1. <rp id="zsypk"></rp>

      2. 倍數(shù)與因數(shù)教學(xué)設(shè)計

        時間:2022-07-15 13:04:44 教學(xué)設(shè)計 我要投稿

        倍數(shù)與因數(shù)教學(xué)設(shè)計(精選21篇)

          作為一位杰出的教職工,總不可避免地需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計是對學(xué)業(yè)業(yè)績問題的解決措施進行策劃的過程。那么寫教學(xué)設(shè)計需要注意哪些問題呢?以下是小編整理的倍數(shù)與因數(shù)教學(xué)設(shè)計,歡迎閱讀,希望大家能夠喜歡。

        倍數(shù)與因數(shù)教學(xué)設(shè)計(精選21篇)

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇1

          教學(xué)內(nèi)容:青島版教材小學(xué)數(shù)學(xué)五年級上冊88—91頁。

          教學(xué)目標(biāo):

          1、使學(xué)生初步認(rèn)識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。

          2、使學(xué)生在認(rèn)識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平,對數(shù)學(xué)產(chǎn)生好奇心,培養(yǎng)學(xué)習(xí)興趣。

          教學(xué)重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。

          教學(xué)難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。

          教具準(zhǔn)備:多媒體課件、學(xué)生練習(xí)題

          教學(xué)過程:

          一、談話導(dǎo)入。

          師:同學(xué)們看這是什么?

          生:小正方形。

          師:想不想知道王老師給大家?guī)砹硕嗌賯這樣的小正方形?

          生:想。

          師:多少個?

          生:12個。

          師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?

          生:能。

          【設(shè)計意圖】:以學(xué)生熟悉情景引入,激發(fā)學(xué)生的好奇心。

          二、教學(xué)因數(shù)和倍數(shù)的意義

          師:增加一點難度,用一道算式說明你的想法,讓其他同學(xué)猜一猜你是怎么擺的,好嗎?

          生:好!

          學(xué)生匯報:

          生1:1×12=12

          師:他是怎么擺的?

          生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。

          課件出示擺法。

          師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)

          生2:2×6=12

          師:猜一猜他是在怎么擺的?

          生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。

          師:這兩種情況,我們也算一種。

          生3: 3×4=12

          師:他又是怎么擺的?

          生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。

          師:還有其他擺法嗎?

          生:沒有了。

          師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數(shù)和倍數(shù)(板書課題)

          2.教學(xué)“因數(shù)和倍數(shù)”的意義。

          師:我們以3×4=12為例,在數(shù)學(xué)上可以說3是12的因數(shù),4也是12的因數(shù),12是3的倍數(shù),12也是4 的倍數(shù)。這里還有兩道算式,同桌兩個同學(xué)先互相說一說誰是誰的因數(shù),誰是誰的倍數(shù)。

          學(xué)生匯報:任選一道回答。

          生1:12是12的因數(shù),1是12的因數(shù),12是2的倍數(shù),12是1的倍數(shù)。

          師:說的多好。‰m然有點像繞口令,但數(shù)學(xué)上確實是這樣的。我們再一起說一遍。

          師:還有一道算式,誰來說一說?

          生:2是12的因數(shù),6是12的因數(shù),12是2的倍數(shù),12也是6的倍數(shù)。

          師明確:為了研究方便,我們所說的因數(shù)和倍數(shù)都是指自然數(shù),(0除外)。

          師:通過剛才的練習(xí),你有沒有發(fā)現(xiàn)12的因數(shù)一共有哪些? (生邊說老師邊有序的用課件出示12的所有的因數(shù)。)

          師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。

          3、5、18、20、36

          【設(shè)計意圖】讓學(xué)生經(jīng)歷知識的形成過程。通過實際例子,讓學(xué)生進一步理解,因數(shù)和倍數(shù)之間存在著相互依存的關(guān)系。

          三、教學(xué)尋找因數(shù)的方法。

          1、找一個數(shù)的因數(shù)。

          師:看來同學(xué)們對于因數(shù)和倍數(shù)已經(jīng)掌握的不錯了。不過剛才老師在聽的時候發(fā)現(xiàn)一個奧秘,好幾個數(shù)都是36的因數(shù),你發(fā)現(xiàn)了嗎?誰能在五個數(shù)中把哪些數(shù)是36的因數(shù)一口氣說完?

          師:說出幾個36的因數(shù)并不難,關(guān)鍵是怎樣找的既有序又全面,有沒有信心挑戰(zhàn)一下?

          生:有。

          師:老師提個要求:

          1)、可以獨立完成,也可以同桌交流。

          2)、把這個數(shù)的因數(shù)找全以后,把你的方法記錄在下面。并總結(jié)你是怎樣找的。

          2、探索交流找一個數(shù)的因數(shù)的方法。

          找一名有代表性的作業(yè)板書在黑板上。

          師:他找對了嗎?

          生:沒有,漏下了一對。

          師:為什么會漏掉?僅僅是因為粗心嗎?

          生:不是,他沒有按照一定的順序找!

          師:那么要找到36所有的因數(shù)關(guān)鍵是什么?

          生:有序。

          師生共同邊說邊有序的把36的所有的因數(shù)板書出來。 師:還有問題嗎?

          生:沒有了。

          生:你們沒有,老師有一個問題,你們?yōu)槭裁凑业?就不再接著往下找了?

          生:再接著找就重復(fù)了。

          師:那么找到什么時候就不找了?

          生:找到重復(fù)了,就不在往下找了。

          師、生共同總結(jié)找因數(shù)的方法。(一對一對有序的找,一直找到重復(fù)為止)。

          師:有失誤的學(xué)生對自己的錯誤進行調(diào)整。

          3、鞏固練習(xí)。

          找出下面各數(shù)的因數(shù)。

          4、尋找一個數(shù)的因數(shù)的特點。

          【設(shè)計意圖】放手讓學(xué)生自主找一個數(shù)的因數(shù),并總結(jié)找一個數(shù)因數(shù)的方法。學(xué)生非常喜歡,而且也能夠讓學(xué)生在活動中提升。

          四、教學(xué)尋找倍數(shù)的方法。

          1、找一個數(shù)的倍數(shù)。

          師:剛才我們學(xué)習(xí)了找一個數(shù)的因數(shù),那么你能像剛才一樣有序的找出一個數(shù)的所有倍數(shù)嗎?

          生:能!

          師:試試看,找個小的可以嗎?

          生:行!

          師:找一下3的倍數(shù)。30秒時間,把答案寫在練習(xí)紙上。 ??

          師:有什么問題嗎?

          生:老師,寫不完。

          師:為什么寫不完?

          生:有很多個!

          師:那怎么才能全都表示出來呢?

          生:可以加省略號。

          師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?

          師:誰能總結(jié)一下你是怎樣找到的?

          生:從小到大依次乘自然數(shù)。

          師:你真會思考!

          課件出示3的倍數(shù)。

          2、找5、7的倍數(shù)。

          師:我們再來練習(xí)找一下5的倍數(shù)。

          生:5的倍數(shù)有:5、10、15、20、25??

          生:7的倍數(shù)有:7、14、21、28、35??

          師:你能像總結(jié)一個數(shù)因數(shù)的特點一樣,來總結(jié)一下一個數(shù)的倍數(shù)有什么特征嗎?

          生:能!

          學(xué)生總結(jié):一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

          【設(shè)計意圖】在探索求一個數(shù)的倍數(shù)和因數(shù)的方法時,創(chuàng)設(shè)具體的情境讓學(xué)生去合作交流,并結(jié)合具體事例,讓學(xué)生自己觀察并發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征,豐富了教學(xué)方式,讓學(xué)生在觀察中發(fā)現(xiàn),在合作中體驗成功的喜悅,在主動參與、樂于探究中發(fā)展自我。

          四、知識拓展

          認(rèn)識“完美數(shù)”。

          師:(課件出示6的因數(shù))在6的因數(shù)中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽。┪覀儼6的因數(shù)中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數(shù)學(xué)家給這樣的數(shù)起了一個名字,叫“完美數(shù)”。依次出示第二個、第三個一直到第六個完美數(shù)。

          小結(jié):其實有關(guān)因數(shù)和倍數(shù)的秘密還有很多,它們在等待著同學(xué)們在以后的學(xué)習(xí)中去研究、去探索。

          【設(shè)計意圖】豐富學(xué)生的知識,陶冶學(xué)生的情操。

          教學(xué)反思:

          找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進行反思,吸收同伴中好的方法,這時如果再給予有效的指導(dǎo)和總結(jié)就更好了。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇2

          教學(xué)內(nèi)容:教科書12---16頁的學(xué)習(xí)內(nèi)容

          教學(xué)目標(biāo)

          通過對比學(xué)習(xí),加深因數(shù)和倍數(shù)意義的理解,通過在意義、找的方法以及計數(shù)等幾個方面對比,進一步理清因數(shù)與倍數(shù)的區(qū)別于聯(lián)系,準(zhǔn)確把握因數(shù)與倍數(shù)。

          教學(xué)重點:因數(shù)與倍數(shù)的對比。

          教學(xué)難點:用準(zhǔn)確語言表達。

          教學(xué)準(zhǔn)備:實物投影

          教學(xué)活動

         。ㄒ )基礎(chǔ)訓(xùn)練

          【口答】

          下面的說法對碼?如果不對,請改正。

         。1)32÷4=8,所以42是倍數(shù),4是因數(shù)

         。2)12的因數(shù)只有2、3、4、6、12

          (3)1是1,2,3,…的因數(shù)

          (4)60的最大因數(shù)和最小倍數(shù)都是60

         。5)5一共有10000個倍數(shù)

         。6)一個數(shù)的倍數(shù)一定大于它的因數(shù)

          【解答題】

          因數(shù)能否數(shù)完?倍數(shù)呢?

         。ǘ 新知學(xué)習(xí)

          【典型例題】

          1.分別找出16的因數(shù)和倍數(shù)

          2.仔細想想,找出16的所有因數(shù)和倍數(shù)的感受相同碼?

          2.填表。

          不同方面聯(lián)系

          意義尋找方法能否找完有無最大與最小表示

          因數(shù)

          倍數(shù)

         。ㄈ 鞏固練習(xí)(10題)

          【基礎(chǔ)練習(xí)】

          1.選擇正確答案的序號填在括號內(nèi)。

          (1)下面算式中能表示63是7的倍數(shù)的算式是()

         、 7×9=63

         、 63÷8=7……7 ③ 63÷21=3

         。2)9的因數(shù)有( )個

          ① 2

         、 3

          ③ 4

         。3)不能夠表示出“倍數(shù)”與“因數(shù)”關(guān)系的算式是()

          ① 19÷3 = 6……1

         、 24÷6=4

         、 17×4=68

          【提高練習(xí)】

          1. 按要求寫數(shù)

          6的倍數(shù)(寫出5個) 32的所有因數(shù) 120的所有因數(shù)

          2.練一練第7題。

          教師可以鼓勵學(xué)生課后查閱相關(guān)資料,把數(shù)學(xué)學(xué)習(xí)由課堂引申到課外。

          通過本題計算在月球和火星上的體重,激發(fā)學(xué)生的好奇心,進行保護地球的環(huán)保教育

          3.填表。

         。1)48個同學(xué)表演團體操,把隊伍的排列情況填寫完整。

          排數(shù)123456789

          每排人數(shù)4824

          每排都是48的因數(shù)碼?

         。2)乘坐碰碰車每人應(yīng)付8元,你能把表填完整碼?

          乘坐人數(shù)12345……

          應(yīng)付元數(shù)816

          【拓展練習(xí)】

          1.填數(shù)。

          2.五年(1)班同學(xué)參加植樹活動,要植樹24棵,如果要求每行植樹的棵樹相同,有幾種不同的植法?如果要50棵樹呢?

          向?qū)W生簡介林可以植樹的好處,凈化空氣,還可以降低噪音,美化環(huán)境的功效。

          (五)教學(xué)效果評價(小測題2—3題)

          1.24的因數(shù)有哪些?

          2.36是哪些數(shù)的倍數(shù)?

          課后反思:

          通過引導(dǎo)學(xué)生從一個數(shù)的倍數(shù)的定義出發(fā),推出該數(shù)和任意非零自然數(shù)之積都是該數(shù)的倍數(shù)。2的倍數(shù)也就是2和任意非零自然數(shù)的乘積,學(xué)生在列乘法算式時發(fā)現(xiàn)這樣的算式是列不完的,總結(jié)出2的倍數(shù)的個數(shù)是無限的。進而推倒出:一個數(shù)的倍數(shù)的個數(shù)是無限的。只有最小的倍數(shù),沒有最大的倍數(shù)。學(xué)生親歷了知識的形成過程,既探究了知識,又形成了總結(jié)概括的能力。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇3

          【教學(xué)內(nèi)容】

          人教版數(shù)學(xué)五年級下冊P12一14,練習(xí)二。

          【教學(xué)過程】

          一、操作空間,初步感知。

          1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。

          2.學(xué)生動手操作,并與同桌交流擺法。

          3.請用算式表達你的擺法。

          匯報:1×12=12,2×6=12,3×4=12。

          【評析】通過讓學(xué)生動手操作、想象、表達等環(huán)節(jié),既為新知探索提供材料,又孕育求一個數(shù)的因數(shù)的思考方法。

          二、探索空間,理解新知。

          1.理解因數(shù)和倍數(shù)。

          (1)觀察3×4=12,你能從數(shù)學(xué)的角度說說它們之間的關(guān)系嗎? 師根據(jù)學(xué)生的表達完成以下板書: 3是12的因數(shù) 12是3的倍數(shù) 4是12的因數(shù) 12是4的倍數(shù) 3和4是12的因數(shù) 12是3和4的倍數(shù)

          (2)用因數(shù)和倍數(shù)說說算式1×12=12,2×6=12的關(guān)系。

          (3)觀察因數(shù)和倍數(shù)的相互關(guān)系。揭示:研究因數(shù)和倍數(shù)時,所指的數(shù)是整數(shù)(一般不包括O)。

          2.求一個數(shù)的因數(shù)。

          (1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。 學(xué)生匯報。

          師:2和12是36的因數(shù),找1個、2個不難,難就難在把36所有的因數(shù)全部找出來,請同學(xué)們找出36的所有因數(shù)。

          出示要求:

         、倏瑟毩⑼瓿,也可同桌合作。

          ②可借助剛才找出12的所有因數(shù)的方法。

         、蹖懗36的所有因數(shù)。

          ④想一想,怎樣找才能保證既不重復(fù),又不遺漏。 教師巡視,展示學(xué)生幾種答案。

          生1:1,2,3,4,9,12,36。

          生2:1,36,2,18,3,12,4,9,6。

          生3:1,4,2,36,9,3,6,12,18。

          (2)比較喜歡哪一種答案?為什么?

          用什么方法找既不重復(fù)又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)

          師:有序思考更能準(zhǔn)確找出一個數(shù)的所有因數(shù)。 完成板書:描述式、集合式。

          (3)30的因數(shù)有哪些?

          【評析】學(xué)生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點。

          3.求一個數(shù)的倍數(shù)。

          (1)3的倍數(shù)有:——,怎樣

          有序地找,有多少個?

          找一個數(shù)的倍數(shù),用1,2,3,4?分別乘這個數(shù)。 (2)練一練:6的倍數(shù)有: ,40以內(nèi)6的倍數(shù)有:一o

          【評析】

          由于有了有序思考的基礎(chǔ),求一個數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。

          4.發(fā)現(xiàn)規(guī)律。

          觀察上面幾個數(shù)的因數(shù)和倍數(shù)的例子,你對它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)? 根據(jù)學(xué)生匯報,歸納:一個數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。

          【評析】

          通過觀察板書上幾個數(shù)的因數(shù)和倍數(shù),放手讓學(xué)生發(fā)現(xiàn)規(guī)律,既突出了學(xué)生的主體地位,又培養(yǎng)了學(xué)生觀察、歸納的能力。 三、歸納空間,內(nèi)化新知。

          師生共同總結(jié):

          (1)因數(shù)和倍數(shù)是相互的,不能單獨存在。

          (2)找一個數(shù)的因數(shù)和倍數(shù),應(yīng)有序思考。

          四、拓展空間,應(yīng)用新知。

          1、15的因數(shù)有:——,15的倍數(shù)有:——。

          2.判斷。

          (1)6是因數(shù),24是倍數(shù)。( )

          (2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )

          (3)1是1,2,3,4?的因數(shù)。 ( )

          (4)一個數(shù)的最小倍數(shù)是21,這個數(shù)的因數(shù)有1,5,25。( )

          3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識說一句話。

          4、舉座位號起立游戲。

          (1)5的倍數(shù)。

          (2)48的因數(shù)。

          (3)既是9的倍數(shù),又是36的因數(shù)。

          (4)怎樣說一句話讓還坐著的同學(xué)全部起立。

          【評析】

          本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過“說一句話”和“起立游戲”,展現(xiàn)了學(xué)生的個性思維,體現(xiàn)了知識的應(yīng)用價值。

          【反思】

          本課教學(xué)設(shè)計重在讓學(xué)生通過自主探索,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法,體驗有序思考的重要性。體現(xiàn)了以下兩個特點: 一、留足空間,讓探索有質(zhì)量。

          留足思維空間,才能充分調(diào)動多種感官參與學(xué)習(xí),充分發(fā)揮知識經(jīng)驗和生活經(jīng)驗,使探索成為知識不斷提升、思維不斷發(fā)展、情感不斷豐富的過程。第一,把教材中的飛機圖改為拼長方形,讓同桌同學(xué)借助12塊完全一樣的正方形拼成一個長方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個同學(xué)找出36的所有因數(shù),由于個人經(jīng)驗和思

          維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。第三:通過觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。第四:讓學(xué)生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識說一句話”。不拘形式的說話空間,不僅體現(xiàn)了差異性教學(xué),更是體現(xiàn)了不同的人在數(shù)學(xué)上的不同發(fā)展。 二、適度引導(dǎo),讓探索有方向。

          引導(dǎo)與探索并不矛盾,探索前的適度引導(dǎo)正是讓探索走得更遠。探索12塊完全一樣的正方形拼成一個長方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導(dǎo),是尊重學(xué)生不同思維的有效引導(dǎo)。

          在找36的所有因數(shù)時,教師出示4條要求,既是引導(dǎo)學(xué)生思考的方向,又是提醒學(xué)生探索的任務(wù)。在讓學(xué)生觀察幾個數(shù)的因數(shù)和倍數(shù)時,引導(dǎo)學(xué)生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導(dǎo),避免了學(xué)生的盲目觀察。可見,適度的引導(dǎo),保證了自主探索思維的方向性和順暢性。

          整堂課,學(xué)生想象豐富、思維活躍、思考有序。整個認(rèn)知過程是體驗不斷豐富、概念不斷形成、知識不斷建構(gòu)的過程。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇4

          一、教材分析:

          整除概念是貫穿這部分教材的一條主線。簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式a×b=c直接引出因數(shù)和倍數(shù)的概念。

          二、設(shè)計思想:

          這節(jié)課教學(xué)倍數(shù)和因數(shù)的認(rèn)識,學(xué)習(xí)找一個自然數(shù)的倍數(shù)。教材通過用12個同樣大小的正方形拼成不同長方形的操作,讓學(xué)生寫出不同的乘法算式,直觀感知倍數(shù)和因數(shù)的關(guān)系。在此基礎(chǔ)上再依據(jù)算式具體說明倍數(shù)和因數(shù)的含義,利用已有的乘除法知識,自主探索并總結(jié)找一個數(shù)的倍數(shù)的方法。

          三、教學(xué)目標(biāo):

          1、通過操作活動得出相應(yīng)的乘法算式,幫助學(xué)生理解倍數(shù)和因數(shù)的意義;探索求—個數(shù)的倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)的特征。

          2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學(xué)生觀察、分析、概括能力,培養(yǎng)有序思考能力。能在1-100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù)。

          3、通過倍數(shù)和因數(shù)之間的互相依存關(guān)系使學(xué)生感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,

          四、教學(xué)重點:

          理解倍數(shù)和因數(shù)的意義和掌握求一個數(shù)的倍數(shù)的方法。

          五、教學(xué)難點:

          倍數(shù)與因數(shù)關(guān)系的理解。

          六、學(xué)情分析:

          因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義,對于一個數(shù)的因數(shù)的個數(shù)是有限的、倍數(shù)的個數(shù)是無限的等結(jié)論自然也就掌握了,對于后面的奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等概念的理解也是水到渠成。要引導(dǎo)學(xué)生用聯(lián)系的觀點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。數(shù)論本身就是研究整數(shù)性質(zhì)的一門學(xué)科,有時不太容易與具體情境結(jié)合起來,而學(xué)生到了五年級,抽象能力已經(jīng)有了進一步發(fā)展,有意識地培養(yǎng)他們的抽象概括能力也是很有必要的,如讓學(xué)生通過幾個特殊的例子,自行總結(jié)出任何一個數(shù)的倍數(shù)個數(shù)都是無限的,逐步形成從特殊到一般的歸納推理能力,等等。

          教學(xué)過程:

          一、創(chuàng)設(shè)情境,引入新課。

          1.同學(xué)們,你們已經(jīng)是五年級的學(xué)生了。還記得剛?cè)雽W(xué)時你們學(xué)得那些數(shù)嗎?師準(zhǔn)備一些豆子讓學(xué)生數(shù)。師介紹自然數(shù)及非零自然數(shù)。

          2.師:我們知道人和人之間存在著這樣、那樣的關(guān)系,其實,數(shù)和數(shù)之間也存在著多種關(guān)系,這一節(jié)課,我們一起來探究兩數(shù)之間的一種關(guān)系。

          二、認(rèn)識倍數(shù)和因數(shù)

          1.操作活動:

          師:一起看大屏幕,老師這兒有12個大小相同的正方形,如果請你把這12個正方形擺成一個長方形,會擺嗎?能不能用一個乘法算式來表示,試試看。

          2.學(xué)生匯報算式,然后思考是怎樣擺的。

          師:12個同樣大小的正方形能擺出3種不同的長方形,并能寫出3個乘法算式,千萬別小看這些乘法算式,今天我們研究的內(nèi)容就在這里。

          3.認(rèn)識倍數(shù)和因數(shù)。

          師:以第一道乘法算式為例,4×3=12,數(shù)學(xué)上我們就說:12是4的倍數(shù),12也是(3的倍數(shù))

          師:大家很會聯(lián)想,反過來說,4是12的因數(shù),同樣,3也是(12的因數(shù))。(課件出示這四句話)

          師:這就是我們今天研究的內(nèi)容(板書課題)

          師:仔細觀察這個算式,齊讀一下。

          師:這兒還有兩道乘法算式,選你喜歡的一個,說一說誰是誰的因數(shù)?誰是誰的倍數(shù)嗎?

          師:為了研究方便,我們在說倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。

          師:現(xiàn)在你能寫一個算式,找一找其中的倍數(shù)和因數(shù)嗎?(同桌互相交流)

          師:屏幕上也有幾個算式,你能不能說一說其中誰是誰的倍數(shù),誰是誰的因數(shù)呢?

          (重點是最后一個算式18÷3=6)

          生:18是3的倍數(shù),也是6的倍數(shù),3是18的因數(shù),6也是18的因數(shù)。

          師:看來,我們不僅可以用乘法算式,同樣也可以用除法算式來找一個數(shù)的因數(shù)和倍數(shù)。

          三、探索找一個數(shù)的倍數(shù)的的方法

          1.找一個數(shù)倍數(shù)的方法

          師:在剛才的學(xué)習(xí)中我發(fā)現(xiàn)12是3的倍數(shù),18也是3的倍數(shù),那3的倍數(shù)只有12和18嗎?(不是的)

          師:你能把3的倍數(shù)寫出來嗎,給你們1分鐘的時間,開始。

          師:我們一起來寫3的倍數(shù),在寫一個數(shù)的倍數(shù)時,一般可以從小到大寫前面5個,后面用省略號表示。

          師:現(xiàn)在你會找一個數(shù)的倍數(shù)了嗎?(會了)

          師:寫出2的倍數(shù)行不行?(行)5的倍數(shù)呢?(行)。

          2.發(fā)現(xiàn)一個數(shù)的倍數(shù)的特征

          師:剛才我們分別找了3、2、5的倍數(shù),下面請同學(xué)們觀察3、2、5的倍數(shù),你能發(fā)現(xiàn)這些數(shù)的倍數(shù)有什么共同的特征嗎?和你的同桌交流一下

          生:最小的和它一樣

          師:一個數(shù)最小的倍數(shù)就是它“本身”。(板書:最小本身)

          師:最大呢?(生:找不到最大的)

          師:也就是說一個數(shù)沒有最大的倍數(shù)。(板書:最大沒有)

          生:一個數(shù)的倍數(shù)有無數(shù)個

          師:無數(shù)個我們也可以說是“無限”(板書:個數(shù)無限)

          四:拓展練習(xí)

          1.

          (1)一共有多少個雞蛋?

          (2)說一說誰是誰的倍數(shù).

          2.判斷題.

          (1)36÷9=4,36是倍數(shù),9是因數(shù)。

          (2)12的倍數(shù)只有24、36、48.

         。3)57是3的倍數(shù)。

         。4)1是1、2、3......的倍數(shù)。

          3.下面的數(shù)哪些是4的倍數(shù),哪些是6的倍數(shù),哪些既是4的倍數(shù),又是6的倍數(shù)?

          42121869203048

          4.寫出100以內(nèi)8的全部倍數(shù).

          五:全課小結(jié)

          這節(jié)課你學(xué)習(xí)了什么知識?有什么收獲?

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇5

          【教學(xué)過程】

          一、談話導(dǎo)入,激發(fā)興趣

          1、回顧學(xué)過的數(shù)

          2、明確學(xué)習(xí)主題

         。ㄔO(shè)計意圖:降低學(xué)習(xí)的起點,讓每個學(xué)生都參與到本節(jié)課的學(xué)習(xí)中來;了解學(xué)生的認(rèn)知基礎(chǔ),為學(xué)習(xí)因數(shù)和倍數(shù)做好鋪墊;明確學(xué)習(xí)方向,知道本節(jié)課是對2個非零自然數(shù)關(guān)系的研究。)

          二、自主學(xué)習(xí),探究新知

          1、自主學(xué)習(xí)

          自學(xué)指導(dǎo):閱讀課本p12和p13例1

          (1)2×6=12,表示的意義是什么?在這個乘法算式中,誰是誰的因數(shù),誰是誰的倍數(shù)?

         。2)想一想:什么情況下,兩個不是零的自然數(shù)之間是因數(shù)(倍數(shù))的關(guān)系?

         。3)怎樣找出18的全部因數(shù)?你是怎樣想的?

          怎樣表示出18的因數(shù)?

          要求:1、獨立學(xué)習(xí)2、時間6分鐘

          (設(shè)計意圖:通過自學(xué)指導(dǎo),讓學(xué)生明確學(xué)習(xí)的主線,帶著問題去閱讀,在形成感性認(rèn)知的基礎(chǔ)上,進行有思考的學(xué)習(xí),成為有思考的數(shù)學(xué)課堂,而思考正是數(shù)學(xué)的魅力所在。)

          2、全班交流

          問題一:初建模型

          在圖式結(jié)合中構(gòu)建因數(shù)、倍數(shù)的概念,并從中感受因數(shù)和倍數(shù)是相互依存的,有著互逆關(guān)系的一組概念。

          問題二:深化模型

          明確因數(shù)與倍數(shù)的外延,進一步認(rèn)識、內(nèi)化因數(shù)、倍數(shù)的內(nèi)涵,從中提煉出因數(shù)、倍數(shù)模型的本質(zhì)意義。

          ab=c(a、b、c為非零自然數(shù))

          問題三:應(yīng)用模型

         、俳涣髡乙粋數(shù)的因數(shù)的方法及表示方法。

          ②找30、36的因數(shù)。

         。ㄔO(shè)計意圖:學(xué)生在上一階段的學(xué)習(xí)中,多數(shù)學(xué)生對概念的認(rèn)知是初步的認(rèn)知,那么教師有價值的追問,才能把學(xué)生引向深入的思考,理解概念的本質(zhì),提升學(xué)生對因數(shù)和倍數(shù)的認(rèn)識,從而建立因數(shù)和倍數(shù)的概念模型,并能夠運用模型找一個數(shù)的因數(shù)。)

          3、議一議

         。1)今天學(xué)習(xí)的因數(shù)與乘法算式中的因數(shù)一樣嗎?倍數(shù)與倍一樣嗎?

         。2)通過找一個數(shù)的因數(shù),你有什么發(fā)現(xiàn)?

         。ㄔO(shè)計意圖:通過議一議,讓學(xué)生對所學(xué)知識進行有效的梳理,從而避免了學(xué)生就題論題式的學(xué)習(xí),達到例題僅僅是學(xué)習(xí)的載體的目的。)

          三、檢測反饋,拓展運用

          四、板書設(shè)計

          因數(shù)和倍數(shù)

          2×6=122和6是12的因數(shù)。

          12是2和6的倍數(shù)。

          3×4=12

          ab=c(a、b、c為非零自然數(shù))

          a和b是c的因數(shù),c是a和b的倍數(shù)。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇6

          教學(xué)內(nèi)容:

          人教版小學(xué)數(shù)學(xué)五年級下冊第13~16頁。

          教學(xué)目標(biāo):

          1、學(xué)生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;

          2、學(xué)生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;

          3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);

          4、培養(yǎng)學(xué)生的觀察能力。

          教學(xué)重點:

          理解因數(shù)和倍數(shù)的含義;自主探索并總結(jié)找一個數(shù)的因數(shù)和倍數(shù)的方法。

          教學(xué)難點:

          自主探索并總結(jié)找一個數(shù)的因數(shù)和倍數(shù)的方法;歸納一個數(shù)的因數(shù)的特點。

          教學(xué)具準(zhǔn)備:

          學(xué)號牌數(shù)字卡片(也可讓學(xué)生按要求自己準(zhǔn)備)。

          教法學(xué)法:

          談話法、比較法、歸納法。

          快樂學(xué)習(xí)、大膽言問、不怕出錯!

          課前安排學(xué)號:1~40號

          課前故事:

          說明道理:

          學(xué)習(xí)最重要的是快樂,要掌握學(xué)習(xí)的方法。

          教學(xué)過程:

          復(fù)習(xí)

          1、4×0.5=2,所以4和0.5都是2的因數(shù),2是4和0.5的倍數(shù)。這句話對嗎?

          2、我們在因數(shù)與倍數(shù)的學(xué)習(xí)中,只討論什么數(shù)?

          3、8÷2=4,所以8是倍數(shù),4是因數(shù)。這句話對嗎?

          今天,我和大家一道來繼續(xù)共同探討“因數(shù)與倍數(shù)”

          合作交流、共探新知

          探究找一個數(shù)的因數(shù)的方法(談話法、比較法、歸納法)

          請認(rèn)為自己是18的因數(shù)的同學(xué)帶著號碼牌上臺來。

          a、學(xué)生上臺――找對子,擊掌―――。完后提示:老師覺得有點亂,有沒有什么方法可以讓這些找因數(shù)的方法有序些?

          b、學(xué)生再次依照1x18,2x9,3x6的順序一個個講出乘法算式。接著追問:那18的因數(shù)就有???從1開始做手勢:(1,18,2,9,3,6)有沒有遺漏的呢?為了讓人家看得更明白,我們從小到大排一下,好不好?

          學(xué)生預(yù)設(shè):有的學(xué)生可能會說還有6x3,9x2,18x1等,出現(xiàn)這種情況時可以冷一下,讓學(xué)生想一想這樣寫的話會出現(xiàn)什么情況,最后讓學(xué)生明白一個數(shù)的因數(shù)是不能重復(fù)的。

          c、可是老師覺得這樣子寫又有點亂,有沒有更好的辦法讓人看得更清楚些,讓這些數(shù)字的有序地排列?

          d、介紹寫一個數(shù)因數(shù)的方法

          可以用一串?dāng)?shù)字表示;也可以用集合圈的方法表示。

          說一說:

          18的因數(shù)共有幾個?

          它最小的因數(shù)是幾?

          最大的因數(shù)是幾?

          做一做(在做這些練習(xí)時應(yīng)放手讓學(xué)生去做,相信學(xué)生的知識遷移與消化新知的能力)

          a、30的因數(shù)有哪些,你是怎么想的?

          b、36的因數(shù)有幾個?你是怎么想的?為什么6x6=36,這里只寫一個因數(shù)?

          c、對比18、30、36的因數(shù),分別讓學(xué)生說說每個數(shù)最小的因數(shù)是幾?最大的因數(shù)是幾?各有幾個因數(shù)?

          d、讓學(xué)生討論:你從中發(fā)現(xiàn)了“一個數(shù)的因數(shù)”有什么相同的地方嗎?

          學(xué)生總結(jié):

          板書:

          一個數(shù)最小的因數(shù)是1;

          最大的因數(shù)是它本身;

          因數(shù)的個數(shù)是有限的。

          輕松一下:

          我們來了解一點小知識:完全數(shù),什么叫完全數(shù)呢?就是一個數(shù)所有的因數(shù)中,把除了本身以外的因數(shù)加起來,所得的和恰好是這個數(shù)本身,那這樣的數(shù)我們就叫它完全數(shù),也叫完美數(shù),比如6~~(學(xué)生讀課本14頁完全數(shù)的相關(guān)知識)

          b、探究找一個數(shù)的倍數(shù)的方法(談話法、比較法、歸納法)

          因為有了前面探究找一個數(shù)因數(shù)的方法,在這一環(huán)節(jié)更可大膽讓學(xué)生自己去想,去說,去發(fā)現(xiàn),去歸納。教師只要適當(dāng)做點組織和引導(dǎo)工作就行。

          過渡:大家都很棒!這么快就找出了一個數(shù)的因數(shù)并總結(jié)好了它的規(guī)律,現(xiàn)在楊老師想放開手來讓大家自己來學(xué)習(xí)下面的知識:找一個數(shù)的倍數(shù)。

          a、2的倍數(shù)有哪些?你是怎么想的?從1開始做手勢:1x2=2,2x2=4,2x3=6,一倍一倍地往上遞加。

          發(fā)現(xiàn):這樣子寫下去,寫得完嗎?寫不完,我們可以用一個什么號來表示?這個省略號就表示像這樣子的數(shù)還有多少個?

          b、那5的倍數(shù)有哪些?按從小到大的順序至少寫出5個來,看誰寫得又快又好

          c、對比“一個數(shù)的因數(shù)”的規(guī)律,學(xué)生自由討論:一個數(shù)的倍數(shù)有什么規(guī)律呢?

         。ǖ竭@一環(huán)節(jié)就無需再提問了,要相信學(xué)生能夠在類比中找到學(xué)習(xí)的方法)

          學(xué)生總結(jié):

          板書:

          一個數(shù)最小的倍數(shù)是它本身;

          沒有最大的倍數(shù);

          倍數(shù)的個數(shù)是無限的。

         。ㄅ,大家這么聰明啊,不用老師教都會了,看來你們真的是太棒了,這也說明學(xué)習(xí)要學(xué)得輕松就一定要掌握~~方法。

          c、看樣子大家都滿懷信心了,那老師就用黑板上的兩個例題來考考大家,看大家的觀察能力是不是真的好厲害。

          指著板書中的18的因數(shù)與2的倍數(shù)提問:

          你能從中找出既是18的因數(shù)又是2的倍數(shù)的數(shù)嗎?(計時開始:10,9,8,……)

          學(xué)生完成后表揚:哇,好厲害!

          三、深化練習(xí),鞏固新知

          1、做練習(xí)二的第3題

          在題中出示的數(shù)字里分別找出8的倍數(shù)和9的倍數(shù)

          注意“公倍數(shù)”概念的初步滲透。

          做練習(xí)二的第6題

          四、通過這堂課的學(xué)習(xí),你有什么收獲?

          五、布置作業(yè):

          六、結(jié)束全課:

          請學(xué)號是2的倍數(shù)的同學(xué)起立,你們先離場,

          不是2的倍數(shù)的同學(xué)后離場。

          七、板書設(shè)計:

          18=1 ×18

          18=2 × 9

          18=3 × 6

          有序 不重復(fù)不遺漏

          18的因數(shù)有:1、2、3、6、9、18。

          因 數(shù) 和 倍 數(shù)

          一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

          因數(shù)的個數(shù)是有限的。

          2的倍數(shù)

          2,4,6,……

          一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

          倍數(shù)的個數(shù)是無限的。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇7

          教學(xué)目標(biāo):

          1、理解和掌握因數(shù)和倍數(shù)的概念,認(rèn)識他們之間的聯(lián)系和區(qū)別。

          2、學(xué)會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練的求出一個數(shù)的因數(shù)或倍數(shù)。

          3、知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

          教學(xué)重點:

          掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

          教學(xué)難點:

          理解和掌握因數(shù)和倍數(shù)的概念。

          教學(xué)準(zhǔn)備:

          課件

          教學(xué)過程:

          一、創(chuàng)設(shè)情境,引入新課

          師:我和你們的關(guān)系是?

          生:師生關(guān)系。

          師:對,我是你們的老師,你們是我的學(xué)生,我們的關(guān)系是師生關(guān)系。是啊,人與人之間的關(guān)系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關(guān)系,他們之間的關(guān)系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數(shù)學(xué)王國里,在整數(shù)乘法中也存在著這樣相互依存的關(guān)系,這節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書課題:因數(shù)與倍數(shù))

          (設(shè)計意圖:先讓學(xué)生體會關(guān)系,再通過同桌關(guān)系讓學(xué)生體會相互依存,不能獨立存在,進而為因數(shù)與倍數(shù)的相互依存關(guān)系打下基礎(chǔ)。)

          二、探究新知

          (一)1、出示主題圖,仔細觀察,你得到了哪些數(shù)學(xué)信息?

          學(xué)生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養(yǎng)學(xué)生提取數(shù)學(xué)信息的能力和語言表達能力,即:數(shù)學(xué)語言要求簡練嚴(yán)謹(jǐn))

          教師 :你們能夠用乘法算式表示出來嗎?

          學(xué)生說出算式,教師板書:2×6=12

          2. 出示:因為2×6=12

          所以2是12的因數(shù),6也是12的因數(shù);

          12是2的倍數(shù),12也是6的倍數(shù)。

          (注:由乘法算式理解因數(shù)和倍數(shù)相互依存,不能獨立存在。)

          3.教師出示圖2:師:根據(jù)圖上的內(nèi)容,可以寫出怎樣的算式?

          3×4=12

          從這道算式中,你知道誰是誰的因數(shù)?誰是誰的倍數(shù)嗎?(讓學(xué)生自己說一說,進而加深因數(shù)倍數(shù)關(guān)系的認(rèn)識。)

          教師小結(jié):因數(shù)和倍數(shù)是相互依存的,為了方便,我們在研究因數(shù)與倍數(shù)時,我們所說的數(shù)是整數(shù),一般不包括0.

          4、師:誰來說一道乘法算式考考大家。

          (指名生說一說)

          5、讓其他學(xué)生來說一說誰是誰的因數(shù)誰是誰的倍數(shù)。

          (注:可以讓幾位學(xué)生互相說一說。)

          6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數(shù)誰是誰的倍數(shù)。

          (設(shè)計意圖:18÷3=6是為了培養(yǎng)學(xué)生思維的逆向性)

          (二)找因數(shù):

          1、師:我們知道了因數(shù)與倍數(shù)之間的關(guān)系,從上面的研究中,我們還可以知道,一個數(shù)的因數(shù)還不止一個12的因數(shù)有: 1,2,3,4,6,12. 那么怎樣求一個數(shù)的因數(shù)呢?

          出示例1:18的因數(shù)有哪幾個?

          注意:請同學(xué)們四人以小組討論,在找18的因數(shù)中如何做到不重復(fù),不遺漏。

          學(xué)生嘗試完成:匯報

          (18的因數(shù)有: 1,2,3,6,9,18)

          師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

          師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

          2、用這樣的方法,請你再找一找36的因數(shù)有那些?

          匯報36的因數(shù)有: 1,2,3,4,6,9,12,18,36

          師:你是怎么找的?

          舉錯例(1,2,3,4,6,6,9,12,18,36)

          師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)

          師:18和36的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

          請同學(xué)們觀察一個數(shù)的因數(shù)有什么特點。

          在教師引導(dǎo)下,學(xué)生總結(jié)出:任何一個數(shù)的因數(shù),最小的一定是( ),而最大的一定是( ),因數(shù)的個數(shù)是有限的。

          (設(shè)計意圖:培養(yǎng)學(xué)生探索、歸納、總結(jié)、概括的能力。)

          3、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如 18的因數(shù)

          1、2、3、6、9、18

          小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

          從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

          (三)找倍數(shù):

          1、我們學(xué)會找一個數(shù)的因數(shù)了,那如何找一個數(shù)的倍數(shù)呢?2的倍數(shù)你能找出來嗎?

          匯報:2、4、6、8、10、16、……

          師:為什么找不完?

          你是怎么找到這些倍數(shù)的?

          (生:只要用2去乘1、乘2、乘3、乘4、…)

          那么2的倍數(shù)最小是幾?最大的你能找到嗎?

          2、再找3和5的倍數(shù)。

          3的倍數(shù)有:3,6,9,12,……

          你是怎么找的?(用3分別乘以1,2,3,……倍)

          5的倍數(shù)有:5,10,15,20,……

          師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ,還可以用集合來表示 :2的倍數(shù),3的倍數(shù),5的倍數(shù)

          師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢? 讓學(xué)生觀察2、3、5的倍數(shù),說一說一個數(shù)的倍數(shù)有什么特點。

          學(xué)生試著總結(jié):一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

          三、課堂小結(jié):

          通過今天這節(jié)課的學(xué)習(xí),你有什么收獲?

          學(xué)生匯報這節(jié)課的學(xué)習(xí)所得。

          四、拓展延伸。

          1、教材16頁練習(xí)二第5題。學(xué)生在小組中討論交流:這四位同學(xué)的說法是否正確?為什么?

          2、教材第15頁練習(xí)二第1題。組織學(xué)生獨立完成,然后在小組中互相交流檢查。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇8

          教學(xué)目標(biāo):

          1、使學(xué)生初步理解倍數(shù)和因數(shù)的含義,知道倍數(shù)和因數(shù)相互依存的關(guān)系。

          2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。

          3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

          教學(xué)重點

          理解因數(shù)和倍數(shù)的含義,知道它們的關(guān)系是相互依存的。

          教學(xué)難點

          探索并掌握找一個數(shù)的因數(shù)的方法。

          教學(xué)準(zhǔn)備:

          12個小正方形片、每個學(xué)生的學(xué)號紙。

          教學(xué)過程設(shè)計:

          一、認(rèn)識倍數(shù)、因數(shù)的含義

          1、操作活動。

         。1)明確操作要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法記錄下來。

          (2)整理、交流,分別板書4×3=1212×1=126×2=12

          2、通過剛才的學(xué)習(xí),我們發(fā)現(xiàn)用12個同樣的小正方形可以擺出3種不同的長方形,由此,還得出3道不一樣的乘法算式。4×3=12可以說12是4的倍數(shù),12也是3的倍數(shù);反過來,4和3都是12的因數(shù)。

          3、今天我們就來研究倍數(shù)和因數(shù)的知識。

         。ń沂菊n題:倍數(shù)和因數(shù))

          (1)那其它兩道算式,你能說出誰是誰的倍數(shù)嗎?你能說出誰是誰的因數(shù)嗎?

          指名回答后,教師追問:如果說12是倍數(shù),2是因數(shù),是否可以?為什么?

          小結(jié):倍數(shù)和因數(shù)是指兩個數(shù)之間的關(guān)系,他們是相互依存的。

         。2)出示:20×3=60,36÷4=9。同桌相互說一說誰是誰的倍數(shù)?誰是誰的因數(shù)?

          指出:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)都是指不是0的自然數(shù)。

          二、探索找一個數(shù)倍數(shù)的方法。

          1、從4×3=12中,知道12是3的倍數(shù)。3的倍數(shù)還有哪些?從小到大,你能找到幾個?同桌交流自己的思考方法。

          2、提問:什么樣的數(shù)是3的倍數(shù)?你能按從小到大的順序有條理的說出3的倍數(shù)嗎?能全部說完嗎?可以怎么表示?

          3、議一議:你發(fā)現(xiàn)找3的倍數(shù)有什么小竅門?

          明確:可以按從小到大的順序,依次用1、2、3……與3相乘,乘得的積就是3的倍數(shù)。

          4、試一試:你能用學(xué)會的竅門很快地寫出2和5的倍數(shù)嗎?

          生獨立完成,集體交流。注意用……表示結(jié)果。

          5、觀察上面的3個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?

          根據(jù)學(xué)生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它本身,沒有最大的倍數(shù),一個數(shù)倍數(shù)的個數(shù)是無限的。

          6、做“想想做做”第2題。

          學(xué)生填表后討論:表中的應(yīng)付元數(shù)是怎么算的?有什么共同特點?你還能說出4的哪些倍數(shù)?說的完嗎?

          二、探索求一個數(shù)因數(shù)的方法。

          1、學(xué)會了找一個數(shù)倍數(shù)的方法,再來研究求一個數(shù)的因數(shù)。

          你能找出36的所有因數(shù)嗎?

          2、小組合作,把36的所有因數(shù)一個不漏的寫出來,看看哪個組挑戰(zhàn)成功。并盡可能把找的方法寫出來。教師巡視,發(fā)現(xiàn)不同的找法。

          3、出示一份作業(yè):對照自己找出的36的因數(shù),你想對他說點什么?

          4、交流整理找36因數(shù)的方法,明確:哪兩個數(shù)相乘的積等于36,那么這兩個數(shù)就是36的因數(shù)。(一對一對地找,又要按次序排列)

          板書:(有序、全面)。正因為思考的有序,才會有答案的全面。

          5、試一試:請你用有序的思考找一找15和16的因數(shù)。

          指名寫在黑板上。

          6、觀察發(fā)現(xiàn)一個數(shù)的因數(shù)的特點。

          一個數(shù)的因數(shù)最小是1,最大是它本身,一個數(shù)因數(shù)的個數(shù)是有限的。

          7、“想想做做”第3題。

          生獨立填寫,交流。觀察表格,表中的排數(shù)和每排人數(shù)與24有怎樣的關(guān)系。

          四、課堂總結(jié):學(xué)到這兒,你有哪些收獲?

          五、游戲:“看誰反應(yīng)快”。

          規(guī)則:學(xué)號符合下面要求的請站起來,并舉起學(xué)號紙。

         。1)學(xué)號是5的倍數(shù)的。

         。2)誰的學(xué)號是24的因數(shù)。

          (3)學(xué)號是30的因數(shù)。

         。4)誰的學(xué)號是1的倍數(shù)。

          思考:

          1、倍數(shù)和因數(shù)是一個比較抽象的知識,教學(xué)中讓學(xué)生擺出圖形,通過乘法算式來認(rèn)識倍數(shù)和因數(shù)。用12個同樣大的正方形拼一個長方形,觀察長方形的擺法,再用乘法算式表示出來,組織交流出現(xiàn)積是12的不同的乘法算式。即:4×3=122×6=121×12=12。根據(jù)乘法算式,從學(xué)生已有知識出發(fā),學(xué)習(xí)倍數(shù)和因數(shù),初步體會其意義

          2、在得出這些乘法算式以后,先根據(jù)4×3=12說明12是3和4的倍數(shù),3和4都是12的因數(shù),使學(xué)生初步體會倍數(shù)和因數(shù)的含義。在學(xué)生初

          步理解的基礎(chǔ)上,再讓他們舉一反三,結(jié)合另兩道乘法算式說一說。在這一個環(huán)節(jié)中,我設(shè)計了一個練習(xí)。即“根據(jù)下面的算式,同桌互相說說誰是誰的倍數(shù),誰是誰的因數(shù)”第一個是20×3=60,根據(jù)學(xué)生回答后質(zhì)疑“能不能說3是因數(shù),60是倍數(shù)”,從而強調(diào)倍數(shù)和因數(shù)是相互依存的。第二個是36÷4=9,讓學(xué)生根據(jù)除法算式說出誰是誰的因數(shù),誰是誰的倍數(shù),并追問:你是怎么想的?使學(xué)生知道把它轉(zhuǎn)化為乘法算式去說。

          在學(xué)生有了倍數(shù)、因數(shù)的初步感受后,再向?qū)W生說明:我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù),明確了因數(shù)和倍數(shù)的研究范圍。

          3、P71例一:找3的倍數(shù),先讓學(xué)生獨立思考,“你還能再寫出幾個3的倍數(shù)?你是怎樣想的?”在學(xué)生交流的基礎(chǔ)上,適時提出:什么樣的數(shù)就是3的倍數(shù)?你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?使學(xué)生明確:找3的倍數(shù)時,可以按從到大的順序,依次用1、2、3……與3相乘,而每次乘得的積都是3的倍數(shù)。在此基礎(chǔ)上,引導(dǎo)學(xué)生進一步思考:你能把3的倍數(shù)全都說完嗎?從而使學(xué)生學(xué)會規(guī)范地表示一個數(shù)的所有倍數(shù),并初步體會到一個數(shù)的個數(shù)是無限的。隨后,讓學(xué)生試著找出2和5的倍數(shù),并正確表達2和5的所有倍數(shù)。最后引導(dǎo)學(xué)生觀察寫出的3、2和5的所有倍數(shù),發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,即:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。

          4、例二:找36的所有因數(shù),準(zhǔn)備讓學(xué)生獨立嘗試,但這部分內(nèi)容對學(xué)生來說是個難點,所以我采用了四人小組合作的方式讓學(xué)生試著找出36的所有因數(shù)。在找36的因數(shù)時,無論想乘法算式還是想除法算式,學(xué)生一般都從無序到有序,從有重復(fù)或遺漏到不重復(fù)不遺漏。所以,我在教學(xué)時允許他們經(jīng)歷這樣的過程。先按自己的思路、用自己的方法寫36的因數(shù),能寫幾個就寫幾個,是什么順序就什么順序。然后在交流中互相評價,讓他們知道一組一組地找比較方便,可以利用乘法算式,按一個因數(shù)從小到大的順序,同時又讓他們掌握按次序地書寫。此外,結(jié)合例題和試一試,通過比較和歸納,使學(xué)生明確:一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中最小的是1,最大的是它本身。

          5、教材P72第2題讓學(xué)生解決實際問題在表里填數(shù),把4依次乘1、2、3……得出“應(yīng)付元數(shù)”,然后思考下面的問題,可以使學(xué)生進一步認(rèn)識把4依次乘1,2,3……所得的積,就是4的倍數(shù),進一步理解找倍數(shù)的方法。第3題也是解決實際問題填寫表里的數(shù),并提出問題讓學(xué)生思考,使學(xué)生明確兩個相乘的數(shù)都是它們積的因數(shù),求一個數(shù)的所有因數(shù),可以想乘法一對一對地找出來,理解找一個數(shù)的因數(shù)的方法。

          為了提高學(xué)生學(xué)習(xí)興趣,鞏固所學(xué)的知識。最后安排了一個游戲,讓學(xué)生在游戲中進一步練習(xí)找一個數(shù)倍數(shù)或因數(shù)的方法。。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇9

          教學(xué)目標(biāo):

          1.通過動手操作和寫不同的乘法算式,認(rèn)識倍數(shù)和因數(shù)。

          2.依據(jù)倍數(shù)和因數(shù)的含義和已有的乘除法知識,自主探索并總結(jié)找一個數(shù)的倍數(shù)和因數(shù)的方法。

          3.在探索中,培養(yǎng)學(xué)生抽象,概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。

          教學(xué)重點、難點分析:

          由于學(xué)生對辨析、理清除盡和整除的關(guān)系、整除的兩種讀法等易混淆的概念,使學(xué)生明確了一個數(shù)是否是另一個數(shù)的倍數(shù)或因數(shù)時,必須是以整除為前提,因數(shù)和倍數(shù)是相互依存的概念,不能獨立存在。所以本節(jié)課的教學(xué)我把重點定位于理解因數(shù)和倍數(shù)的含義。教學(xué)難點是自主探索并總結(jié)找一個數(shù)的倍數(shù)和因數(shù)的方法。

          教學(xué)課時:人教版五年級下冊第二單元《因數(shù)與倍數(shù)》第一課時

          教具學(xué)具準(zhǔn)備:

          1.學(xué)生每人準(zhǔn)備12個大小完全相同的小正方形,一張寫有自己學(xué)號的卡片。

          2.教師準(zhǔn)備多媒體課件。

          一、創(chuàng)設(shè)情景,明確探究目標(biāo)

          師:人與人之間存在著許多種關(guān)系,我和你們的關(guān)系是……?

          生:師生關(guān)系。

          師:對,我是你們的老師,你們是我的學(xué)生,我們的關(guān)系是師生關(guān)系。在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這一節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書課題:因數(shù)與倍數(shù))

          1.操作激活。

          師:我們已經(jīng)認(rèn)識了哪幾類數(shù)?

          生:自然數(shù),小數(shù),分?jǐn)?shù)。

          師:現(xiàn)在我們來研究自然數(shù)中數(shù)與數(shù)之間的關(guān)系。請你們用12個小正方形擺成不同的長方形,并根據(jù)擺成的不同情況寫出乘、除算式。

          2.全班交流。

          1×12=12 2×6=12 3×4=12

          12×1=12 6×2=12 4×3=12

          12÷1=12 12÷2=6 12÷3=4

          12÷12=1 12÷6=2 12÷4=3

          師:在這3組乘、除法算式中,都有什么共同點?

          生匯報。

          師:(指著第②組)像這樣的乘、除法式子中的三個數(shù)之間的關(guān)系還有一種說法,你們想知道嗎?請看課本p12。

          師:2和6與12的關(guān)系還可以怎樣說呢?

          生:2和6是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。

          師:也就是說,2和12、6的關(guān)系是因數(shù)和倍數(shù)的關(guān)系,這幾組算式中,誰和誰還有因數(shù)和倍數(shù)的關(guān)系?

          小組合作,交流匯報。

          師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數(shù)。

          揭示課題:今天我們要根據(jù)這些算式研究數(shù)學(xué)新本領(lǐng)。因數(shù)和倍數(shù)。

          師:你能不能用同樣的方法說說另一道算式?

         。ㄖ该f一說)

          師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?

          那你還能找出12的其他因數(shù)嗎?

          3.舉例內(nèi)化:

          你能寫出一個算式,讓你的同桌找一找因數(shù)和倍數(shù)嗎?(學(xué)生互說,教師巡視找出典型例子)

          4.下面的說法對嗎?說出理由。

         。1)48是6的倍數(shù)。

          (2)在13÷4=3……1中,13是4的倍數(shù)。

         。3)因為3×6=18,所以18是倍數(shù),3和6是因數(shù)。

          師:第(3)題有兩種不同的意見,請反對意見的同學(xué)說說理由。

          生:因為沒有說明18是誰的倍數(shù),所以不對。

          師:你認(rèn)為怎樣說才正確呢?

          生:我認(rèn)為應(yīng)該這么說:18是3和6的倍數(shù),3和6是18的因數(shù)。

          師強調(diào):在說倍數(shù)(或因數(shù))時,必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨說誰是倍數(shù)(或因數(shù)),也就是說:因數(shù)和倍數(shù)不能單獨存在。

          二、自主探究,找因數(shù)和倍數(shù)

          1.拓展提升,主動建構(gòu):

         、胚w移嘗試:請學(xué)生試著找出36的所有因數(shù)。

          ⑵交流方法:教師即時捕捉開發(fā)學(xué)生在課堂上的基礎(chǔ)性教學(xué)資源,并及時創(chuàng)生為生成性的教學(xué)資源,引導(dǎo)學(xué)生在交流中評價,在評價中探究,在發(fā)現(xiàn)中建構(gòu)。預(yù)計學(xué)生會有這樣幾種情況出現(xiàn):一是寫得多與少的區(qū)別,二是找的方法上的區(qū)別。具體表現(xiàn)為:一是無序、沒有方法地寫出了一些,如2,3,6,而且僅此寫出了幾個;二是有順序地用乘法( )×( )=36的方法,一對一對地寫出了1,36,2,18,3,12,4,9,6,但沒有按照從小到大的順序?qū)懀蝗怯贸?6÷( )=( )的方法想,而且是有順序地從小到大全部寫出: 1,2,3,4,6,9,12,18,36。

         、菃⒌纤伎迹涸鯓诱也拍懿恢貜(fù)不遺漏?

          小組合作,自主探究,匯報交流。

          找一個數(shù)的因數(shù)時要做到不重復(fù)也不遺漏,方法可以有:

          用乘法( )×( )=36的方法,一對一對地寫;

          或者是用除法36÷( )=( )的方法想,而且是有順序地從小到大全部寫。

          36的因數(shù)有:1,2,3,4,6,9,12,18,36。(板書)

          ⑷試一試找20的所有因數(shù)。

         、山榻B36的因數(shù)的另一種寫法----集合

          用集合形式寫18的因數(shù)

          2.創(chuàng)設(shè)情境,自主探究:

          請學(xué)生寫出6的倍數(shù)。預(yù)計學(xué)生在寫6的倍數(shù)時,會有這樣幾種情況出現(xiàn):一是寫得多與少的區(qū)別,二是找的方法上的區(qū)別。具體表現(xiàn)為:一是無序、沒有方法地寫出了一些,6二是有順序地用乘法口訣寫6,三是用加法的方法,每次遞加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法寫。同時可能還會有學(xué)生在教師宣布時間到的時候會因為6的倍數(shù)寫不完而抱怨時間太少。

          請寫得又多又快的同學(xué)介紹自己的好方法、小竅門。在此基礎(chǔ)上交流評價小結(jié)方法。(評價時突出有序思維的策略)

          3.遷移內(nèi)化,自主探究:

         、艊L試遷移:請學(xué)生嘗試遷移,用自己喜歡的方法寫出2的倍數(shù)和5,4,7的倍數(shù)。

          2的倍數(shù)有:2,4,6,8,10,12……

          5的倍數(shù)有:5,10,15,20,25……

         、埔龑(dǎo)觀察:請學(xué)生觀察以上這些數(shù)的倍數(shù),有什么發(fā)現(xiàn)?

         。ㄒ粋數(shù)的倍數(shù)的個數(shù)是無限的,一個數(shù)最小的倍數(shù)是它本身。)

          (3)還記得因數(shù)嗎,出示課件

          觀察:看一看這些數(shù)的因數(shù),你有什么發(fā)現(xiàn)?(36最小的因數(shù)是1,最大的是36,……一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身。)

          三、變式拓展,實踐應(yīng)用

          指導(dǎo)學(xué)生做書本“練習(xí)二”的第2題和第3題。

          四、全課總結(jié)

          師:今天這節(jié)課我們一起學(xué)習(xí)了“約數(shù)和倍數(shù)”,你有哪些收獲?

          課堂練習(xí):游戲:“我的朋友在哪里?”

          游戲規(guī)則:

          (1)一位同學(xué)提出所要找的朋友的要求,例:“我的因數(shù)在哪里?”或“我的倍數(shù)在哪里?”

         。2)相應(yīng)學(xué)號的同學(xué)站起來,其他同學(xué)判斷是否正確。

          作業(yè)安排:

          引導(dǎo)學(xué)生根據(jù)實際猜老師年齡,給出范圍:老師的年齡既是2的倍數(shù)也是5的倍數(shù)

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇10

          教學(xué)內(nèi)容:

          《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(五年級下冊)》第12~13頁。

          教學(xué)目標(biāo):

          1.從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。

          2.培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點。

          3.培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。

          教學(xué)重點:理解因數(shù)和倍數(shù)的含義。

          教學(xué)過程:

          一、創(chuàng)設(shè)情境,引入新課

          師:每個人都有自己的好朋友,你能告訴我你的好朋友是誰嗎?

          學(xué)生回答。

          師:哦,老師知道了。XXX是XXX的好朋友。如果他這樣介紹:XXX是好朋友。能行嗎?

          生:不行,這樣就不知道誰是誰的好朋友了。

          師:朋友是表示人與人之間的關(guān)系,我們在介紹的時候就一定要說清楚誰是誰的朋友,這樣別人才能明白。在數(shù)學(xué)中,也有描述數(shù)與數(shù)之間關(guān)系的概念,比如說:倍數(shù)和因數(shù)。今天這節(jié)課我們就要來研究有關(guān)這個方面的一些知識。

          二、探索交流,解決問題

          1、師:我們已經(jīng)認(rèn)識了哪幾類數(shù)?

          生:自然數(shù),小數(shù),分?jǐn)?shù)。

          師:現(xiàn)在我們來研究自然數(shù)中數(shù)與數(shù)之間的關(guān)系。請你們根據(jù)12個小正方形擺成的不同長方形的情況寫出乘、除算式。

          根據(jù)學(xué)生的匯報板書:

          1×12=12 2×6=12 3×4=12

          12×1=12 6×2=12 4×3=12

          12÷1=12 12÷2=6 12÷3=4

          12÷12=1 12÷6=2 12÷4=3

          師:在這3組乘、除法算式中,都有什么共同點?

          生:第①組每個式子都有1、12這兩個數(shù)。

          生:第②組每個式子都有2、6、12這三個數(shù)。

          生:第③組每個式子都有3、4、12這三個數(shù)。

          師:(指著第②組)像這樣的乘、除法式子中的三個數(shù)之間的關(guān)系還有一種說法,你們想知道嗎?

          師:2和6與12的關(guān)系還可以怎樣說呢?

          生:2和6是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。

          師:也就是說,2和12、6的關(guān)系是因數(shù)和倍數(shù)的關(guān)系,這幾組算式中,誰和誰還有因數(shù)和倍數(shù)的關(guān)系?

          生:3、4和12有因數(shù)和倍數(shù)關(guān)系,3和4是12的因數(shù),12是3和4的倍數(shù)。

          生:我認(rèn)為1和12也有因數(shù)和倍數(shù)關(guān)系。1是12的因數(shù),12是1的倍數(shù)。

          生:可以說12是12的因數(shù)嗎?

          生:我認(rèn)為可以,12×1=12,1和12都是12的因數(shù)。

          師:說得真好,從上面3組算式中,

          我們知道1,2,3,4,6,12都是12的因數(shù)。

          師出示:

          1、根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。

          12 × 5=60 45 ÷ 3=15

          11 × 4=44 9 × 8= 72

          2、8是倍數(shù),4是因數(shù)! ( )

          強調(diào):在說倍數(shù)(或因數(shù))時,必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨說誰是倍數(shù)(或因數(shù))。

          因數(shù)和倍數(shù)不能單獨存在。

          師出示:0×3 0×10

          0÷3 0÷10

          通過剛才的計算,你有什么發(fā)現(xiàn)?

          生:我發(fā)現(xiàn)0和任何數(shù)相乘,都等于0。

          生:0除以任何數(shù)都等于0。

          生:我補充,0不能作為除數(shù)。

          師:所以在研究因數(shù)和倍數(shù)時,我們所說的數(shù)一般指整數(shù),不包括0。

          師生小結(jié):這節(jié)課,你們都學(xué)會了哪些知識?還有什么不明白的地方?

          生:我有一個疑問,在2×6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系,這兩種說法一樣嗎?

          師:這個問題提得好!誰能回答他的問題?

          生:我覺得好像不一樣,但不知道為什么?

          生:我認(rèn)為不一樣,在2×6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系。

          師:說的真好。這節(jié)課我們研究因數(shù)與倍數(shù)的關(guān)系中所說的因數(shù)不是以前乘法算式中各部分名稱中的“因數(shù)”,兩者可不能搞混哦!

          2、試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)? 誰是誰的倍數(shù)?

          2、3、5、9、18、20

          師:老師在聽的時候發(fā)現(xiàn)有好幾個數(shù)都是18的因數(shù),你也發(fā)現(xiàn)了嗎?誰能把這6個數(shù)中18的因數(shù)一口氣說完?

          生:2、3、9、18都是18的因數(shù)。

          師:18的因數(shù)只有這4個嗎?

          師:看來要找出18的一個因數(shù)并不難,難就難在你能不能把18的所有因數(shù)既不重復(fù)又不遺漏地全部找出來。

          投影儀出示學(xué)生的不同作業(yè)。交流找因數(shù)的方法。

          師:出示18的因數(shù)有:1、18、2、9、3、6;

          你知道這個同學(xué)是怎樣找出18的因數(shù)的嗎?看著這個答案你能猜出一點嗎?

          生:他是有規(guī)律,一對一對找的,哪兩個整數(shù)相乘得18,就寫上。

          師:他是用乘法找的,其他同學(xué)還有補充嗎?找到什么時候為止?

          生:可以用除法找。用18除以1得18,18和1就是18的因數(shù)。再用18除以2……

          師:用乘法和除法找都可以,你們認(rèn)為用什么方法更容易呢?

          生:乘法。

          板書:18的因數(shù)有:1、2、3、6、9、18。

          師:18的因數(shù)也可以這樣表示。(課件出示集合圈圖)

          組織交流:

          通過剛才的交流,找一個數(shù)的因數(shù)有辦法了嗎?有沒有方法不重復(fù)也不遺漏?

          突出要點:有序(從小往大寫),一對對找

          (哪兩個整數(shù)相乘得這個數(shù)),再按從小到大的順序?qū)懗鰜怼?/p>

          用我們找到的方法,試一個。

          課件出示:

          填空:

          24=1×24=2×( )=( ) ×( )=( ) ×( )

          24的因數(shù)有:_______________

          再試一個:16的因數(shù)有( )

          師:一個數(shù)的因數(shù),我們都是一對一對地找的,為什么16的因數(shù)只有5個呢?

          生:因為4×4=16,只寫一個4就可以了。

          師:觀察18、16的所有因數(shù),你有什么發(fā)現(xiàn)嗎?可以從因數(shù)的個數(shù),最小的因數(shù)和最大的因數(shù)三個方面觀察。

          生:18的因數(shù)有6個,最小的是1,最大的是18.

          16的因數(shù)有5個,最小的是1,最大的是16.

          師:誰能把同學(xué)們的發(fā)現(xiàn),用數(shù)學(xué)語言概括起來。

          邊交流邊板書:

          因數(shù): 個數(shù) 最小 最大

          有限 1 它本身

          2、師:剛才同學(xué)們通過自主探索和合作交流,不但掌握了找一個數(shù)的因數(shù)的方法,而且發(fā)現(xiàn)了一個數(shù)的因數(shù)的特點,那么一個數(shù)的倍數(shù),怎樣找呢?找一個小一點的,2的倍數(shù),請你們在紙上寫。

          師:停,寫完了嗎?你能把2的倍數(shù)全部寫下來嗎?那怎么辦?

          生:不能全寫下來,可以用省略號表示沒寫完的。

          師:你寫得這樣快,有小竅門嗎?

          生:用這個數(shù)有順序地乘1、2、3、4、……

          先寫2,再逐個加2。

          板書:2的倍數(shù):2、4、6、8、10……

          師:2的倍數(shù)也可以這樣表示。(出示用集合圈表示的2的倍數(shù))

          找出3的倍數(shù):3、6、9、12、15 ……

          觀察2和3的倍數(shù),你有什么發(fā)現(xiàn):

          板書: 倍數(shù) : 個數(shù) 最小 最大

          無限的 它本身 無

          師:找出30以內(nèi)5的倍數(shù):

          生:5、10、15、20、25、30

          師:這一次你找到了哪幾個?為什么不加省略號呢?

          課件出示:30以內(nèi)5的倍數(shù)的集合圈圖。

          引導(dǎo)學(xué)生抽象地概括出一個數(shù)的最小因數(shù)和最大因數(shù)分別是什么,總結(jié)出一個數(shù)的因數(shù)的個數(shù)是有限的結(jié)論,向?qū)W生滲透從

          個別到全體、從具體到一般的抽象歸納的思想方法。

          三、鞏固應(yīng)用,內(nèi)化提高

          1.下面每一組數(shù)中,誰是誰的倍數(shù),誰是誰的因數(shù)。

          16和2 4和24 72和8 20和5

          2.下面的說法對嗎?說出理由。

         。1)48是6的倍數(shù)。

          (2)在13÷4=3……1中,13是4的倍數(shù)。

         。3)因為3×6=18,所以18是倍數(shù),3和6是因數(shù)。

          師:第(3)題有兩種不同的意見,請反對意見的同學(xué)說說理由。

          生:因為沒有說明18是誰的倍數(shù),所以不對。

          師:你認(rèn)為怎樣說才正確呢?

          生:我認(rèn)為應(yīng)該這么說:18是3和6的倍數(shù),3和6是18的因數(shù)。

          師:在說倍數(shù)(或因數(shù))時,必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨說誰是倍數(shù)(或因數(shù)),也就是說:因數(shù)和倍數(shù)不能單獨存在。

          3.在36、4、9、12、3、0這些數(shù)中,誰和誰有因數(shù)和倍數(shù)關(guān)系。

          4.游戲。請生任意寫一個60以內(nèi)的自然數(shù)(0除外),聽老師說要求,所寫的數(shù)符合要求的請舉手,同桌互相檢查。

         、伲 )是4的倍數(shù)

          ( )是60的因數(shù)

         。 )是5的倍數(shù)

         。 )是36的因數(shù)

         、谡堃幻麑W(xué)生模仿剛才老師的要求,繼續(xù)練習(xí)。

         、巯胍幌,應(yīng)該提什么要求,讓全班同學(xué)都能舉手?

          生:( )是1的倍數(shù)。

          師:全班都舉手了,誰能總結(jié)剛才的說法。

          生:任何不包括0的自然數(shù)都是1的倍數(shù)。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇11

          一、教學(xué)內(nèi)容

          1.因數(shù)和倍數(shù)

          2.2、5、3的倍數(shù)的特征

          3.質(zhì)數(shù)和合數(shù)

          二、教學(xué)目標(biāo)

          1.掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,知道有關(guān)概念之間的聯(lián)系和區(qū)別。

          2.通過自主探索,掌握2、5、3的倍數(shù)的特征。

          3.逐步培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。

          三、編排特點

          1.精簡概念,減輕學(xué)生記憶負(fù)擔(dān)。

         。1)不再出現(xiàn)“整除”概念,直接從乘法算式引出因數(shù)和倍數(shù)的概念。

         。2)不再正式教學(xué)“分解質(zhì)因數(shù)”,只作為閱讀性材料進行介紹。

         。3)公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)移至“分?jǐn)?shù)的意義和性質(zhì)”單元,作為約分和通分的知識基礎(chǔ),更突出其應(yīng)用性。

          2.注意體現(xiàn)數(shù)學(xué)的抽象性。

          數(shù)學(xué)知識本身具有抽象性。學(xué)生到了高年級也應(yīng)注意培養(yǎng)其抽象思維。

          四、學(xué)情分析與教學(xué)建議

          1.加強對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。

          從因數(shù)和倍數(shù)的含義去理解其他的相關(guān)概念。

          2.要注意培養(yǎng)學(xué)生的抽象思維能力。

          第一課時:因數(shù)和倍數(shù)

          教學(xué)目標(biāo):

          1、學(xué)生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;

          2、學(xué)生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;

          3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);

          4、培養(yǎng)學(xué)生的觀察能力。

          教學(xué)重點:掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

          教學(xué)難點:能熟練地找一個數(shù)的因數(shù)和倍數(shù)。

          教學(xué)過程:

          一、引入新課。

          1、出示主題圖,讓學(xué)生各列一道乘法算式。

          2、師:看你能不能讀懂下面的算式?

          出示:因為2×6=12

          所以2是12的因數(shù),6也是12的因數(shù);

          12是2的倍數(shù),12也是6的倍數(shù)。

          3、師:你能不能用同樣的方法說說另一道算式?

         。ㄖ该f一說)

          師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?

          那你還能找出12的其他因數(shù)嗎?

          4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。

          師:誰來出一個算式考考全班同學(xué)?

          5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))

          齊讀p12的注意。

          二、新授:

         。ㄒ唬┱乙驍(shù):

          1、出示例1:18的因數(shù)有哪幾個?

          從12的因數(shù)可以看得出,一個數(shù)的因數(shù)還不止一個,那我們一起找找看18的因數(shù)有哪些?

          學(xué)生嘗試完成:匯報

          (18的因數(shù)有:1,2,3,6,9,18)

          師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

          師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

          2、用這樣的方法,請你再找一找36的因數(shù)有那些?

          匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36

          師:你是怎么找的?

          舉錯例(1,2,3,4,6,6,9,12,18,36)

          師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)

          仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?

          看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。

          3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自己的練習(xí)本上寫一寫,然后匯報。

          4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如18的因數(shù)

          1、2、3、6、9、18

          小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

          從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

         。ǘ┱冶稊(shù):

          1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?

          匯報:2、4、6、8、10、16、……

          師:為什么找不完?

          你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)

          那么2的倍數(shù)最小是幾?最大的你能找到嗎?

          2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。

          匯報3的倍數(shù)有:3,6,9,12

          師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?

          改寫成:3的倍數(shù)有:3,6,9,12,……

          你是怎么找的?(用3分別乘以1,2,3,……倍)

          5的倍數(shù)有:5,10,15,20,……

          師:表示一個數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ,還可以用集合來表示

          2的倍數(shù)3的倍數(shù)5的倍數(shù)

          2、4、6、8……3、6、9……5、10、15……

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇12

          教學(xué)內(nèi)容:因數(shù)與倍數(shù)(P12-13例1及P15題1、2)

          教學(xué)目標(biāo):

          1、從操作活動中理解因數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)。

          2、培養(yǎng)學(xué)生抽象、概括與觀察思考的能力,滲透事物之間相互聯(lián)系,相互依存的辨證唯物主義觀點。

          3、培養(yǎng)學(xué)生的合作意識、探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。

          教學(xué)重點:理解因數(shù)的意義

          教學(xué)難點:能熟練地找一個數(shù)的因數(shù)。

          教具準(zhǔn)備:多媒體課件

          教學(xué)過程:

          一、引入新課:

          1、課件出示主題圖,讓學(xué)生各列一道乘法算式。

          2、師:看你能不能讀懂下面的算式?

          出示:因為2×6=12

          所以2是12的因數(shù),6也是12的因數(shù);

          12是2的倍數(shù),12也是6的倍數(shù)。

          3、師:你能不能用同樣的方法說說另一道算式?你還能找出12的其他因數(shù)嗎?

         。ㄖ该f一說)

          4、你能不能寫一個算式來考考同桌?學(xué)生寫算式。

          5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(板書課題:因數(shù)和倍數(shù))

          齊讀教材第12的注意。

          二、自學(xué)預(yù)設(shè):

          1、仔細看例一,什么叫因數(shù)和倍數(shù)?像這樣的乘除法算式中的三個數(shù)之間還有另一種說法,你想知道嗎?

          2、怎樣找因數(shù)?例如18,36的因數(shù)是什么?

          3、因數(shù)有什么特點?一個數(shù)的最小因數(shù)是多少?有幾個因數(shù)?(舉例說明)

          嘗試練習(xí)

          試著完成P13的做一做練習(xí)

          三、認(rèn)識因數(shù)與倍數(shù),展示交流

         。ㄒ唬┱乙驍(shù):

          1、出示例1:18的因數(shù)有哪幾個?

          師:從12的因數(shù)可以看出:一個數(shù)的因數(shù)還不止一個,那我們一起找找看18的因數(shù)有哪些?

          學(xué)生嘗試完成匯報:(18的因數(shù)有: 1,2,3,6,9,18)

          2、用這樣的方法,請你再找一找36的因數(shù)有那些?

          匯報36的因數(shù)有: 1,2,3,4,6,9,12,18,36

          師:你是怎么找的?

          舉錯例(1,2,3,4,6,6,9,12,18,36)

          師:這樣寫可以嗎?為什么?(不可以,因為重復(fù)的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)

          3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在練本上寫一寫,然后匯報。

          4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示。課件出示

          5、小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

          從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

          (二).我的質(zhì)疑

          1.誰能舉一個算式例子,并說說誰是誰的因數(shù)?

          2.討論:0×3 0×10 0÷3 0÷10

          提問:通過剛才的計算,你有什么發(fā)現(xiàn)?

          3.注意:(1)為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)一般指的是整數(shù),但不包括0。(2)這節(jié)課我們研究因數(shù)與倍數(shù)的關(guān)系中所說的因數(shù)不是以前乘法算式名稱的“因數(shù)”,兩者不能搞混淆。

          四、反饋檢測

          1.下面每一組數(shù)中,誰是誰得因數(shù)?

          16和2 4和24 72和8 20和5

          2.下面得說法對嗎?說出理由。

         。1)48是6的倍數(shù)

         。2)在13÷4=3……1中,13是4的倍數(shù)

         。3)因為3×6=18,所以18是倍數(shù),3和6是因數(shù)。

          3、完成P15第2題

          學(xué)生自己獨立完成,講評時讓學(xué)生說一說,是怎么想的?

          五、課堂小結(jié):

          我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

          板書設(shè)計: 因數(shù)和倍數(shù)

          18的因數(shù)有: 1,2,3,6,9,18

          一個數(shù)的因數(shù)::最小的是1,最大的是它本身。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇13

          教學(xué)內(nèi)容:

          蘇教版小學(xué)數(shù)學(xué)四年級(下冊)第70-72頁。

          教學(xué)目標(biāo):

          1、使學(xué)生結(jié)合乘、除法運算初步認(rèn)識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法。

          2、使學(xué)生在探索的過程中,進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

          3、增強學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受到成功的快樂。

          教學(xué)重點:

          理解倍數(shù)和因數(shù)的含義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

          教學(xué)難點:

          理解倍數(shù)和因數(shù)的含義及倍數(shù)和因數(shù)的相互依存關(guān)系。

          教學(xué)準(zhǔn)備:

          學(xué)生:每人準(zhǔn)備12個同樣大小的正方形。教師:課件

          教學(xué)過程:

          一、認(rèn)識倍數(shù)和因數(shù)

          1、提出活動要求:每一桌的同學(xué)合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來。看看哪桌的同學(xué)最快完成。

          2分組操作活動,師巡視指導(dǎo)。

          3、指名匯報,出示課件,全班交流。匯報時是引導(dǎo)學(xué)生根據(jù)“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。

          4、教學(xué)“倍數(shù)”和“因數(shù)”的概念。

          (1)結(jié)合4×3=12,說明12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。并板書。

          (2)齊讀這三句話,板書課題:倍數(shù)和因數(shù)

         。3)指名看式子說。

          (4)請學(xué)生根據(jù)6×2=12和12×1=12兩道算式,照樣子說

          一說哪個數(shù)是哪個數(shù)的倍數(shù)?哪個數(shù)是哪個數(shù)的因數(shù)?

          追問:如果說12是倍數(shù),3是因數(shù),可以嗎?為什么?

          明確:倍數(shù)和因數(shù)都是指兩個數(shù)之間的關(guān)系,是相互依存的。

          教師指出閱讀底注明確:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。不是0的自然數(shù),0要考慮嗎?那從什么數(shù)開始。如1、2、3、4、5、6、7、8、9…….在小數(shù)和分?jǐn)?shù)等其他數(shù)中就也沒有倍數(shù)和因數(shù)的說法了。(可根據(jù)具體的算式說明,如0×3=0,1.5×2=3。)

         。5)練習(xí):“想想做做”第1題。每位同學(xué)都各選一個乘法算式同桌之間互相說一說,

          三、探索找倍數(shù)和因數(shù)的方法

          1、探索找一個數(shù)的倍數(shù)的方法

         。1)提出問題:什么樣的數(shù)會是3的倍數(shù)呢?明確:3的倍數(shù)是3與一個數(shù)相乘的積。你能找到多少個3的倍數(shù)?先讓學(xué)生獨立思考,再組織交流。

         。2)啟發(fā):誰能按從小到大的順序有條理的說出3的倍數(shù)?根據(jù)什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數(shù)。同時板書:

          3×1=(3)3×2=(6)……

          追問:能把3的倍數(shù)全部說完嗎?應(yīng)該怎樣表示3的倍數(shù)有哪些呢?

          根據(jù)學(xué)生的回答課件演示:3的倍數(shù)有3、6、9、12、15……

         。3)完成后面的試一試。提醒學(xué)生注意有序的思考,并規(guī)范的表示出結(jié)果。

         。4)一個數(shù)的倍數(shù)的特點。

          提問:觀察上面的幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?根據(jù)學(xué)生的交流歸納:一個數(shù)的倍數(shù)中,最小的是它的本身,沒有最大的倍數(shù),一個數(shù)的倍數(shù)的個數(shù)是無限的。

          提問:現(xiàn)在你能很快說出6的最小倍數(shù)是多少嗎?10呢?

          2、探索找一個數(shù)的因數(shù)的方法

         。1)提出問題:什么樣的數(shù)是36的因數(shù)?

          學(xué)生舉例說明。明確:如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。

          板書()×()=36

         。2)提問:你能找出36的所有因數(shù)嗎?啟發(fā):要做到不重復(fù),不遺漏,怎樣才能有條理地找出36的所有因數(shù)?

          學(xué)生試著在練習(xí)本上列式找出。

         。3)學(xué)生匯報交流,根據(jù)學(xué)生的回答課件演示。

          (4)進一步啟發(fā):我們知道除法是乘法的逆運算,根據(jù)除法算式,也可以找一個數(shù)的因數(shù)。。根據(jù)36÷1=36可以找到1和36……

          請同學(xué)們看書71頁,完成書上的填空。

          (5)完成“試一試”。提醒學(xué)生有序的思考,做到不重復(fù),不遺漏。

          學(xué)生匯報,說說你是怎樣找的。

         。6)觀察發(fā)現(xiàn)

          提問:觀察上面的例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?

          小結(jié):一個數(shù)因數(shù)的個數(shù)是有限的,一個數(shù)的因數(shù)中,最小的是1,最大的是它本身。

          提問:現(xiàn)在你能很快說出18的最小因數(shù)和最大因數(shù)是多少嗎?25呢?

          四、鞏固練習(xí)

          1、“想想做做”第2題。

          組織學(xué)生讀題,理解題意。表中每欄的應(yīng)付元數(shù)各是怎樣算出來的?他們都是4的什么數(shù)?你還能說出4的哪些倍數(shù)?能把4的倍數(shù)全部說完嗎?

          2、“想想做做”第3題。

          組織學(xué)生讀題,理解題意。表中每欄的每排人數(shù)是各怎樣算出來的?排數(shù)和每排人數(shù)都是24的什么數(shù)?

          五、全課總結(jié)

          這節(jié)課你學(xué)會了什么?

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇14

          教學(xué)內(nèi)容:

          教學(xué)目標(biāo):

          1 讓學(xué)生理解倍數(shù)和因數(shù)的意義,掌握找一個非零自然數(shù)的倍數(shù)與因數(shù)的方法,發(fā)現(xiàn)一個非零自然數(shù)的倍數(shù)和因數(shù)中最大的數(shù)、最小的數(shù)以及一個非零自然數(shù)的倍數(shù)與因數(shù)個數(shù)的特征。

          2 讓學(xué)生初步意識到可以從一個新的角度,即倍數(shù)和因數(shù)的角度來研究非零自然數(shù)的特征及其相互關(guān)系,培養(yǎng)學(xué)生觀察、分析與抽象概括的能力,體會數(shù)學(xué)學(xué)習(xí)的奇妙,對數(shù)學(xué)產(chǎn)生好奇心。

          教學(xué)重點:理解倍數(shù)和因數(shù)的意義。

          教學(xué)難點:從倍數(shù)和因數(shù)的意義出發(fā),尋找一個非零自然數(shù)的倍數(shù)與因數(shù)。

          教學(xué)過程:

          一、直接導(dǎo)入

          師:自然數(shù)是我們在數(shù)的王國中認(rèn)識的第一種數(shù),今天我們將從一個特定的角度,即倍數(shù)和因數(shù)的角度來研究自然數(shù)的特征及其相互關(guān)系。(板書課題:倍數(shù)和因數(shù))

          [評析:課始直接進入主題,揭示本節(jié)課新知識研究的方向,使學(xué)生產(chǎn)生探究新知的心理需求。]

          二、教學(xué)倍數(shù)和因數(shù)的意義

          (屏幕出示12個完全相同的正方形)

          師:用這12個完全相同的正方形,能拼出一個長方形嗎?(生:能)你能用一道乘法算式,表示你拼出的長方形嗎?

          生:我可以拼出一個3×4的長方形。

          師:你們猜猜看,這會是一個什么樣的長方形?

          生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學(xué)生所猜的長方形,并讓學(xué)生明白這兩種拼法其實是相同的)

          生:我還可以拼出一個2×6的長方形。

          生:我還可以拼出一個1×12的長方形。(師問法同上,略)

          師:同學(xué)們可別小看這三道算式,今天我們學(xué)習(xí)的內(nèi)容,就將從研究這三道乘法算式拉開帷幕。

          [評折:準(zhǔn)確把握學(xué)生的學(xué)習(xí)起點,讓學(xué)生根據(jù)所列乘法算式猜想可能拼成的長方形,大屏幕隨之展示學(xué)生猜想的長方形,更加激起學(xué)生的求知欲。]

          師:根據(jù)3×4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。

          師:同學(xué)們一起來讀一讀,感受一下。

          師:你讀懂了些什么?(引導(dǎo)學(xué)生感知什么是倍數(shù)、什么是因數(shù),即倍數(shù)和因數(shù)的意義;明白在乘法算式中,積就是兩個乘數(shù)的倍數(shù),兩個乘數(shù)就是積的因數(shù))

          師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。

          師(出示18÷3=6):誰是誰的倍數(shù)?誰是誰的因數(shù)?為什么?

          生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數(shù),3和6是18的因數(shù)。(引導(dǎo)學(xué)生明白根據(jù)乘除法的互逆關(guān)系,在除法算式中也可以說誰是誰的倍數(shù)、誰是誰的因數(shù))

          屏幕出示:4是因數(shù),24是倍數(shù)。

          師:這句話對嗎?(讓學(xué)生理解倍數(shù)和因數(shù)是兩個數(shù)之間的相互依存關(guān)系,必須說誰是誰的倍數(shù)、誰是誰的因數(shù))

          師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學(xué)一定發(fā)現(xiàn)在這三道乘法算式中。我們其實已經(jīng)找到了12的所有因數(shù),你知道都有哪些嗎?(引導(dǎo)學(xué)生說一說)

          屏幕出示一組數(shù):36、4、9、0、5、2。

          師:請你從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關(guān)系來說一說。(生可能會選36和4、36和9、4和2這幾組數(shù))

          設(shè)疑:

          (1)為什么不選0呢?(讓學(xué)生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))(屏幕演示將“0”去掉)

          (2)為什么不選5呢?(例如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))(屏幕演示將“5”去掉)

          (3)去掉了0和5,剩下的這些數(shù)和36有什么關(guān)系呢?(它們都是36的因數(shù),或36是它們的倍數(shù);當(dāng)然,36也是36的因數(shù),36也是36的倍數(shù))

          [評析:倍數(shù)和因數(shù)意義的學(xué)習(xí)層次分明。(1)猜想:由1 2個完全相同的正方形拼成一個長方形的不同拼法,得出三道乘法算式。根據(jù)3×4=12這道算式中三個數(shù)的關(guān)系,讓學(xué)生初次感知倍數(shù)和因數(shù)的意義。(2)拓展:根據(jù)除法算式中“存在一個自然數(shù)等于兩個自然數(shù)乘積”這一條件,揭示除法算式中依然存在著倍數(shù)和因數(shù)的關(guān)系,拓展了對倍數(shù)與因數(shù)意義的理解。(3)深化:探索并感知倍數(shù)和因數(shù)的相互依存關(guān)系。“從一組數(shù)中任選兩個數(shù)”說意義的訓(xùn)練,鞏固與深化了對倍數(shù)和因數(shù)意義的理解。]

          三、探討找一個數(shù)的因數(shù)的方法

          1 師:在剛才這組數(shù)(36、4、9、0、5、2)中,2、4、9和36都是36的因數(shù)。除了這些,36的因數(shù)還有嗎?(生一個一個地舉例)這樣一個一個雜亂無序地找,你們覺得這種方法好嗎?(生:不好!)不好在哪兒呢?

          生:容易漏掉或重復(fù)。

          師:你們有沒有什么好辦法,能一個不落地將36的所有因數(shù)都找到呢?同學(xué)們可以獨立完成這個任務(wù),也可以同桌的兩位同學(xué)合作完成。如果你全部找到了,就請將36的所有因數(shù)寫在練習(xí)紙上。同時將你找因數(shù)的方法寫在橫線的下方。(教師巡視,學(xué)生討論交流)

          展示學(xué)生的作品,學(xué)生可能出現(xiàn)的答案有:

          (1)根據(jù)1×36=36、2×18=36……分別得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù);

          (2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù)。

          在寫法上,可能出現(xiàn)的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序?qū),?、2、3、4、6、9、12、18、36。然后引導(dǎo)學(xué)生比較這兩種寫法的不同。將方法優(yōu)化:運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且不重復(fù)、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)

          2 探討一個數(shù)的因數(shù)的特征。

          課件出示12的因數(shù)、15的因數(shù)和36的因數(shù)。(從小到大排列)

          學(xué)生觀察、討論下面的問題(課件出示問題):一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?

          課件出示描述一個非零自然數(shù)的因數(shù)的特征的表格(如下),學(xué)生討論、交流后再反饋。

          師(小結(jié)):一個非零自然數(shù)的最大因數(shù)是它本身,最小因數(shù)是1,因數(shù)的個數(shù)是有限的。

          [評析:找一個數(shù)的因數(shù)是本節(jié)課的教學(xué)難點。教學(xué)中,教師調(diào)整教材的編排順序,先學(xué)習(xí)找一個數(shù)的因,數(shù),通過置疑“一個個地找36的因數(shù),這種方法好嗎?不好在哪”,啟發(fā)學(xué)生根據(jù)因數(shù)的意義和乘除法的互逆關(guān)系,有序地找出36的所有因數(shù),并及時優(yōu)化方法。同時,引導(dǎo)學(xué)生自主探索,在觀察中發(fā)現(xiàn)一個數(shù)的因數(shù)的有關(guān)特征,最后進行總結(jié),培養(yǎng)了學(xué)生解決問題的能力。]

          四、探討找一個數(shù)的倍數(shù)的方法

          1 師:我們已經(jīng)掌握了如何有序地、完整地找出一個非零自然數(shù)的所有因數(shù)的方法。如果讓你找出一個數(shù)的所有倍數(shù),你會找嗎?(生:會)那么,我們就一起來找找3的倍數(shù)。(學(xué)生試著找出3的倍數(shù),教師巡視,對有困難的學(xué)生給予幫助)

          2 師:你是怎樣有序地、完整地找出3的倍數(shù)的?

          生:用3分別乘1、2、3……得出3的倍數(shù)。

          生:用3依次地加3得到3的倍數(shù)。

          師:你認(rèn)為哪種方法能更迅速地找出3的倍數(shù)?(學(xué)生討論交流)

          師:3的倍數(shù)能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數(shù)的個數(shù)呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)

          3 寫出30以內(nèi)5的倍數(shù)。(做在練習(xí)紙上)

          4 課件出示3的倍數(shù)、4的倍數(shù)、5的倍數(shù),讓學(xué)生從最大倍數(shù)、最小倍數(shù)、倍數(shù)的個數(shù)三個方面去描述一個數(shù)的倍數(shù)的特征(見下表)。

          師(小結(jié)):一個非零自然數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),所以倍數(shù)的個數(shù)是無限的。

          [評析:借助學(xué)習(xí)一個數(shù)的因數(shù)的方法,以此為基礎(chǔ),讓學(xué)生自主探索找一個數(shù)的倍數(shù)的方法。在探索交流中,優(yōu)化尋找一個數(shù)的倍數(shù)的方法,獲得一個數(shù)的倍數(shù)的特征。]

          五、組織游戲,深化認(rèn)識

          師:這節(jié)課,我們通過三道乘法算式與倍數(shù)和因數(shù)進行了兩次的親密接觸。第一次的接觸,讓我們了解了倍數(shù)與因數(shù)的意義;第二次的接觸,通過找一個數(shù)的倍數(shù)和因數(shù),我們了解了一個數(shù)的倍數(shù)和因數(shù)的特征。通過這兩次的親密接觸,相信 同學(xué)們對于今天所學(xué)的知識,已經(jīng)有了比較深刻的理解。下面,就讓我們輕松片刻。一起來玩一個特別好玩的游戲,感興趣嗎?

          游戲——請到我家來做客

          (每位學(xué)生的手中,都有一張寫有該名學(xué)生的學(xué)號卡片)

          課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。

          (1)屏幕上出現(xiàn)了可愛的小狗向同學(xué)們走來(配音):24的因數(shù)是我的朋友。如果你卡片上的數(shù)是24的因數(shù),歡迎你,我的朋友!(卡片上的數(shù)若符合要求,就請這位學(xué)生站起來)

          (2)屏幕上出現(xiàn)了笨笨的小豬向同學(xué)們揮手(配音):我邀請的朋友是5的倍數(shù),喜歡我,就快快來吧!

          (3)瞧!可愛的小貓咪也來了。(屏幕上出現(xiàn)了俏皮、可愛的小貓咪)配音:如果你卡片上的數(shù)是1的倍數(shù),請來我家做客吧!

          (每位學(xué)生卡片上的數(shù)都符合要求,所以全班學(xué)生都站了起來)

          師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數(shù),好嗎?(生答略)

          師:是不是所有的自然數(shù)都可以呢?

          生:除了0。

          屏幕出示:所有非零自然數(shù)都是1的倍數(shù)。

          (4)配音:威嚴(yán)的老虎來了!它請的朋友很特別,它是所有非零自然數(shù)的因數(shù)。這個數(shù)是幾呢?(生討論交流)

          屏幕出示:只有1才符合要求,因為1是所有非零自然數(shù)的因數(shù)。

          六、挑戰(zhàn)自我,拓展升華

          師:雖然我們只合作了這短短的三十分鐘,但老師已經(jīng)深深感到我們這個班的同學(xué)非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準(zhǔn)備了一個富有挑戰(zhàn)性的節(jié)目想考考大家,你們敢不敢接受挑戰(zhàn)?(生:敢!)

          挑戰(zhàn)——你猜、我猜、大家猜I(屏幕演示動畫標(biāo)題)

          規(guī)則:下面每組數(shù),去掉一個數(shù),剩下的數(shù)便是其中一個數(shù)的倍數(shù)或因數(shù)。你能找出這個數(shù)嗎?

          (1)20、5、4、3。

          答案:去掉3(屏幕演示隱去“3”),剩下的數(shù)是20的因數(shù),或20是它們的倍數(shù)。

          (2)4、12、18、3。

          答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數(shù)便是12的因數(shù),或12是它們的倍數(shù);二是去掉4(屏幕演示隱去“4”),剩下的數(shù)便是3的倍數(shù)。

          [評析:設(shè)計游戲環(huán)節(jié),對整節(jié)課的知識點進行總結(jié)深化,并引導(dǎo)每位學(xué)生參與其中,積極主動地思考本節(jié)課所學(xué)的知識,教學(xué)過程真實、有效。]

          七、全課總結(jié)

          師:通過今天這節(jié)課的學(xué)習(xí),你有什么收獲?你們學(xué)得開心嗎?玩得開心嗎?其實。數(shù)學(xué)就是這么簡單而有趣,讓我們每天都樂在其中!

          總評:

          本節(jié)課的教學(xué)特色是嚴(yán)謹(jǐn)靈活、細膩奔放。在“因數(shù)和倍數(shù)”概念的學(xué)習(xí)過程中,重視師生情感的交流,注重每個學(xué)生的發(fā)展,較好地體現(xiàn)了“教師有效引導(dǎo)下學(xué)生自主探索”這一教學(xué)策略。

          1 意義教學(xué)引導(dǎo)學(xué)生自主構(gòu)建。

          在多次的實踐教學(xué)中,發(fā)現(xiàn)用12個完全相同的小正方形拼出一個長方形。對于四年級的學(xué)生來說非常容易。教材這樣安排的目的,在于幫助學(xué)生有意識地感受1和12、2和5、3和4這幾組數(shù)之間的有機聯(lián)系。

          本課中,倍數(shù)和因數(shù)的意義教學(xué)分三個層次:

          1 借助三個問題讓學(xué)生通過想像及大屏幕的直觀演示,引導(dǎo)學(xué)生得出三道乘法算式,同時介紹倍數(shù)和因數(shù)的含義。

          2 通過除法算式找因倍關(guān)系。

          3 滲透倍數(shù)和因數(shù)的相互依存性。

          2 合理組織教材,將找一個數(shù)的因數(shù)及其特征教學(xué)提前。

          尋找一個數(shù)的因數(shù)是本節(jié)課的教學(xué)難點,學(xué)生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。

          教學(xué)中,教師出示一組數(shù),如36、4、9、0、5、2,讓學(xué)生從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關(guān)系來說一說。

          最后設(shè)疑:

          (1)為什么不選O呢?(讓學(xué)生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))

          (2)為什么不選5呢?(如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))

          (3)去掉了0和5,剩下的這些數(shù)和36有什么關(guān)系呢?(它們都是36的因數(shù),或36是它們的倍數(shù))

          這樣的改變,既達到預(yù)定目的,又為學(xué)習(xí)找因數(shù)做了鋪墊,引發(fā)了學(xué)生尋找36的因數(shù)的濃厚興趣。在引導(dǎo)學(xué)生自主探索一個數(shù)的因數(shù)的特征時,教師讓學(xué)生帶著問題去觀察討論:每一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?以上安排,降低了學(xué)生的學(xué)習(xí)難度。

          3 尋找一個數(shù)的因數(shù)和倍數(shù)的方法讓學(xué)生自己生成。

          在尋找一個數(shù)的因數(shù)和倍數(shù)的過程中。教師將學(xué)生推向發(fā)現(xiàn)與探索的前臺。

          尋找一個數(shù)的倍數(shù)和因數(shù)。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導(dǎo)學(xué)生進行溝通,尋找它們的共同點和聯(lián)系,進而比較各種方法之間的優(yōu)劣,遴選最優(yōu)方法,提升思維效率。

          4 增強游戲中數(shù)學(xué)思維的含量。

          知識在游戲中深化,在挑戰(zhàn)中升華。

          本節(jié)課以“有效引導(dǎo)下自主探索”為教學(xué)策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學(xué),將諸多細小的認(rèn)知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發(fā)現(xiàn)、共同分享,引領(lǐng)學(xué)生經(jīng)歷“研究與發(fā)現(xiàn)”的真實過程。課尾游戲的運用,激發(fā)了學(xué)生的學(xué)習(xí)熱情,讓學(xué)生以愉快的心情和良好的體驗融入學(xué)習(xí)活動中,培養(yǎng)了學(xué)生用數(shù)學(xué)眼光看待游戲的意識,大大降低了學(xué)生對數(shù)學(xué)概念學(xué)習(xí)的枯燥體驗。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇15

          一、教學(xué)過程:

         。ㄒ唬﹦邮植僮,感受并認(rèn)識因數(shù)與倍數(shù)。

          1、老師和同學(xué)們都在課前準(zhǔn)備了幾個小正方形,如果用這些小正方形拼成一個長方形,可以怎么拼?(讓學(xué)生獨立拼擺)

          2、全班交流,請學(xué)生上黑板拼一拼,拼法用乘法算式表示出來。

          指出:有三種拼法,列出三個不同的乘法算式,今天我們研究的內(nèi)容就藏在著三個算式中。

          3、教師選擇一個算式指出4×3=12,4是12的因數(shù),12是4的倍數(shù),看這個算式還可以說:誰是誰的因數(shù)?誰是誰的倍數(shù)嗎?

          4、揭示課題:倍數(shù)和因數(shù)。

          5、看其他兩個算式,你還能說什么嗎?你覺得哪個算式給你的感覺有些特別?

          6、自己寫一個乘法算式,讓你的同桌說一說誰是誰的因數(shù),誰是誰的倍數(shù),選一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能說16是倍數(shù),2是因數(shù)。

          7、完成想想做做(1)。

          8、完成想想做做(2)。(交流:應(yīng)付元數(shù)與4元有什么關(guān)系?省略號表示什么意思?從這個省略好你知道了什么?)

          9、想想做做(3)。(從中發(fā)現(xiàn)了什么?24有那些因數(shù)?最大的是幾?最小的是幾?)

          (二)找倍數(shù)和因數(shù)。

          1、找一個數(shù)的倍數(shù)(讓學(xué)生自己在紙上寫,然后交流:你是怎么找的?)

          提問:

         。1)3的最小的倍數(shù)是幾?最大的呢?

         。2)3的倍數(shù)有無數(shù)個,那么該怎么表示?

          2、完成試一試。

          反思:怎樣找一個數(shù)的倍數(shù)比較方便?一個數(shù)的倍數(shù)最小是幾?找得到最大的倍數(shù)嗎?

          3、找一個數(shù)的因數(shù)。

          先讓學(xué)生獨立找36的因數(shù),再進行交流。

          提問:36最小的因數(shù)是幾?最大的呢?怎樣找才能保證不重復(fù)不遺漏?對好的方法及時的給以肯定。

          完成試一試

          4、提問:15的最小因數(shù)是幾?最大的因數(shù)是幾?16呢?你有什么發(fā)現(xiàn)?

          5、鞏固練習(xí):

         。1)4的倍數(shù)有:

         。2)25以內(nèi)4的倍數(shù)有:

         。3)30的因數(shù)有:

         。4)15的因數(shù)有:

         。ㄈ┱n堂小結(jié):略。

         。ㄋ模┳鳂I(yè)布置:

          1、6的倍數(shù)有:

          2、7的倍數(shù)有:

          3、100以內(nèi)9的倍數(shù)有:

          4、24的因數(shù)有:

          5、11的因數(shù)有:

          二、教學(xué)反思:

          本節(jié)課重點圍繞“理解倍數(shù)和因數(shù)的含義,能按要求找出一個數(shù)的倍數(shù)和因數(shù)”進行教學(xué)。在寫一個數(shù)的倍數(shù)和因數(shù)時,要讓學(xué)生經(jīng)歷探索的過程,在相互交流時,得出最優(yōu)的方法,在探索倍數(shù)和因數(shù)的規(guī)律時,既不能讓學(xué)生毫無目的的去探究,也不能把這個結(jié)論直接告訴學(xué)生。

          先出示一些具體的數(shù),從這些具體的數(shù)的基礎(chǔ)上進行探究,起到了較好的效果。在探究一個數(shù)的因數(shù)的方法時,先在前面孕伏著除法中也有倍數(shù)和因數(shù),為探究一個數(shù)的因數(shù)埋下了伏筆。這個方法要比倍數(shù)的方法難一些,教師要有耐心,把學(xué)生的方法全部板書在黑板上,然后通過比較,發(fā)現(xiàn)商也是這個數(shù)因數(shù),又發(fā)現(xiàn)一個數(shù)的因數(shù),是成隊出現(xiàn)的,所以怎樣做到既不重復(fù),又不遺漏,就要有序思考,與前面學(xué)過的找規(guī)律的方法有機地聯(lián)系在一起。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇16

          一、教學(xué)目標(biāo)

         。ㄒ唬┲R與技能

          理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系,掌握找一個數(shù)的'因數(shù)和倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù),及因數(shù)和倍數(shù)個數(shù)方面的特征。

         。ǘ┻^程與方法

          通過整數(shù)的乘除運算認(rèn)識因數(shù)和倍數(shù)的意義,自主探索和總結(jié)出求一個數(shù)的因數(shù)和倍數(shù)的方法。

         。ㄈ┣楦袘B(tài)度和價值觀

          在探索的過程中體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學(xué)生思維的有序性和條理性。

          二、教學(xué)重難點

          教學(xué)重點:理解因數(shù)和倍數(shù)的含義。

          教學(xué)難點:自主探索有序地找一個數(shù)的因數(shù)和倍數(shù)的方法。

          三、教學(xué)準(zhǔn)備

          教學(xué)課件。

          四、教學(xué)過程

         。ㄒ唬├斫庖驍(shù)和倍數(shù)的意義

          教學(xué)例1:

          1.觀察算式的特點,進行分類。

         。1)仔細觀察算式的特點,你能把這些算式分類嗎?

          (2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)

          第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。

          2.明確因數(shù)和倍數(shù)的意義。

         。1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。

         。2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?

          (3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

          【設(shè)計意圖】引導(dǎo)學(xué)生從“整數(shù)的除法算式”中認(rèn)識因數(shù)和倍數(shù)的意義,簡潔明了,同時為學(xué)習(xí)因數(shù)和倍數(shù)的依存關(guān)系進行有效鋪墊。

          3.理解因數(shù)和倍數(shù)的依存關(guān)系。

         。1)獨立完成教材第5頁“做一做”。

          (2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?

          【設(shè)計意圖】引導(dǎo)學(xué)生在理解的基礎(chǔ)上進行正確表述:因數(shù)和倍數(shù)是相互依存的,不是單獨存在的。我們不能說4是因數(shù),24是倍數(shù),而應(yīng)該說4是24的因數(shù),24是4的倍數(shù)。

          4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。

         。1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?

          課件出示:

          乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。

         。2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?

          “倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。

         。3)交流匯報。

          【設(shè)計意圖】“一個數(shù)的因數(shù)和倍數(shù)”與學(xué)生已學(xué)過的乘法算式中的“因數(shù)”以及“倍”的概念既有聯(lián)系又有區(qū)別,學(xué)生比較容易混淆,這也是學(xué)習(xí)一個數(shù)的“因數(shù)”和“倍數(shù)”意義的難點。通過觀察、對比、交流,引導(dǎo)學(xué)生發(fā)現(xiàn)一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。

         。ǘ┱乙粋數(shù)的因數(shù)

          教學(xué)例2:

          1.探究找18的因數(shù)的方法。

         。1)18的因數(shù)有哪些?你是怎么找的?

          (2)交流方法。

          預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。

          因為18÷1=18,所以1和18是18的因數(shù)。

          因為18÷2=9,所以2和9是18的因數(shù)。

          因為18÷3=6,所以3和6是18的因數(shù)。

          方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。

          因為1×18=18,所以1和18是18的因數(shù)。

          因為2×9=18,所以2和9是18的因數(shù)。

          因為3×6=18,所以3和6是18的因數(shù)。

          2.明確18的因數(shù)的表示方法。

         。1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?

         。2)交流方法。

          預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。

          圖示法(如下圖所示)。

          3.練習(xí)找一個數(shù)的因數(shù)。

          (1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?

         。2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?

          【設(shè)計意圖】讓學(xué)生通過自主探索、交流,獲得找一個數(shù)的因數(shù)的不同方法,在練習(xí)中體會“一對一對”有序地找一個數(shù)的因數(shù),避免遺漏或重復(fù)。初步感受一個數(shù)的因數(shù)的個數(shù)是有限的,以及“最大因數(shù)、最小因數(shù)”的特征。

         。ㄈ┱乙粋數(shù)的倍數(shù)

          教學(xué)例3:

          1.探究找2的倍數(shù)的方法。

         。1)2的倍數(shù)有哪些?你是怎么找的?

         。2)交流方法。

          預(yù)設(shè):方法一:利用除法算式找2的倍數(shù)。

          因為2÷2=1,所以2是2的倍數(shù)。

          因為4÷2=2,所以4是2的倍數(shù)。

          因為6÷2=3,所以6是2的倍數(shù)。……

          方法二:利用乘法算式找2的倍數(shù)。

          因為2×1=2,所以2是2的倍數(shù)。

          因為2×2=4,所以4是2的倍數(shù)。

          因為2×3=6,所以6是2的倍數(shù)。……

         。3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?

          (4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、圖示法)

          2.練習(xí)找一個數(shù)的倍數(shù)。

          你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?

          【設(shè)計意圖】在理解“倍數(shù)”的基礎(chǔ)上,讓學(xué)生進一步體會有序思考的必要性。初步感受一個數(shù)的倍數(shù)的個數(shù)是無限的,以及“最小倍數(shù)”的特征。

          (四)一個數(shù)的因數(shù)與倍數(shù)的特征

          1.從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?

          2.討論交流。

          3.歸納總結(jié)。

          預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。

         。ㄎ澹╈柟叹毩(xí)

          1.課件出示教材第7頁練習(xí)二第1題。

         。1)想一想,怎樣找不會遺漏、不會重復(fù)?

          (2)哪些數(shù)既是36的因數(shù),也是60的因數(shù)?

          【設(shè)計意圖】通過練習(xí),讓學(xué)生再次體會“1是所有非零自然數(shù)的因數(shù)”“一個數(shù)最大的因數(shù)是它本身”和“一個數(shù)的因數(shù)的個數(shù)是有限的”。同時,滲透兩個數(shù)的“公因數(shù)”的意義。

          2.課件出示教材第7頁練習(xí)二第3題。

         。1)學(xué)生獨立完成,交流答案。

         。2)思考:5的倍數(shù)有什么特征?

          【設(shè)計意圖】滲透5的倍數(shù)的特征。

          3.課件出示教材第7頁練習(xí)二第5題。

          (1)學(xué)生獨立完成,交流答案。

         。2)你能改正錯誤的說法嗎?

          (六)全課總結(jié),交流收獲

          這節(jié)課我們學(xué)了哪些知識?你有什么收獲?

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇17

          教學(xué)目標(biāo):

          1、依據(jù)倍數(shù)和因數(shù)的含義和已有的乘除法知識,自主探索總結(jié)找一個數(shù)的倍數(shù)和因數(shù)的方法.

          2、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及探索一個數(shù)的倍數(shù)或因數(shù)的過程中,進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。教學(xué)重點:理解因數(shù)和倍數(shù)的含義.教學(xué)難點:自主探索并總結(jié)找一個數(shù)的倍數(shù)和因數(shù)的方法.教學(xué)過程:

          一、情境激趣。

          腦筋急轉(zhuǎn)彎:有三個人,他們中有2個爸爸,2個兒子,這是怎么回事?

          教師說明:人和人之間的關(guān)系是相互依存,數(shù)和數(shù)之間也是相互依存的。揭題:

          二、初步認(rèn)識倍數(shù)和因數(shù)。

          1、創(chuàng)設(shè)情境。

          用12個同樣大的正方形拼成一個長方形,可以怎么拼?請同學(xué)們先想象一下,然后說出你的擺法,并用乘法算式表示出來。

          學(xué)生匯報拼法,教師依次展示長方形的拼圖,并板書:

          4×3=1

          26×2=12

          12×1=12

          教師根據(jù)4×3=12揭示:4×3=12

          12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。提出要求:你能用倍數(shù)和因數(shù)說一說6×2=12

          12×1=12嗎?

          2、深化感知。

          (1)你能舉出一些算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?

          教師說明:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。

          三、探求一個數(shù)的倍數(shù)。

          1、設(shè)疑。

          在剛才的學(xué)習(xí)中,我們知道了3的倍數(shù)有

          12、18。除了

          12、18還有別的嗎?請在紙上寫出3的倍數(shù)。你能完成得又對又好嗎?。學(xué)生在書寫過程中引發(fā)沖突:為什么停下來不寫了?有什么困難嗎?引導(dǎo)學(xué)生討論后達成共識:加省略號表示寫不完。

          2、交流。

          揭示“有序”,為什么要有序地寫倍數(shù)呢?全班討論:“你是怎么寫3的倍數(shù)的?”。

          3×

          13×

          2 3×

          3……

          3

          3+3

          6+3

          一三得三二三得六三三得九

          引導(dǎo)學(xué)生討論得出:用依次×

          1、×

          2、×3……寫出3的倍數(shù)。

          3、深化:請寫出2的倍數(shù),5的倍數(shù)。

          4、引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律。

          小組討論:觀察這三道例子,你有什么發(fā)現(xiàn)?全班交流,概括規(guī)律。

          5、小結(jié):發(fā)現(xiàn)這些規(guī)律可以更好地幫助我們尋找一個數(shù)的倍數(shù)。

          四、探求一個數(shù)的因數(shù)。

          1、設(shè)疑。

          剛剛我們學(xué)會了找一個數(shù)的倍數(shù),接下來我們來找一個數(shù)的因數(shù)。

          請寫出36的所有因數(shù),

          2、組織討論。

          你是怎么找36的因數(shù)的?

          ( )×( )=36從一道乘法算式中可以找到2個36的因數(shù),6×6=36呢?

          36÷( )=( )從一道除法算式中也可以找到2個36的因數(shù)。

          3、討論“多”。問:寫得完嗎?你可以按照什么順序?qū)?

          師動畫演示36的因數(shù)(從兩端往中間寫),同時指出:當(dāng)兩個因數(shù)越來越接近時,也就快要寫完了。

          4、鞏固深化。

          請寫出15的因數(shù),16的因數(shù)。學(xué)生練習(xí)后組織評講。

          5、引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律。

          問:通過觀察這三道例子,你能發(fā)現(xiàn)什么規(guī)律?

          6、小結(jié):寫一個數(shù)的因數(shù)時可以從1和它本身來寫,從小到大依次尋找。

          五、鞏固拓展。

          1、快樂大轉(zhuǎn)盤

          2、猜數(shù)游戲。

          六、老師總結(jié):利用微課對整節(jié)課做一個總結(jié)。

          七、學(xué)生總結(jié):在這節(jié)課的學(xué)習(xí)中,有哪些地方給你留下了深刻的印象?

          集體研討發(fā)言稿

          這是一節(jié)概念課,關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式加以說明,進而讓學(xué)生探究尋找一個數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個數(shù)的倍數(shù)和因數(shù)。從教材本身來看,這部分知識對于五年級學(xué)生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動、探究中掌握相應(yīng)的知識,讓乏味變成有味呢?我從以下三個方面談一點教學(xué)體會。

          一、設(shè)疑遷移,點燃學(xué)習(xí)的火花。

          良好的開頭是成功的一半。我采用腦筋急轉(zhuǎn)彎中的一道題作為談話進入正題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點:一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。

          教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計讓學(xué)生獨立探究尋找3的倍數(shù)。學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號表示比較恰當(dāng)。用語文中的一個標(biāo)點符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗到解決問題的愉快感和掌握新知的成就感。教師一聲親切的問候:“怎么停下來了呢?”、一聲驚訝:“哦!寫不完呀?”、一句激勵:“能想出辦法嗎?”?此平處煛暗」ぁ钡念A(yù)設(shè),是為了學(xué)生“越位”的生成

          二、滲透學(xué)法,形成學(xué)習(xí)的技能。

          由于一個數(shù)倍數(shù)的個數(shù)是無限的,那么如何讓學(xué)生體會“無限”、又如何有序?qū)懗鰜砟?我設(shè)計了嘗試練習(xí)引出沖突討論探究這么一個學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著“又對又好”的要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加

          3、依次乘

          1、2、3……、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因為有序,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費了“寶貴”的學(xué)習(xí)時間,但是學(xué)生從中能體會到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風(fēng)光無限。

          三、活用教材,拓展學(xué)習(xí)的深度。

          教材中安排36÷()=()這一道除法算式來找一個數(shù)的因數(shù)。我覺得這樣的設(shè)計可能會帶來幾點不足,其一:學(xué)生感知倍數(shù)和因數(shù)的概念、尋找一個數(shù)的倍數(shù)都是借助乘法算式,同樣,找一個數(shù)的因數(shù)也可以利用乘法,讓所學(xué)的知識形成系統(tǒng)豈不更有利于學(xué)生進行有效學(xué)習(xí)嗎?其二:從學(xué)情來分析,相對于除法,學(xué)生更熟練、更喜歡運用乘法。以學(xué)定教,真正做到以人為本。我在教學(xué)時引導(dǎo)學(xué)生討論得出:借助()×()=36來尋找一個數(shù)的因數(shù)。

          課尾,我設(shè)計了一兩個游戲,將整堂課的內(nèi)容進行整理和概括,對易混淆的概念加以比較,對后續(xù)的學(xué)習(xí)進行適當(dāng)?shù)匿亯|。融知識性、趣味性為一體,收到了課雖止意未盡的良好效果。

          縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問題,教師只是加以引導(dǎo),以合作者的身份參與其中。整節(jié)課似行云流水、波瀾不驚,但我想學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的能力也會逐步得到提高的。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇18

          教學(xué)內(nèi)容:

          北師大版數(shù)學(xué)實驗教材五年級上冊第一單元“倍數(shù)和因數(shù)”第三課時。

          教學(xué)目標(biāo):

          1、經(jīng)歷探索3的倍數(shù)的特征的過程,理解3的倍數(shù)特征,能判斷一個數(shù)是不是3的倍數(shù)。

          2、培養(yǎng)學(xué)生分析、比較、猜想、驗證的能力,提高學(xué)生的合情推理能力。

          教材分析:

          1、單元內(nèi)容簡介:

          本單元是在學(xué)生學(xué)過整數(shù)的認(rèn)識,整數(shù)的四則計算,小數(shù)、分?jǐn)?shù)、負(fù)數(shù)的認(rèn)識等知識的基礎(chǔ)上展開學(xué)習(xí)的。本單元的學(xué)習(xí)內(nèi)容主要包括認(rèn)識自然數(shù)和整數(shù),倍數(shù)與因數(shù),找倍數(shù);2、5、3倍數(shù)的特征;找因數(shù);質(zhì)數(shù)與合數(shù),奇數(shù)與偶數(shù)等知識,使知識進一步系統(tǒng)化。這些知識的學(xué)習(xí)是以后學(xué)習(xí)公倍數(shù)與公因數(shù)、約分、通分、分?jǐn)?shù)四則計算等知識的重要基礎(chǔ)。

          本單元的知識屬于“數(shù)論”的初步知識,概念比較多,有些概念比較抽象,概念的前后聯(lián)系又很緊密,部分學(xué)生學(xué)習(xí)時會有一定的困難。教材明確規(guī)定在研究倍數(shù)與因數(shù)時,限制在不是零的自然數(shù)范圍內(nèi)研究,避免由此而帶來的一些小學(xué)生尚不必研究的問題。

          2、本節(jié)課內(nèi)容簡介:

          教材把課題確定為“探索活動(二)”,主要目的是要讓學(xué)生經(jīng)歷探索知識的過程。教材首先提出“我們研究了2、5倍數(shù)的特征,那么3的倍數(shù)有什么特征呢?”的問題,目的是引導(dǎo)學(xué)生思考和探索3的倍數(shù)的特征。教學(xué)時,可以借助這個問題引導(dǎo)學(xué)生提出猜想。在探索3的倍數(shù)特征時,教材利用100以內(nèi)的數(shù)表來研究,先讓學(xué)生找出3的倍數(shù),再觀察特征,說說有什么發(fā)現(xiàn),學(xué)生可能受知識遷移的影響去研究個位上的數(shù)與十位上的數(shù),但都無法發(fā)現(xiàn)規(guī)律。適當(dāng)?shù)臅r候,教師可以作一定的提示:“將3的倍數(shù)每個數(shù)的各個數(shù)字加起來觀察呢?”以幫助學(xué)生逐步發(fā)現(xiàn)規(guī)律。在初步得出結(jié)論的基礎(chǔ)上,教師應(yīng)進一步提出:“這個規(guī)律對三位數(shù)是否成立?”的問題,促使學(xué)生能自己找?guī)讉三位數(shù)來驗證規(guī)律。需要注意的是在日常的練習(xí)與學(xué)習(xí)評價時,一般只要求學(xué)生判斷100以內(nèi)的3的倍數(shù)。

          學(xué)情分析:

          學(xué)生經(jīng)歷了課程改革四年的時間,已經(jīng)養(yǎng)成了動腦思考的習(xí)慣,能根據(jù)材料選擇相關(guān)的信息進行討論、交流與研究,積極進行小組合作,更為重要的是能把信息進行重新組合,從而選擇有用的信息進行問題的研究。當(dāng)一個挑戰(zhàn)性的問題來臨時,學(xué)生的表現(xiàn)一般是群情激昂,對數(shù)學(xué)問題有著濃厚的研究興趣,可以說,學(xué)生有了一定的自學(xué)與研究能力。

          備課思路:

          1、借助學(xué)生的學(xué)習(xí)經(jīng)驗與基礎(chǔ),提出數(shù)學(xué)問題,引導(dǎo)學(xué)生猜測。

          2、利用100以內(nèi)的數(shù)表,在猜測的基礎(chǔ)上,研究并觀察3的倍數(shù)的特征。

          3、通過直觀學(xué)具的操作,進一步認(rèn)識3的倍數(shù)的特征。

          4、引導(dǎo)學(xué)生驗證發(fā)現(xiàn)的規(guī)律。

          5、在練習(xí)的基礎(chǔ)上,運用3的倍數(shù)的特征去研究9的倍數(shù)的特征。

          活動過程:

          活動一:提出數(shù)學(xué)問題。

          (一)按要求組數(shù)。

          1、用3,4,5三個數(shù)字按要求組成三位數(shù)。

         。1)組成2的倍數(shù)。

          (2)組成5的倍數(shù)。

          2、學(xué)生用語言描述2,5的倍數(shù)的特征。

          一點想法:

          這個過程,比教材的要求要稍微高一點,教材上的要求一般是在100以內(nèi)的數(shù)種研究2,5,3的倍數(shù),這里面有一個考慮,拓展到三位數(shù)中來復(fù)習(xí)舊的知識,使復(fù)習(xí)起到橋梁的作用,進一步理解2,5的倍數(shù)的特征。

          (二)提出問題。

          1、能不能組成是3的倍數(shù)的三位數(shù)。

          2、3的倍數(shù)有什么特征?

          活動二:探索數(shù)學(xué)問題。

          (一)對學(xué)生猜想問題的處理。

          1、進行猜想。

         。1)學(xué)生面對問題進行猜想。

         。2)教師根據(jù)學(xué)生的猜想進行適當(dāng)?shù)囊龑?dǎo)。

          學(xué)生可能出現(xiàn)的情況:

         。1)猜測個位上是3,6,9的數(shù)是3的倍數(shù)。

          (2)個位上能被3整除的數(shù)能被3整除。

          2、探索猜想。

         。1)學(xué)生用3,4,5三個數(shù)字組成是3的倍數(shù)的三位數(shù)。

         。2)學(xué)生舉例子:比如453,543。

         。3)學(xué)生如果出現(xiàn)345或354等例子,教師可以寫在黑板上,不用多加評論,作為后續(xù)的學(xué)習(xí)內(nèi)容。

          (4)在這個過程中,學(xué)生可能會得出猜想結(jié)論的成立,即:個位上是3,6,9的數(shù)是3的倍數(shù)。

          3、驗證猜想。

         。1)讓學(xué)生舉例子對猜想的結(jié)論進行驗證。

         。2)在這個過程中,學(xué)生可能會發(fā)現(xiàn)下面兩種情況。

         、15是3的倍數(shù),但是個位上的數(shù)字是5,不是3,6,9。

          ②16個位上的數(shù)字是6,但是不是3的倍數(shù)。

         。3)猜想的結(jié)論不成立。

         。4)讓學(xué)生對猜想的結(jié)論不成立這個問題,提出自己的想法。

          在討論和交流中明白對于一個結(jié)論是否成立,只舉一個正例是不夠的,但是只要舉出一個反例就可以推翻一個結(jié)論。

          (二)在質(zhì)疑中引導(dǎo)學(xué)生探究3的倍數(shù)的特征。

          1、問題沖突:那么多的數(shù),我們怎么找呢?我們要聰明的找,從比較小的數(shù)開始找。

          2、請在下表中找出3的倍數(shù),并做上記號。

         。ń處煶鍪100以內(nèi)數(shù)表,學(xué)生人手一張,在學(xué)生活動后,組織學(xué)生進行交流,并呈現(xiàn)學(xué)生已圈出3的倍數(shù)的100以內(nèi)數(shù)表,如下圖)

          3、觀察3的倍數(shù),你發(fā)現(xiàn)了什么?與同桌交流一下。

         。1)在這個過程中,教師要作為一個傾聽著,聽學(xué)生有什么發(fā)現(xiàn),有什么困惑。

          (2)學(xué)生發(fā)現(xiàn)個位上的數(shù)字沒有什么規(guī)律,十位上的數(shù)字也沒有什么規(guī)律。

          4、教師引領(lǐng)。

         。1)斜著觀察,你發(fā)現(xiàn)了什么?

         。2)在學(xué)生觀察思考的基礎(chǔ)上,根據(jù)學(xué)生的實際情況提供新的思考點:將每個數(shù)的各個數(shù)字加起來試試看。

          5、得出結(jié)論。

          一個數(shù)各個數(shù)位上數(shù)字之和是3的倍數(shù),這個數(shù)就一定是3的倍數(shù)。

          6、驗證結(jié)論。

         。1)利用100以內(nèi)數(shù)表來驗證。

         。2)延伸到三位數(shù)或更大的數(shù)。

         、倩氐轿覀冋n始的問題,用學(xué)生寫出的345或354等例子進行驗證,

          ②寫一個更大的數(shù)試試看。

          (3)完成課本第7頁的試一試和練一練第1題和第2題。在學(xué)生獨立完成的基礎(chǔ)上,進行討論和交流。注意對學(xué)習(xí)困難學(xué)生的指導(dǎo)和幫助。

          活動三:拓展與延伸

         。ㄒ唬┗仡櫯c反思

         。1)教師和學(xué)生一起回顧整節(jié)課的思考過程,一種學(xué)習(xí)方法的指導(dǎo)。

         。2)回顧學(xué)習(xí)的知識有哪些,再次進行整理與歸納。

         。ǘ┩瓿蓪嵺`活動

          1、猜想并驗證9的倍數(shù)的特征。

         。1)學(xué)生閱讀教材,按照教材上幾個問題分層次展開研究。

         。2)個人獨立思考,小組研究的基礎(chǔ)上進行全班的交流。

          特別說明:這個學(xué)習(xí)過程可能在課內(nèi)完成不了,可以延伸到課外,讓學(xué)生積極主動地進行探索與研究,一定讓學(xué)生經(jīng)歷涂、畫等過程,使學(xué)生獲得真實的體驗。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇19

          教學(xué)內(nèi)容:義務(wù)教育課標(biāo)實驗教科書青島版數(shù)學(xué)三年級下冊P109——P110。

          教學(xué)目標(biāo):

          知識與技能:使學(xué)生結(jié)合具體情境初步理解因數(shù)和倍數(shù)的含義,初步理解因數(shù)和倍數(shù)相互依存的關(guān)系。

          過程與方法:使學(xué)生依據(jù)因數(shù)和倍數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

          情感與態(tài)度:使學(xué)生在認(rèn)識因數(shù)和倍數(shù)以及找一個數(shù)的因數(shù)和倍數(shù)的過程中進一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

          教學(xué)重點:理解因數(shù)和倍數(shù)的含義。

          教學(xué)難點:探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

          教學(xué)過程:

          一、認(rèn)識因數(shù)、倍數(shù)

          1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習(xí)本上寫出乘法算式。

          匯報:你是怎么擺?算式是什么?

          指名說,師板書:1×12=12 2×6=12 3×4=12

          2、學(xué)習(xí)“因數(shù)、倍數(shù)”的概念

          師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數(shù)學(xué)奧秘。今天我們就來研究數(shù)學(xué)的新奧秘。

          師指3×4=12 說:因為3×4=12,所以我們就說3是12的因數(shù)(板書:因數(shù)),4是12的因數(shù);12是3的倍數(shù)(板書:倍數(shù));12是4的倍數(shù)。

          小結(jié):是呀,我們不能直接說誰是因數(shù),誰是倍數(shù),而要清楚的表達出來誰是誰的因數(shù),誰是誰的倍數(shù)。看來,因數(shù)和倍數(shù)是相互依存的(板書:和)。為了方便,在研究因數(shù)和倍數(shù)時,一般不討論0。

          二、探索找一個數(shù)的因數(shù)的方法

          1、師:看黑板上的3個算式,你能找到12的所有的因數(shù)嗎?(學(xué)生齊說。)

          問:如果沒有算式,你能找出24所有的因數(shù)嗎?先想想怎樣找?然后寫在練習(xí)本上。

          學(xué)生寫一寫,師巡視。

          匯報展示:(2人)

          問:你是怎么找的?(學(xué)生說方法)

          評價:他找的怎么樣?(學(xué)生評一評)

          師講解:想知道老師是怎么找的嗎?(師邊講解邊一對一對的板書24的因數(shù))24的因數(shù)有:1,2,3,4,6,8,12,24

          小結(jié):其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復(fù)又不遺漏了。看來,有序的思考問題對我們的幫助確實很大。

          2、練習(xí)

          師:用這種方法寫出18的因數(shù)。

          匯報:你找的18的因數(shù)都有哪些?(指名說,師板書)

          3、發(fā)現(xiàn)規(guī)律

          問:仔細觀察這幾個數(shù)的因數(shù),你能發(fā)現(xiàn)什么規(guī)律?

          小結(jié):一個數(shù)的因數(shù)最小的是1,最大的是它本身。

          三、探索找一個數(shù)的倍數(shù)的方法

          1、方法

          學(xué)生找3的倍數(shù),寫在練習(xí)本上。

          匯報:指名說,師寫在黑板上。(3的倍數(shù)有:3,6,9,12,15……)

          問:你能說的完嗎?寫不完怎么辦?(用省略號)

          你是怎么找的?

          評一評:他的方法怎么樣?

          問:還有別的方法嗎?

          問:怎么找一個數(shù)的倍數(shù)?

          指名說。

          師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數(shù)。

          2、練習(xí)

          找出5的倍數(shù),寫在練習(xí)本上。

          指名說,師板書,問:你是用什么方法找的5的倍數(shù)?

          3、發(fā)現(xiàn)規(guī)律

          問:觀察一下,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?

          師小結(jié):一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的。

          問:一個數(shù)的倍數(shù)個數(shù)是無限的,一個數(shù)的因數(shù)的個數(shù)呢?(有限)

         。ㄕn件出示)

          四、鞏固練習(xí)

          1、寫一寫:6的因數(shù)、9的因數(shù)、50以內(nèi)7的倍數(shù)。

          集體訂正。

          2、選一選

          8的倍數(shù)有哪些?48的因數(shù)又有哪些?

          學(xué)生填一填,集體訂正。

          3、數(shù)學(xué)小知識:完美數(shù)。

          師:6的因數(shù)有(1,2,3,6),把前三個因數(shù)相加,你會發(fā)現(xiàn)什么?(1+2+3=6)

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇20

          教學(xué)目標(biāo)

          1、知識與技能

         。1)能直接在方格圖上,數(shù)出相關(guān)圖形的面積。

         。2)能利用分割的方法,將較復(fù)雜的圖形轉(zhuǎn)化為簡單的圖形,并用較簡單的方法計算面積。

          2、過程與方法

          (1)在解決問題的過程中,體會策略、方法的多樣性。

          (2)學(xué)會與人交流思維過程與結(jié)果。

          3、情感態(tài)度與價值觀

          積極參與數(shù)學(xué)學(xué)習(xí)活動,體驗數(shù)學(xué)活動充滿著探索、體驗數(shù)學(xué)與日常生活密切相關(guān)。

          重點難點及處理問題的策略

          1、重點是指導(dǎo)學(xué)生如何將圖形進行分割,從而讓學(xué)生體會到解決問題的多樣性和簡便性。難點是靈活運用方法。

          2、借助圖形,讓學(xué)生動手,自主探索、合作交流解決問題的方法。

          教學(xué)過程:

          一、創(chuàng)設(shè)情境、揭示新課。

          我要說班里每位同學(xué)都是優(yōu)秀的設(shè)計師!因為大家都在設(shè)計著自己美好的將來,所以在很用功的學(xué)習(xí)。希望大家繼續(xù)努力,使自己美好的設(shè)計成為現(xiàn)實。下面我們來看一看,我們的同行——一位地毯圖案設(shè)計師,設(shè)計的圖案。

          展示地毯上的圖形,讓學(xué)生仔細觀察圖形特點,說發(fā)現(xiàn)。

          地毯是正方形,邊長為14米藍色部分圖形是對稱的

          師:看這副地毯圖,請你提出數(shù)學(xué)問題。

          根據(jù)學(xué)生的回答展示問題:“地毯上藍色部分的面積是多少?”

          師板書課題:地毯上的圖形面積

          二、自主探索、學(xué)習(xí)新知

          如果每個小方格的面積表示1平方米,,那么地毯上的圖形面積是多少呢?

          1、學(xué)生獨立解決問題

          要求學(xué)生獨立思考,解決問題,怎樣簡便就怎樣想,并把解決問題的方法記錄下來。

          2、小組內(nèi)交流、討論

          3、班內(nèi)反饋

          請學(xué)生匯報藍色部分面積,重點匯報求藍色面積的方法。對于每一種方法,只要學(xué)生說得合理都給以肯定。

          學(xué)生的答案也許有:

          (1)直接一個一個地數(shù),為了不重復(fù),在圖上編號;(數(shù)方格法)

         。2)因為這個圖形是對稱的,所以平均分成4份,先數(shù)出一份中藍色的面積,再乘4;(化整為零法)

         。3)用總正方形面積減去白色部分的面積;(大減小法)

         。4)將中間8個藍色小正方形轉(zhuǎn)移到四周蘭色重疊的地方,就變成4個3×6的長方形加上4個3×3的正方形。(轉(zhuǎn)移填補法)

          4、學(xué)生總結(jié)求藍色部分面積的方法。

          三、鞏固練習(xí)、拓展運用(課本第19頁練一練)

          1、第1題

         。1)學(xué)生獨立思考,求圖1的面積。

         。2)說一說計算圖形面積的方法。引導(dǎo)學(xué)生了解“不滿一格的當(dāng)作半格數(shù)”。

          2、第2題

          獨立解決后班內(nèi)反饋。

          3、第3題

          (1)學(xué)生獨立填空。求出每組圖形的面積。學(xué)生完成后班內(nèi)交流反饋答案。

          (2)學(xué)生觀察結(jié)果,說發(fā)現(xiàn)。

          第(1)題的4個圖形面積分別為1、2、3、4的平方數(shù);第(2)題與第(1)題進行比較,第(2)題的3個圖形的面積分別是前面一組題的前3個圖形 面積的一半。

          四、全課小結(jié),課后拓展

          今天我們進行了那些活動,你收獲了什么?

          師:對于計算方格圖中規(guī)則圖形的面積,我們可以分割,可以直接數(shù),可以“大減小”,還可以轉(zhuǎn)移填補。如果沒有方格圖,我們該怎樣解決一些圖形的面積呢?明天的數(shù)學(xué)課上我們將繼續(xù)學(xué)習(xí)。課后,有興趣的同學(xué)可以在空白方格紙上設(shè)計一些你喜歡的圖案,讓你的同桌幫你算一算圖案的面積。

          倍數(shù)與因數(shù)教學(xué)設(shè)計 篇21

          設(shè)計說明

          1.動手操作,激發(fā)學(xué)生的學(xué)習(xí)興趣。

          由于數(shù)學(xué)知識比較抽象,學(xué)生不易理解,缺乏興趣,而興趣是學(xué)生獲取知識,提高學(xué)習(xí)質(zhì)量的動力。對于小學(xué)生來說,動手操作是激發(fā)學(xué)生興趣切實可行的好方法,新課伊始,利用數(shù)字卡片組除法算式引入,不僅可以激發(fā)學(xué)生的學(xué)習(xí)興趣,同時還能使學(xué)生初步感知算式中各數(shù)的關(guān)系是相互的,為學(xué)生探究新知奠定基礎(chǔ)。

          2.合作學(xué)習(xí),培養(yǎng)合作意識,形成自學(xué)能力。

          數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活,創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境。教學(xué)中結(jié)合除法算式設(shè)計小組同學(xué)自學(xué)倍數(shù)與因數(shù)的概念的活動,并通過知識的遷移,要求學(xué)生利用18的乘法算式說說誰是18的因數(shù)。這樣學(xué)生在閱讀、質(zhì)疑、交流中,逐步形成自學(xué)能力,體驗自主學(xué)習(xí)的快樂。

          課前準(zhǔn)備

          教師準(zhǔn)備PPT課件

          學(xué)生準(zhǔn)備數(shù)字卡片

          教學(xué)過程

          ⊙活動導(dǎo)入

          1.用下面的數(shù)字卡片組除法算式。(生認(rèn)真觀察并列出算式)

          2.導(dǎo)入:可別小看這些除法算式,今天我們要研究的因數(shù)和倍數(shù)就在這里。

          設(shè)計意圖:通過組除法算式,為學(xué)生自主建構(gòu)概念提供準(zhǔn)備,同時溝通與新知識的聯(lián)系。把學(xué)生引入新內(nèi)容的情境,并讓學(xué)生明確本節(jié)課的學(xué)習(xí)目標(biāo)。

          ⊙自學(xué)因數(shù)和倍數(shù)的概念

          1.學(xué)生獨立把上面的算式分類,并閱讀教材5頁的內(nèi)容,自學(xué)因數(shù)和倍數(shù)的概念。

          2.通過討論明確:

          (1)為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

          (2)在這節(jié)課我們所說的因數(shù)不是以前乘法算式中的因數(shù),二者不能混淆。

          3.匯報:

          (1)看黑板上的算式,說說誰是誰的因數(shù),誰是誰的倍數(shù)。

          (2)出示算式c÷a=b,(a,b,c都是不為0的自然數(shù))讓學(xué)生說說在這個算式中誰是誰的因數(shù),誰是誰的倍數(shù)。

          4.強調(diào):因數(shù)和倍數(shù)是相互依存的。闡述因數(shù)和倍數(shù)時,一定要說清楚誰是誰的因數(shù),誰是誰的倍數(shù)。

          ⊙探究找一個數(shù)的因數(shù)和倍數(shù)的方法

          一、探究找一個數(shù)的因數(shù)的方法。

          1.出示教材6頁例2:18的因數(shù)有哪幾個?

          (1)提問:怎樣去找18的因數(shù)呢?(同桌互相討論,然后匯報)

          (2)匯報:第一種方法,列出積是18的乘法算式,得到18的因數(shù)有1,2,3,6,9,18;第二種方法,列出被除數(shù)是18的除法算式,得到18的因數(shù)有1,2,3,6,9,18。

          (3)討論:無論是乘法算式還是除法算式,在思考時都要注意什么?(要從最小的數(shù)找起,都是非0的自然數(shù))

          (4)書寫:在書寫一個數(shù)的因數(shù)時要注意什么?(要注意一頭一尾地成對寫因數(shù),這樣做不容易漏寫)

          (5)介紹集合圖:18的因數(shù)也可以像這樣表示,如圖:18的因數(shù)

          我們稱它為集合圖,這就是用集合圖表示因數(shù)的方法。

          2.練習(xí)。

          教材7頁2題(1)。

        【倍數(shù)與因數(shù)教學(xué)設(shè)計】相關(guān)文章:

        因數(shù)與倍數(shù)教學(xué)設(shè)計02-24

        倍數(shù)與因數(shù)教學(xué)設(shè)計01-20

        因數(shù)與倍數(shù)的教學(xué)設(shè)計10-14

        《因數(shù)和倍數(shù)》教學(xué)設(shè)計02-26

        《因數(shù)與倍數(shù)》單元教學(xué)設(shè)計04-06

        《因數(shù)與倍數(shù)》教學(xué)設(shè)計范文04-03

        因數(shù)和倍數(shù)教學(xué)設(shè)計04-16

        “倍數(shù)和因數(shù)”教學(xué)設(shè)計04-16

        數(shù)學(xué)《因數(shù)與倍數(shù)》教學(xué)設(shè)計01-22

        《因數(shù)和倍數(shù)》的教學(xué)設(shè)計12-16

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>