角形內(nèi)角和等于180度”這一結(jié)論學(xué)生早知曉,但為什么三角形內(nèi)角和會一樣?這也正是本節(jié)課要與學(xué)生共同研究的問題。所以我將這節(jié)課教學(xué)的重難點設(shè)定為:通過動手操作驗證三角形的內(nèi)角和是180°。教學(xué)方法主要采用了實驗法和演示法。學(xué)生的折、拼、剪等實踐活動,讓學(xué)生找到了自己的驗證方法,使他們體驗了成功,也學(xué)會了學(xué)習(xí)。下面結(jié)合自己的教學(xué),談幾點體會。

         。ㄒ唬﹦(chuàng)設(shè)情景,激發(fā)興趣

          俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據(jù)教學(xué)內(nèi)容和學(xué)生實際,精心設(shè)計每一節(jié)課的開頭導(dǎo)語,用別出心裁的導(dǎo)語來激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生主動地投入學(xué)習(xí)。本節(jié)課先創(chuàng)設(shè)畫角質(zhì)疑的情景,當學(xué)生畫不出來含有兩個直角的三角形時,學(xué)生想說為什么又不知怎么說,學(xué)生探究的興趣因此而油然而生。

          (二)給學(xué)生空間,讓他們自主探究

          “給學(xué)生一些權(quán)利,讓他們自己選擇;給學(xué)生一個條件,讓他們自己去鍛煉;給學(xué)生一些問題,讓他們自己去探索;給學(xué)生一片空間,讓他們自己飛翔!蔽矣洸磺暹@是誰說過的話,但它給我留下深刻的印象。它正是新課改中學(xué)生主體性的表現(xiàn),是以人為本新理念的體現(xiàn)。所以在本節(jié)課中我注重創(chuàng)設(shè)有助于學(xué)生自主探究的機會,通過“想辦法驗證三角形內(nèi)角和是180度”這一核心問題,引發(fā)學(xué)生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學(xué)生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學(xué)生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發(fā)現(xiàn)的樂趣。這樣,學(xué)生在經(jīng)歷“再創(chuàng)造”的過程中,完成了對新知識的構(gòu)建和創(chuàng)造。

         。ㄈ┮詫W(xué)定教,注重教學(xué)的有效性

          新課表指出:數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上。要把學(xué)生的個人知識、直接經(jīng)驗和現(xiàn)實世界作為數(shù)學(xué)教學(xué)的重要資源,即以學(xué)定教,注重每個教學(xué)環(huán)節(jié)的有效性。本課中當我提出“為什么一個三角形中不能有兩個角是直角”時,有學(xué)生指出如果有兩個直角,它就拼不成了一個三角形;也有學(xué)生說如果有兩個直角,它就趨向于長方形或正方形!盀槭裁磿@樣呢”?學(xué)生沉默片刻后,忽然有個學(xué)生舉手了:“因為三角形的內(nèi)角和是180度,兩個直角已經(jīng)有180度了,所以不可能有兩個角是直角。”這樣的回答把本來設(shè)計的教學(xué)環(huán)節(jié)打亂了,此時我靈機把問題拋給學(xué)生,“你們理解他說的話嗎、你怎么知道內(nèi)角和是180度、誰都知道三角形的內(nèi)角和是180度”等,當我看到大多數(shù)的已經(jīng)知道這一知識時,我就把學(xué)生直接引向主題“想不想自己研究證明一下三角形的內(nèi)角和是不是180度!奔ぐl(fā)了學(xué)生探究的興趣,使學(xué)生馬上投入到探究之中。

          在練習(xí)的時候,由于形式多樣,所以學(xué)生的興趣非常高漲,效果很好。通過多邊形內(nèi)角和的思考以及驗證,發(fā)展了學(xué)生的空間想象力,使課堂的知識得以延伸。

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇7

          教學(xué)目標:

          1、教會學(xué)生主動探究新識的方法,學(xué)會運用轉(zhuǎn)化遷移數(shù)學(xué)思想。

          2、學(xué)生通過量、剪、拼、擺、分割等驗證三角形內(nèi)角和方法的比較,主動掌握三角形內(nèi)角和是1800,并運用所學(xué)知識解決簡單的實際問題,發(fā)展學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

          教學(xué)重點: 理解并掌握三角形的內(nèi)角和是180°。

          教學(xué)難點: 驗證所有三角形的內(nèi)角之和都是180°。

          教具準備: 多媒體課件。

          學(xué)具準備: 量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

          教學(xué)過程:

          一、導(dǎo)入

          師:知道今天我們學(xué)習(xí)什么內(nèi)容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

          師:什么是內(nèi)角?你能把你手中三角形的三個內(nèi)角用角1、角2、角3標出來嗎?

          師:還有一個關(guān)鍵字“和”,什么是三角形的內(nèi)角和?

          師:你認為三角形的內(nèi)角和是多少度?你呢?都知道?是多少度啊?看來都知道了,就不用再學(xué)了吧?你還想學(xué)什么?

          師:看來我們不僅要知道三角形的內(nèi)角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

          生:量一量的方法。

          師:光量就知道了?還要算一算。

          師:這種方法可行嗎?下面咱就來試試,請同學(xué)們4人一組,分工合作,先測量內(nèi)角,再計算求和。小組長把計算的過程記錄下來。開始吧。

          驗證:量角、求和

          小組匯報

          生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內(nèi)角和是180度。

          生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內(nèi)角和是180度。

          生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內(nèi)角和是180度。

          師:從剛才的交流中,你發(fā)現(xiàn)了什么?

          生:不管是銳角三角形、直角三角形,還是鈍角三角形,內(nèi)角和都是180度。

          師:下面同學(xué)測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現(xiàn)誤差,得出的結(jié)論就難以讓人信服。看來似乎用量的方法還不能充分證明。(劃問號)

          師:還敢接受更大挑戰(zhàn)嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內(nèi)角和是180度,你有辦法嗎?或許下面的同學(xué)還有別的方法,下面就請同學(xué)們互相交流交流,動手試一試吧!

          師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

          師:你們小組每個同學(xué)都動腦筋了,謝謝你們。

          師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

          師:其實大家能用3種方法證明已經(jīng)很不簡單了,現(xiàn)在我們就能很自信的說三角形的內(nèi)角和是180度。(擦別的)

          師:其實對我來說重要的不是知識的結(jié)論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng)造性的方法,F(xiàn)在我們再來一塊回顧一下。

          師:這幾種方法都足以說明三角形的內(nèi)角和是180度。(結(jié)論)

          師:剛才同學(xué)們發(fā)揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構(gòu)成了一個三角形,請你睜大眼睛仔細觀察,你發(fā)現(xiàn)了什么?

          請你再仔細觀察,你發(fā)現(xiàn)了什么?其實兩個底角減少的度數(shù),正是頂角增大的度數(shù)。如果我繼續(xù)按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態(tài)過程是不是也能證明三角形的內(nèi)角和是180度?

          師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

          師:現(xiàn)在我們知道了“三角形的內(nèi)角和是180度”,能不能用這個知識來解決一些問題。

          生:能。

          二、遷移和應(yīng)用

         。ㄒ唬c將臺:

          下面哪三個角是同一個三角形的內(nèi)角?

         。1)30 °、60 °、45 °、90 °

         。2)52 °、46 °、54 °、80 °

          (3)45 °、46 °、90 °、45 °

          (二)我會算

          1、已知∠1,∠2,∠3是三角形的三個內(nèi)角。

         。1)∠1=38° ∠2=49°求∠3

         。2)∠2=65° ∠3=73° 求∠1

          2、已知∠1和∠2是直角三角形中的兩個銳角

         。1)∠1=50°求∠2

          (2)∠2=48°求∠1

          3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

         。ㄈW冏冏!

         。1)一個三角形中, ∠1 、∠2、∠3。

         。2)如果把∠3剪掉,變成了幾邊形?它的內(nèi)角和變成多少度呢?

         。3)如果再把∠2剪掉,剩下圖形的內(nèi)角和是多少度呢?

          三、全課小結(jié)

          師:通過一節(jié)課的探索,你有什么收獲?

          生答(略)

          我的幾點認識:

          結(jié)合《三角形的內(nèi)角和》這節(jié)課,我對空間與圖形這一部分內(nèi)容,簡單的談一下自己的認識。

          空間與圖形這一部分內(nèi)容,可以用這幾個字來概括:難理解,難受,難掌握。在本節(jié)課的教學(xué)中,三角形的內(nèi)角和概念比較抽象,學(xué)生比較難理解。尤其是讓學(xué)生探究三角形的內(nèi)角和是180度,對學(xué)生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內(nèi)角和,學(xué)生也只能機械記憶是180度。那如何更好的讓學(xué)生掌握和接受呢?針對這些特點我采用了一下幾點做法:

          1、根據(jù)學(xué)生的知識特點和生活經(jīng)驗,在原有基礎(chǔ)上創(chuàng)造性的使用教材。

          在教學(xué)本節(jié)課的內(nèi)容時,學(xué)生在自己的日常生活或大部分都已經(jīng)知道三角形的內(nèi)角和是180。因材在這樣的情況下,我創(chuàng)造性的使用教材。不是讓學(xué)生通過自己動手操作之后才發(fā)現(xiàn)三角形的內(nèi)角和是180,而是直接把問題拋給學(xué)生,你們知道三角形的內(nèi)角和是多少度嗎?

          你們怎么知道的?能自己證明么?這樣學(xué)生從被動學(xué)習(xí)者的角色,立刻轉(zhuǎn)入主動學(xué)習(xí)者的角色之中。這樣既能使學(xué)生很好的掌握知識,又能使學(xué)生激發(fā)興趣,提高積極性。

          2、讓學(xué)生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

          在探究的過程中,我們采用了小組合作學(xué)習(xí)方式,這樣既能給學(xué)生提供交流的空間,又能在短時間內(nèi)有效學(xué)習(xí)。學(xué)生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學(xué)生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和的確是180度。

          總之,在教學(xué)空間與圖形的內(nèi)容時,一定要讓學(xué)生看到“圖形",讓學(xué)生想象"空間”。

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇8

          學(xué)情分析:

          學(xué)生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。

          教學(xué)目標:

          1、知識與技能:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。

          2、過程與方法:通過量一量、剪一剪、拼一拼,培養(yǎng)學(xué)生的合作能力、動手實踐能力,并運用新知識解決問題的能力。

          3、情感態(tài)度:使學(xué)生體驗數(shù)學(xué)學(xué)習(xí)成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

          教學(xué)重點:

          探索發(fā)現(xiàn)和驗證三角形的內(nèi)角和是180度。

          教學(xué)難點:

          對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

          教具準備:

          教師準備:多媒體課件、不同類形大小不一的三角形若干個、記錄表

          學(xué)生準備:量角器、直尺、剪刀

          教學(xué)過程:

          一、激趣導(dǎo)入

          多媒體展示三角形

          出示謎語:形狀似座山,穩(wěn)定性能堅

          三竿首尾連,學(xué)問不簡單?(打一圖形名稱)

         。A(yù)設(shè):三角形)

          師:誰能介紹介紹三角形?

         。ㄉ1:三角形有三條邊、三個頂點、三個角。

          生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)

          師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

          師:同學(xué)們會畫三角形嗎?請你在練習(xí)本上畫一個你喜歡的三角形。

          師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。

          師:今天我們就來研究一下三角形的內(nèi)角和。

          二、學(xué)習(xí)目標

          1、通過動手操作,使學(xué)生理解并掌握三角形內(nèi)角和是180度的結(jié)論。

          2、能運用三角形的內(nèi)角和是180度這一規(guī)律,求三角形中未知角的度數(shù)。

          3、培養(yǎng)動手動腦及分析推理能力。

          三、自主學(xué)習(xí)(展示量角法)

          1、理解三角形的內(nèi)角、內(nèi)角和

          (1)板書展示三角形

          師:要想知道什么是三角形的內(nèi)角和,我們得先知道什么是三角形的內(nèi)角?(三角形里面的三個角都是三角形的內(nèi)角。)

          師:你能過來指指嗎?同意嗎?內(nèi)角有幾個?

          師:為了研究方便,我們把三角形的三個內(nèi)角分別標上∠1、∠2、∠3。

          師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?

         。2)三角形的內(nèi)角和

          師:什么是三角形的內(nèi)角和?

         。ㄈ切稳齻角的度數(shù)的和,就是三角形的內(nèi)角和,即:∠1+∠2+∠3)

          師:就是把∠1+∠2+∠3加起來。

          師:根據(jù)我們以前的經(jīng)驗,我們怎么知道∠1、∠2、∠3的度數(shù)呢?(預(yù)設(shè):用量角器量)

          師:請同學(xué)們拿出量角器,量一量你畫的三角形的三個內(nèi)角,并算出他們的和。(4分鐘)

          學(xué)生測量(1分40)匯報結(jié)果(5人)。

          教師填寫測量匯報單。

          師:觀察匯報的結(jié)果,你有什么發(fā)現(xiàn)?(所有三角形內(nèi)角和度數(shù)不一樣、三角形內(nèi)角和都在180度左右)

          四、合作探究

          師:這是同學(xué)們親自測量發(fā)現(xiàn)的,沒有得到統(tǒng)一的結(jié)果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現(xiàn)在請你們以小組為單位,拿出三角形來研究研究三角形的內(nèi)角和到底是多少度。?(8分鐘)(剪拼法)

          1、操作驗證探索三角形內(nèi)角和的規(guī)律(6分鐘)

         。1)操作驗證:小組合作

          拿出裝有學(xué)具的信封[信封里面有老師為學(xué)生事先準備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀

         。ɡ蠋熞o學(xué)生充裕的時間,保證學(xué)生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

          2、學(xué)生匯報

         。1)轉(zhuǎn)化法:

          生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內(nèi)角和就是360度,所以三角形的內(nèi)角和就是360度的一半180度。

          師:他們用長方形的內(nèi)角和來研究今天所學(xué)的知識,得到三角形的內(nèi)角和是180度。

          (2)折拼法

          生:把三角形三個內(nèi)角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內(nèi)角和是180度。

          師:他們是用折拼法驗證三角形的內(nèi)角和是180度(動手能力真強)

         。3)剪拼法

          生:把三角形三個內(nèi)角撕下來,拼成一個平角,平角是180,所以三角形的內(nèi)角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標記。)

          標記上之后再拼一拼,可見標記的方法很科學(xué)。(20分鐘)

          3、教師演示

          師:我們再來感受一下怎么驗證三角形的內(nèi)角和的?

          師:這是什么三角形?把他折一折。

          師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現(xiàn)?(折完以后都有一個平角,平角是180度,所以三角形的內(nèi)角和是180度)

          師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內(nèi)角和。

          師:注意觀察。

          師:演示完畢有什么發(fā)現(xiàn)?(預(yù)設(shè)這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內(nèi)角和是180度。

          師:剛剛我們研究了什么三角形。他們的內(nèi)角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)

          4、演示任意一個三角形的內(nèi)角和都是180度。

          出示一些三角形,讓學(xué)生指出內(nèi)角和。

          師:你有什么發(fā)現(xiàn)?(無論是什么樣的三角形他的內(nèi)角和都是180度,與三角形的形狀大小沒有關(guān)系。)(板書三角形的內(nèi)角和是180度。)

          師:那我們再看看剛剛匯報的結(jié)果。為什么之前測量的時候并沒有得到這樣得到結(jié)果呢?(測量的不夠精確,存在誤差)

          師:如果測量儀器再精密一些,測量的更準確一些都可以得到三角形內(nèi)角和是180度,F(xiàn)在確定這個結(jié)論了嗎?(25分鐘)

          師:除了這節(jié)課大家想到的方法,還有很多方法也能證明三角形的內(nèi)角和是180°到初中我們還有更嚴密的方法證明三角形的內(nèi)角和是180°。早在300多年前就有一位法國著名的科學(xué)家帕斯卡,他在12歲時就驗證了任何三角形的內(nèi)角和都是180°

          師:你們能用今天的發(fā)現(xiàn)做一些練習(xí)嗎?

          五、測評反饋

          1、判斷。

         。1)直角三角形的兩個銳角的和是90°。

         。2)一個等腰三角形的底角可能是鈍角。

         。3)三角形的內(nèi)角和都是180°,與三角形的大小無關(guān)。

          4、剪一剪。

          把一個三角形紙板沿直線剪一刀,剩下的紙板的內(nèi)角和是多少度?

          六、課后作業(yè)

          69頁第1題、第3題。

          七、板書設(shè)計

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇9

          教學(xué)內(nèi)容:

          教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。

          教學(xué)目標:

          1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

          2.能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。

          3.培養(yǎng)學(xué)生動手動腦及分析推理能力。

          重點難點:

          掌握三角形的內(nèi)角和是180°。

          教學(xué)準備:

          三角形卡片、量角器、直尺。

          導(dǎo)學(xué)過程

          一、復(fù)習(xí)

          1、什么是平角?平角是多少度?

          2、計算角的度數(shù)。

          3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)

          二、新知

         。ㄔO(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))

          1、讀學(xué)卡的學(xué)習(xí)目標、任務(wù)目標,做到心里有數(shù)。

          2、揭題:課件演示什么是三角形的內(nèi)角和。

          3、猜想:三角形的內(nèi)角和是多少度。

          4、驗證:

         。1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。

         。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

         。3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和 是180°(師巡視)

         。4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)

          5、結(jié)論:修改板書,把“?”去掉,寫“是”。

          6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)

          7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)

          三、知識運用(課件出示練習(xí)題,生解答)

          1、填空

          (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110 ,第三個內(nèi)角是( ).

         。2)一個直角三角形的一個銳角是50,則另一個銳角是( )。

         。3)等邊三角形的3個內(nèi)角都是( )。

         。4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。

         。5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。

          2、判斷

         。1)一個三角形中最多有兩個直角。 ( )

          (2)銳角三角形任意兩個內(nèi)角的和大于90。 ( )

         。3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )

         。4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。 ( )

         。5)直角三角形中的兩個銳角的和等于90。 ( )

          四、拓展探究

          根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

          1、小組討論。

          2、匯報結(jié)果。

          3、課件提示幫助理解。

          五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。

          六、談?wù)勛约罕竟?jié)課的收獲。

          教學(xué)反思

          今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達到這節(jié)課的教學(xué)目標了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。

          任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。

          如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進入主題。

          如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應(yīng)該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。

          本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰(zhàn)。

          給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。

          前邊驗證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。

          總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇10

          教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)第八冊第85頁例5及”做一做”

          教學(xué)目標:

          1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

          2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想

          3、在探索中體驗發(fā)現(xiàn)的樂趣,增強學(xué)好數(shù)學(xué)的信心、

          教學(xué)重點

          讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

          教學(xué)難點 :

          驗證所有三角形的內(nèi)角之和都是180°

          教具準備:多媒體課件。

          學(xué)具準備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

          教學(xué)過程:

          一、 設(shè)疑引思

          1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內(nèi)角的'度數(shù)、

          2、 每小組請一位同學(xué)說出自已量的三角形中兩個角的度數(shù)老師迅速”猜出”第三個角的度數(shù)、

          3、 設(shè)問:老師為什么能很快”猜” 出第三個角的度數(shù)呢?

          三角形還有許多奧妙,等待我們?nèi)ヌ剿鳌?lt;導(dǎo)入新課,板書課題>

          二、 探索交流,獲取新知

          1、 量一量:每個學(xué)生將自已剛才量出的三角形的內(nèi)角和的度數(shù)相加,初步得出”三角形的內(nèi)角和是180°”的結(jié)論。

          2、 折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發(fā)現(xiàn):一個三角形的內(nèi)角和就是正方形4個角內(nèi)角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內(nèi)角和是180°”的結(jié)論。

          3、 拼一拼:學(xué)生先動手剪拼所準備的三角形,進一步驗證得出”三角形的內(nèi)角和是180°”的結(jié)論。

          4、 師利用課件演示將一個三角形的三個角拼成一個平角的過程。

          5、 驗證:FLASH演示三種三角形割補過程。

          發(fā)現(xiàn)1: 通過把直角三角形割補后,內(nèi)角∠2,∠3 組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內(nèi)角和等于( )度。

          發(fā)現(xiàn)2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內(nèi)角和都是180度。

          6、 小結(jié):剛才能過量一量折一折拼一拼,你發(fā)現(xiàn)了什么?

          生說,師板書:三角形的內(nèi)角和———180°

          三、 應(yīng)用練習(xí),拓展提高

          1、書例5后”做一做”

          思考:為什么不能畫出一個有兩個直角的三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)

          2、下面哪三個角會在同一個三角形中。

         。1)30、60、45、90

         。2)52、46、54、80

         。3)61、38、44、98

          3、走向生活:

          (1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

         。ńY(jié)合學(xué)生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)

          四、作業(yè):作業(yè)本

          五、全課總結(jié)

          總結(jié):今天這節(jié)課我們研究了三角形的內(nèi)角和,你們學(xué)到了哪些知識,有什么收獲?

          板書設(shè)計:三角形的內(nèi)角和

          三角形的內(nèi)角和———180°

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇11

          教學(xué)要求

          1、通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

          2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

          3、培養(yǎng)學(xué)生動手動腦及分析推理能力。

          教學(xué)重點

          三角形的內(nèi)角和是180°的規(guī)律。

          教學(xué)難點

          使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。

          教學(xué)用具

          每個學(xué)生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

          教學(xué)過程:

          一、出示預(yù)習(xí)提綱

          1、三角形按角的不同可以分成哪幾類?

          2、一個平角是多少度?1個平角等于幾個直角?

          3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。

          二、展示匯報交流

          1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)

          2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。

          3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?

          4、指名學(xué)生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?

          5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

          6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?

          提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。

          7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

          8、三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)

          9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)

          10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結(jié)論:三角形的內(nèi)角和是180°。

          12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?

          13、出示教材85頁做一做。讓學(xué)生試做。

          14、指名匯報怎樣列式計算的。兩種方法均可。

          ∠2=180°—140°—25°=15°

          ∠2=180°(140°+25°)=15°

          課后反思:

          對于三角形的內(nèi)角和,學(xué)生并不陌生,在平時的做題中已經(jīng)涉及到了?墒菍W(xué)生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇12

          教學(xué)內(nèi)容:

          人教版小學(xué)數(shù)學(xué)第八冊第五單元第85頁例5

          任務(wù)分析:

          教材分析: 《三角形的內(nèi)角和》是義務(wù)教育課程標準實驗教科書(數(shù)學(xué))四年級下冊第五單元《三角形》中的一個教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生學(xué)習(xí)了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學(xué)的。它是三角形的一個重要性質(zhì),有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)的基礎(chǔ)。教材通過實際操作,引導(dǎo)學(xué)生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學(xué)生探究的特點,通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學(xué)內(nèi)容的核心思想體現(xiàn)在讓學(xué)生經(jīng)歷猜想—驗證—結(jié)論的過程,來認識和體驗三角形內(nèi)角和的特點。

          學(xué)情分析:通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。在四年級上冊《角的度量》的學(xué)習(xí)中,學(xué)生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關(guān)的補充習(xí)題和數(shù)學(xué)練習(xí)冊的練習(xí)中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習(xí),很多學(xué)生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進行驗證,因此,學(xué)生在這節(jié)課上的主要任務(wù)是通過實驗操作驗證三角形的內(nèi)角和是180°。

          教學(xué)目標:

          1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。

          2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運用解決實際生活問題。

          3、通過拼擺,感受數(shù)學(xué)的轉(zhuǎn)化思想。

          教學(xué)重點:

          探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”。

          教學(xué)難點:

          驗證三角形的內(nèi)角和是180度。

          教學(xué)準備:

          多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

          教學(xué)過程:

          一、復(fù)習(xí)舊知,學(xué)習(xí)鋪墊

          1、一個平角是多少度?等于幾個直角?

          2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

          二、探究新知,理解規(guī)律

          1、說明三角形的三個內(nèi)角和

          說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

          師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

          板書課題:“三角形的內(nèi)角和”。

          揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。

          2、探究三角形的內(nèi)角和規(guī)律

          探究1:量一量,算一算

          以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?

          生討論匯報,并引導(dǎo)學(xué)生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。

          師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?

          學(xué)生預(yù)設(shè):有學(xué)生可能會說出三角形的內(nèi)角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?

          探究2:擺一擺,拼一拼

          引導(dǎo):我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?

          生可能很難想到,可以提示學(xué)生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做

          如圖:

         。1)

          銳角的三個內(nèi)角拼成了一個平角,引導(dǎo)學(xué)生說出:銳角三角形的內(nèi)角和是180°.

         。2)

          讓學(xué)生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.

          (3)

          讓學(xué)生獨立用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.

          引導(dǎo)學(xué)生歸納:三角形的內(nèi)角和是180°。

          是不是所有的三角形的內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

          板書:三角形的內(nèi)角和是180°

          三、鞏固練習(xí),應(yīng)用規(guī)律

          1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?

          學(xué)生獨立完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

          ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

          = 180°-140°-25° =180°-(140°+25°)

          =40°-25° =180°-165°

          =15° =15°

          2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

          學(xué)生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以

         。180°-80°)÷2

          =100°÷2

          =50°

          四、拓展練習(xí),深化規(guī)律

          1、求出下面各角的度數(shù)。

         。1) (2)

          2、判斷

         。1)三角形任意兩個內(nèi)角的和大于第三個角。( )

         。2)銳角三角形任意兩個內(nèi)角的和大于直角。( )

          (3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

          3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

         。 ) ( )

          五、課堂小結(jié),分享提升

          1、談?wù)勥@節(jié)課你有什么收獲?

          2、課后思考題

          三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇13

          教學(xué)目標:

          1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

          2、在活動交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實驗活動中體驗探索的過程和方法。

          3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學(xué)生體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,體會到數(shù)學(xué)的價值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。

          教學(xué)重點:

          探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。

          教學(xué)難點:

          三角形內(nèi)角和是180的探索和驗證。

          教學(xué)過程:

          一、創(chuàng)設(shè)情境,提出問題

          師:大家喜歡猜謎語嗎?

          生:喜歡。

          師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。

         。ù蛞粠缀螆D形))

          生:三角形。

          師:三角形中都有哪些學(xué)問?

          生:三角形有三條邊,三個角,具有穩(wěn)定性。

          生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

          生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

          生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

          生:三角形的內(nèi)有和是180。

          生:(一臉疑惑)

          師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

          生:每個三角形的內(nèi)角和都是180嗎?

         。ǜ鶕(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個?)

          二、自主探索,實踐驗證

          1、理解內(nèi)角 師:什么是內(nèi)角?

          生:我認為三角形的內(nèi)角就是指三角形的三個角。

          師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

          2、理解內(nèi)角和。

          師:那三角形的內(nèi)角和又是指什么?

          生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

          師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

          3、實踐驗證

          師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

          生:量一量每個角的度數(shù),然后加起來看看是不是180。

          師:請大家拿出課前準備的三角形,親自量一量,算一算。(學(xué)生動手量一量)

          師:誰愿意把你的勞動成果和大家分享一下?

          生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

          師:這位同學(xué)量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

          生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

          師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。

          生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

          師:你發(fā)現(xiàn)了什么?

          生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

          師:看來三角形的內(nèi)角和不一定是180。

          生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

          生:都接近180就能說一定是180嗎?

          師:科學(xué)來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進行驗證,比一比哪些組的方法富有新意,開始!

          (學(xué)生在小組內(nèi)進行探索驗證。教師巡視,參與到學(xué)生的研究中)

          師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

          生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

          師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

          生:我們小組也有折的直角三角形,鈍角三角形。

         。ㄆ渌某蓡T展示不同的三角形)

          師:看這個小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

          師:哪個小組和他們的方法不一樣?

          生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。

          師:這個小組的方法簡便,易操作,很好。

          生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

          4、小結(jié)

          師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

          生:沒有。

          師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

          三、鞏固應(yīng)用,加深理解

          1、說一說每個三角形的內(nèi)角和是多少度

          師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

          生: 180

          師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

          生:180

          師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

          生:180

          師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

          生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

          師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

          生:180

          2、求下面各角的度數(shù)

          師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

          (出)

          生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

          生:用180-90-35,C =55。

          生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

          生:第三個三角形中,用180-20-45,B=115。

          3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

          生:等腰三角形的兩個底角相等,所以用180-70-70 4、

          師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋在建筑中應(yīng)用的例子。

          在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

          生:用量角器量一量

          師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

          生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

          師:你真是個善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會成為一名優(yōu)秀的建筑師。

          四、回顧總結(jié),拓展延伸

          師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

          生:我知道了三角形的內(nèi)角和是180。

          生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

          生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

          生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

          師:這個同學(xué)不僅學(xué)會了知識,而且學(xué)會了方法,我們只有學(xué)會了方法,才能更好地去探究更多的知識。

          師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

          生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

          生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

          師:我們學(xué)習(xí)知識,必須知其然并知其所以然。

          師:三角形中還有許許多多的學(xué)問,讓我們在以后的學(xué)習(xí)中繼續(xù)去研究。

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇14

          課題

          三角形的內(nèi)角和

          手

          教學(xué)目標

          1.讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

          2.在學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的實踐能力,并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

          3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

          重點難點

          重點:讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用過程。

          難點:探索、驗證三角形內(nèi)角和是180°的過程。

          過程

          資

          體驗?zāi)繕?/strong>

          “學(xué)”與“教”

          創(chuàng)設(shè)問題情境

          課件出示:兩個三角板

          遵循由特殊到一般的規(guī)律進行探究,引發(fā)學(xué)生的猜想后,引導(dǎo)學(xué)生探討所有的三角形的內(nèi)角和是不是也是180°。

          這是同學(xué)們熟悉的三角尺,請同學(xué)們說一說這兩個三角尺的三個內(nèi)角分別是多少度?

          生: 45°、90°、45°。

          生: 30°、90°、60°。

          師:仔細觀察,算一算這兩個三角形的內(nèi)角和是多少度?

          生:90°+45°+45°=180°。

          生:90°+60°+30°=180°。

          師:通過剛才的算一算,我們得到這兩個三角形的內(nèi)角和是180°,由此你想到了什么?

          生:直角三角形內(nèi)角和是180°,銳角三角形、鈍角三角形內(nèi)角和也是180°。

          師:這只是我們的一種猜想,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。

          構(gòu)建

          模型

          每個組準備六個三角形(銳角三角形2個、直角三角形2個、鈍角三角形2個)

          課件

          學(xué)生自己剪的一個任意三角形

          大膽放手讓學(xué)生通過有層次的自主操作活動,幫助學(xué)生結(jié)合已有的知識經(jīng)驗,探究驗證三角形內(nèi)角和的不同方法。

          讓學(xué)生在經(jīng)歷“提出猜想—實驗驗證—得出結(jié)論”中感悟、體驗知識的形成過程,將“三角形內(nèi)角和是180°”一點一滴,浸入學(xué)生大腦,融入已有認知結(jié)構(gòu)。

          這一系列活動同時還潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”的數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。

          師:之前老師為每個同學(xué)準備了①-⑥六個三角形,下面請組長分發(fā)給每個三角形,拿到手后,先別著急,先想一想你準備用什么方法去驗證三角形內(nèi)角和?

          學(xué)生動手操作驗證

          師:匯報時,請先說一說是幾號三角形?然后說一說這個三角形是什么三角形?

          學(xué)生匯報:

          生1:③號三角形是直角三角形,內(nèi)角和是180°。

          生2:②號三角形是銳角三角形,內(nèi)角和是180°。

          生3:⑤號三角形是鈍角三角形,內(nèi)角和是180°。

          生4:④號三角形是直角三角形,內(nèi)角和是180°。

          生5:①號三角形是鈍角三角形,內(nèi)角和是180°。

          生6:⑥號三角形是銳角三角形,內(nèi)角和是180°。

          師:除了量的方法外,還有其他方法驗證三角形內(nèi)角和嗎?

          生1:分別剪下三角形三個角拼成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。

          生2:分別撕下三角形三個角拼成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。

          生3:把三角形的三個角折成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。

          這些方法都驗證了:三角形的內(nèi)角和是180°。

          師:觀察這些三角形的內(nèi)角和是多少度?這些三角形的內(nèi)角和都是180°,這是不是老師故意安排好的呢?

          師:有沒有人質(zhì)疑,用什么方法驗證?

          生用自己剪的任意三角形再次驗證三角形內(nèi)角和是否180°。

          生:得出內(nèi)角和還是180°。

          師:不管是老師提供的三角形,還是你們自己準備的三角形,通過我們的算一算、拼一拼、折一折,都得出了三角形的內(nèi)角和是180°。

          師:我們已經(jīng)學(xué)習(xí)了三角形的分類,三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內(nèi)角和是180°,我們能把它們概括成一句話嗎?

          生:三角形的內(nèi)角和是180°。

          師:看來我們的猜想是正確的。

          師:早在2000多年前著名數(shù)學(xué)家歐幾里得就已經(jīng)得到這個結(jié)論,到了初中以后同學(xué)們還會用更加嚴密的方法證明三角形的內(nèi)角和是180°。

          解釋

          運用拓展

          課件

          正方形紙

          讓學(xué)生更深的對所學(xué)的新知加以鞏固,從而促使學(xué)生綜合運用知識,解決問題的能力。同時在練習(xí)中發(fā)展學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

          1.∠1=40°,∠2=48°,求∠3有多少度?

          2.算出下面三角形∠3的度數(shù)。

         、拧1=42°,∠2=38°,∠3=?

         、啤1=28°,∠2=62°,∠3=?

          ⑶∠1=80°,∠2=56°,∠3=?

          師:你是怎樣算的?這三個三角形各是什么三角形?

          提問:在一個三角形中最多有幾個鈍角?

          在一個三角形中最多有幾個直角?

          3.游戲:將準備的正方形紙對折成一個三角形?

          師:這個三角形的內(nèi)角和是多少度?再對折一次,現(xiàn)在內(nèi)角和是多少度?如果繼續(xù)折下去,越折越小,三角形的內(nèi)角和會是多少度?

          說明:三角形大小變了,內(nèi)角和不變。

          4.有兩個完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?

          說明:三角形形狀變了,內(nèi)角和不變。

          5.根據(jù)所學(xué)知識,你能想辦法求出下面圖形的內(nèi)角和嗎?

          板書

          設(shè)計

          三角形內(nèi)角和

         、偬 鈍角三角形 內(nèi)角和180°

          ②號 銳角三角形 內(nèi)角和180°

          三角形內(nèi)角和是180°

         、厶 直角三角形 內(nèi)角和180°

         、芴 直角三角形 內(nèi)角和180°

         、萏 鈍角三角形 內(nèi)角和180°

          ⑥號 銳角三角形 內(nèi)角和180°

          學(xué)具教具準備

          課件三角形紙片量角器正方形紙

          《三角形內(nèi)角和》的教學(xué)設(shè)計 篇15

          一、說教材

          北師版八年級下冊第六章《證明一》,是在前面對幾何結(jié)論已經(jīng)有了一定的直觀認識的基礎(chǔ)上編排的,而前幾冊對有關(guān)幾何結(jié)論都曾進行過簡單的說理,本章內(nèi)容則嚴格給出這些結(jié)論的證明,并要求學(xué)生掌握證明的一般步驟及書寫表達格式。《三角形內(nèi)角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ)。

          二、說目標

          1.知識目標:掌握“三角形內(nèi)角和定理的證明”及其簡單的應(yīng)用。

          2.能力目標培養(yǎng)學(xué)生的數(shù)學(xué)語言表達、邏輯推理、問題思考、組內(nèi)及組間交流、動手實踐等能力。

          3.情感、態(tài)度、價值觀:

          在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生體會獲得知識的成就感及與他人合作的樂趣,以增強其數(shù)學(xué)學(xué)習(xí)的自信心。

          4、教學(xué)重點、難點

          重點:三角形的內(nèi)角和定理的證明及其簡單應(yīng)用。

          難點:三角形的內(nèi)角和定理的證明方法的討論。

          三、說學(xué)校及學(xué)生現(xiàn)實情況

          我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學(xué)校有遠程多媒體網(wǎng)絡(luò)教室,為師生提供了良好的學(xué)習(xí)硬件環(huán)境。我校學(xué)生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級四班學(xué)生,大多家庭貧苦,所以學(xué)習(xí)認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

          四、說教法

          根據(jù)本節(jié)課教學(xué)內(nèi)容特點,我采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習(xí)主動性、創(chuàng)造性。

          五、說教學(xué)設(shè)計

          〈一〉、創(chuàng)設(shè)情景,直入主題

          一堂新課的引入是教師與學(xué)生活動的開始,而一個成功的引入,可使學(xué)生破除畏難心理,對知識在短時間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學(xué)活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學(xué)習(xí)一個熟悉的結(jié)論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學(xué)生投入新課。

          〈二〉、交流對話,引導(dǎo)探索

          1、巧妙提問,合理引導(dǎo)

          證明思想的引入時,問:同學(xué)們,七年級時如何得到此結(jié)論?(留一定時間讓他們討論、交流、達成共識)學(xué)生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導(dǎo)了證明的方向,又激發(fā)了學(xué)生的學(xué)習(xí)興趣。接下來學(xué)生做題,我巡視。同時讓一學(xué)生板演。

          2、恰當示范,培養(yǎng)學(xué)生正確的書寫能力

          在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書寫方法。

          3、一題多解,放手讓學(xué)生走進自主學(xué)習(xí)空間

          正因為學(xué)生的預(yù)習(xí),所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時,我又走到學(xué)生中去,對有困難的學(xué)生多加關(guān)注和指導(dǎo),不放棄任何一個,同時,借此機會增進教師與學(xué)困生之間的情誼,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。最后,請有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

          4、展示歸納,合理演繹

          利用多媒體展示三角形內(nèi)角和定理的幾種表達形式,以促其學(xué)以致用。

          5、反饋練習(xí)

          用隨堂練習(xí)來鞏固學(xué)生所學(xué)新知,另一方面進一步提高學(xué)生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學(xué)效果。

          〈三〉、課堂小結(jié)

          1 采用讓學(xué)生感性的談?wù)J識,談收獲。設(shè)計問題:

          2(1)、本節(jié)課我們學(xué)了什么知識?

         。2)、你有什么收獲?

          目的是發(fā)揮學(xué)生主體意識,培養(yǎng)其語言概括能力。

          六、說教學(xué)反思

          本節(jié)課主要是以嚴謹?shù)倪壿嬜C明方法,驗證三角形內(nèi)角和等于180度。讓學(xué)生充分體會有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學(xué)習(xí)、合作交流是新課程理念,也是我本節(jié)課的設(shè)計意圖。從學(xué)生課堂表現(xiàn)可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。

        【關(guān)于《三角形內(nèi)角和》的教學(xué)設(shè)計(通用15篇)】相關(guān)文章:

        多邊形的內(nèi)角和教學(xué)設(shè)計02-09

        《三角形的內(nèi)角和》教學(xué)反思8篇04-15

         三角形的內(nèi)角和課件和教案05-12

        三角形的內(nèi)角和試講稿11-16

        《三角形的內(nèi)角和》優(yōu)秀說課稿模板12-28

        《三角形的內(nèi)角和》說課稿7篇11-05

        和時間賽跑教學(xué)設(shè)計通用15篇03-15

        關(guān)于興趣和堅持的教案課件教學(xué)設(shè)計04-20

        《鹿角和鹿腿》的教學(xué)設(shè)計(通用6篇)03-11

        《酸的和甜的》教學(xué)設(shè)計04-04

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>