1. <rp id="zsypk"></rp>

      2. 二元一次方程組教學(xué)設(shè)計(jì)

        時(shí)間:2021-03-23 14:33:26 教學(xué)設(shè)計(jì) 我要投稿

        二元一次方程組教學(xué)設(shè)計(jì)

          在教學(xué)工作者開展教學(xué)活動前,有必要進(jìn)行細(xì)致的教學(xué)設(shè)計(jì)準(zhǔn)備工作,教學(xué)設(shè)計(jì)一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節(jié)。教學(xué)設(shè)計(jì)要怎么寫呢?以下是小編為大家收集的二元一次方程組教學(xué)設(shè)計(jì),僅供參考,大家一起來看看吧。

        二元一次方程組教學(xué)設(shè)計(jì)

        二元一次方程組教學(xué)設(shè)計(jì)1

          二元一次方程組是一元一次方程教學(xué)的延續(xù)與深化。很多一元一次方程應(yīng)用題均可用二元一次方程組來解決而得以簡化,如:數(shù)學(xué)課外興趣小組成員去建設(shè)工地參加實(shí)踐活動,男同學(xué)戴白色安全帽,女同學(xué)戴紅色安全帽,在每個(gè)男同學(xué)看來,紅白安全帽一樣多,而在女同學(xué)看來,白色安全帽是紅色安全帽的2倍,問男女同學(xué)各是多少名?——這個(gè)問題若用一元一次方程來解,有兩種解法:(1)可設(shè)男同學(xué)x名,則女同學(xué)(x—1)名,根據(jù)“男同學(xué)人數(shù)=2(女同學(xué)人數(shù)—1)”這個(gè)等量關(guān)系可列方程:x=2×[(x—1)—1];(2)設(shè)女同學(xué)y名,則男同學(xué)2(y—1)名,根據(jù)“男同學(xué)人數(shù)—1=女同學(xué)人數(shù)”這個(gè)等量關(guān)系可列方程:2(y—1)—1=y。如此解決問題比較“繞”,數(shù)學(xué)的特點(diǎn)是“趨簡”、“趨明了”,于是促生了“尋找另外的簡捷的辦法”的欲望。

          由于本題有兩個(gè)等量關(guān)系:男同學(xué)人數(shù)=2(女同學(xué)人數(shù)—1)、男同學(xué)人數(shù)—1=女同學(xué)人數(shù);兩個(gè)未知數(shù):男生人數(shù)、女生人數(shù),如果設(shè)男生x人,女生y人,可以得到兩個(gè)方程:(1)x—1=y,(2)x=2(y—1),要解決這個(gè)問題,就須尋找滿足兩個(gè)方程的x、y值,于是就延伸到了解二元一次方程組的問題。

          由于學(xué)生已經(jīng)學(xué)會了用一元一次方程解決這個(gè)問題,一旦提及求二元一次方程組的解,學(xué)生自然會隱隱約約地想到它們之間必然存在某種聯(lián)系,于是引導(dǎo)學(xué)生觀察、聯(lián)系、聯(lián)想,可以“化歸”為一元一次方程解決這個(gè)問題:

          從而實(shí)現(xiàn)問題的解決。

          課程結(jié)束后,還要引導(dǎo)學(xué)生對所學(xué)知識進(jìn)行升華:列一元一次方程解應(yīng)用題,與列二元一次方程組解應(yīng)用題,有什么特點(diǎn)?學(xué)生們經(jīng)過思考爭辯,最終達(dá)成如下意見即可視為完成教學(xué)任務(wù):(1)列一元一次方程時(shí),需要將其中的一個(gè)量用含有另一個(gè)量的式子表示出來,也就是說,尋找相等關(guān)系容易,列方程要相對困難一些。(2)列二元一次方程組時(shí),只要找出相等關(guān)系(2個(gè))設(shè)未知數(shù)(2個(gè)),就可以較容易地列出方程組,所以列方程(組)相對簡單,而解方程組要難一些,順著這種感覺,可以引導(dǎo)學(xué)生研究如何便捷地解方程組就成為當(dāng)務(wù)之急了。

        二元一次方程組教學(xué)設(shè)計(jì)2

          教學(xué)目標(biāo)

          1.會用代入法解二元一次方程組;

          2.體會解二元一次方程組的 “消元思想”和“化未知數(shù)為已知”的化歸思想.

          3.通過對方程中未知數(shù)特點(diǎn)的觀察和分析明,確解二元一次方程組的主要思路 是 “消元思想”和“化二元為一元”的化歸思想.

          教學(xué)重難點(diǎn)

          1.熟練的用代入法解二元一次方程組。

          2.探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過程。

          教學(xué)過程

          一、創(chuàng)設(shè)問題,引入新課

          1.問題1:籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊(duì)勝一場得2分,負(fù)一場得1分.某隊(duì)為了爭取較好的名次,想在全部20場比賽中得到38分,那么這個(gè)隊(duì)勝、負(fù)場數(shù)分別是多少?

          解:設(shè)勝場數(shù)是x則負(fù)的場數(shù)是20-x 列方程為:2x+(20-x)=38.解得x=18,則負(fù)的場數(shù)為

          20-x=20-18=2

          2.問題2:在上述問題中,我們可以設(shè)出兩個(gè)未知數(shù),列出二元一次方程組,若設(shè)勝的場數(shù)是x,負(fù)的場數(shù)是y,則

          x+y=20

          2x+y=38

          那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系呢?

          設(shè)計(jì)意圖:通過創(chuàng)設(shè)同一問題分別列出一元一次方程與二元一次方程組 ,引導(dǎo)學(xué)生對兩者關(guān)聯(lián)認(rèn)識,為后續(xù)代入消元法解二元一次方程作鋪墊。

          二、學(xué)生探索,嘗試解決

          交流問題2:可以發(fā)現(xiàn),二元一次方程組中第一個(gè)方程x+y=20可的到y(tǒng)=20-x,將第2個(gè)方程2x+y=38中y換為20-x,這個(gè)方程就化為一元一次方程2x+(20-x)=38.

          歸納:

          二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),將二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程,我們就可以先解出一個(gè)未知數(shù),然后再設(shè)法求另一個(gè)未知數(shù).這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想方法,叫做消元思想.

          歸納小結(jié):上面的解法,是把二元一次方程組中一個(gè)方程中的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的 解.這種方法叫做代入消元法,簡稱代入法.

          設(shè)計(jì)意圖:通過交流問題2,引導(dǎo)學(xué)生將心中所想顯現(xiàn)出來,代入消元法的步驟和功效逐步顯現(xiàn)出來。

          三、典例交流,揭示規(guī)律

          例1:用代入法解二元一次方程組x=y+3(1)

          3x-8y=14(2)

          解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

          所以這個(gè)方程組的解是 x=2,

          y=-1

          思考下列問題

         。1)選擇哪個(gè)方程代入另一個(gè)方程?目的是什么?

         。2)為什么能代入?目的達(dá)到了嗎?

         。3)只求出 y=-1 ,方程組解完了嗎? 把y=-1 代入哪個(gè)方程求x的值較簡單?

         。4)怎樣知道你運(yùn)算的結(jié)果是否正確?

          反思:需檢驗(yàn),將 x=2,y=-1分別代入方程①②,看方程的左右兩邊是否相等,可以口算,也可以在 草稿紙上驗(yàn)算.【例2】用代入法解二元一次方程組x-y=3(1)

          3x-8y=14(2)

          思考:

          (1)例1與例2有什么不同?(例1是用①直接代入②的,而例2的兩個(gè)方程都不具備這樣的條件.)

          (2)如何變形?(把其中一個(gè)方程變形為例1中①的形式.)

          (3)選擇哪個(gè)方程變形較簡單?(方程①中的x的系數(shù)為1,故可以將方程①變形得x=3+y.)

         。▽W(xué)生口述,教師板書完成)

          用代入消元法解二元一次方程組的步驟:

          (1)從方程組中選取一個(gè)系數(shù)比較簡單的方程,把其中的`某一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來.(變)

          (2)把(1)中所得的方程代入另一個(gè)方程,消去一個(gè)未知數(shù).(代)

          (3)解所得到的一元一次方程,求得一個(gè)未知數(shù)的值.(求)

          (4)把所求得的一個(gè)未知數(shù)的值代入(1)中求得的方程,求出另一個(gè)未知數(shù)的值,從而確定方程組的解.(解)

          設(shè)計(jì)意圖:進(jìn)一步加強(qiáng)利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步驟提高學(xué)生的分析能力。

          四、變式訓(xùn)練,深化提高

          用代入法解下面方程組

          設(shè)計(jì)意圖:通過學(xué)生演練展示,幫助學(xué)生鞏固用代入法解二元一次方程組的步驟。

          五、師生共進(jìn),反思小結(jié)1、本節(jié)主要學(xué)習(xí)用代入法解二元一次方程組

          2、主要的解題思想方法是消元思想。

          3、代入消元法解二元一次方程組需要注意的問題.

          (1)用代入法解二元一次方程組時(shí),常選用系數(shù)比較簡單的方程變形,這有利于正確、簡捷地消元.

          (2)由一個(gè)方程變形得到的只含有一個(gè)未知數(shù)的代數(shù)式必須代入到另一個(gè)方程中去,否則會出現(xiàn)一個(gè)恒等式.

          (3)方程組解的表示方法,應(yīng)該用大括號把一對未知數(shù)的值連在一起,表示同時(shí)成立,不要寫成x=?y=?

          六、布置作業(yè):

          習(xí)題8.2 1,2題

          七、板書設(shè)計(jì)

        二元一次方程組教學(xué)設(shè)計(jì)3

          教學(xué)目的

          1、使學(xué)生二元一次方程、二元一次方程組的概念,會把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

          2、使學(xué)生了解二元一次方程、二元一次方程組的解的含義,會檢驗(yàn)一對數(shù)是不是它們的解。

          3、通過和一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法。通過“引例”的學(xué)習(xí),使學(xué)生認(rèn)識數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。

          教學(xué)分析

          重點(diǎn):(1)使學(xué)生認(rèn)識到一對數(shù)必須同時(shí)滿足兩個(gè)二元一次方程,才是相應(yīng)的二元一次方程組的解。

         。2)掌握檢驗(yàn)一對數(shù)是否是某個(gè)二元一次方程的解的書寫格式。

          難點(diǎn):理解二元一次方程組的解的含義。

          突破:啟發(fā)學(xué)生理解概念。

          教學(xué)過程

          一、復(fù)習(xí)

          1、是什么方程?是什么一元一次方程?一元一次方程的標(biāo)準(zhǔn)形式是什么?它的解如何表達(dá)?如何檢驗(yàn)x=3是不是方程5x+3(9-x)=33的解?

          2、列方程解應(yīng)用題:香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了9千克,付款33元。香蕉和蘋果各買了多少千克?

          (先要求學(xué)生按以前的常規(guī)方法解,即設(shè)一個(gè)未知數(shù),表示出另一個(gè)未知數(shù),再列出方程。)

          既然求兩種水果各買多少?那么能不能設(shè)兩個(gè)未知數(shù)呢?學(xué)生嘗試設(shè)兩個(gè)未知數(shù),設(shè)買香蕉x千克,買蘋果y千克,列出下列兩個(gè)方程:

          x+y=9

          5x+3y=33

          這里x與y必須滿足這兩個(gè)方程,那么又該如何表達(dá)呢?數(shù)學(xué)里大括號表示“不僅……而且……”,因此用大括號把兩個(gè)方程聯(lián)立起來:

          這又成了什么呢?里面的是不是一元一次方程呢?這就是我們今天要學(xué)習(xí)的內(nèi)容。板書課題。

          二、新授

          1、有關(guān)概念

          (1)給出二元一次方程的概念

          觀察上面兩個(gè)方程的特點(diǎn),未知數(shù)的個(gè)數(shù)是多少,含未知數(shù)項(xiàng)的次數(shù)是多少?你能根據(jù)一元一次方程的定義給出新方程的定義嗎?教師給出定義(見P5)。

          結(jié)合定義對“元”與“次”作進(jìn)一步的解釋:“元”與“未知數(shù)”相通,幾個(gè)元就是指幾個(gè)未知數(shù),“次”指未知數(shù)的最高次數(shù)。二元一次方程和一元一次方程都是整式方程,只有整式方程才能說幾元幾次方程。

          (2)給出二元一次方程組的定義。(見P5)式子:

          表示一個(gè)二元一次方程組,它由方程①、②構(gòu)成。當(dāng)某兩個(gè)未知數(shù)相同的二元一次方程組成一個(gè)二元一次方程組時(shí)應(yīng)加上大括號。

          (3)給出二元一次方程組的解的定義及表示法。

          三、練習(xí)

          P6練習(xí):1,2。

          四、小結(jié)

          1、什么是二元一次方程?什么是二元一次方程組?

          2、什么是二元一次方程組的解?如何檢驗(yàn)一對數(shù)是不是某個(gè)方程組的解

          五、作業(yè)

          1、P 5.1 A:1(3、4),3,4。

        【二元一次方程組教學(xué)設(shè)計(jì)】相關(guān)文章:

        二元一次方程組的解法說課稿11-11

        二元一次方程組精選練習(xí)題05-26

        《加減法解二元一次方程組》課后優(yōu)秀教學(xué)反思12-28

        《第一次真好》教學(xué)設(shè)計(jì)12-28

        習(xí)作“第一次”教學(xué)設(shè)計(jì)02-15

        《記梁任公的一次演講》教學(xué)設(shè)計(jì)12-27

        一次函數(shù)的教學(xué)設(shè)計(jì)課件02-17

        《一次比一次有進(jìn)步》教學(xué)設(shè)計(jì)(15篇)12-21

        《第一次真好》教學(xué)設(shè)計(jì)7篇12-29

        精選《觀潮》教學(xué)設(shè)計(jì) 教案教學(xué)設(shè)計(jì)11-15

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>