《實際問題與一元一次不等式》教學設計
作為一名教師,時常需要準備好教學設計,教學設計是根據(jù)課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。那么問題來了,教學設計應該怎么寫?以下是小編整理的《實際問題與一元一次不等式》教學設計,歡迎閱讀與收藏。
教學目標
1、會從實際問題中抽象出數(shù)學模型,會用一元一次不等式解決實際問題。
2、通過觀察、實踐、討論等活動,經(jīng)歷從實際中抽象出數(shù)學模型的過程,積累利用一元一次不等式解決實際問題的經(jīng)驗,滲透分類討論思想,感知方程與不等式的內在聯(lián)系。
3、在積極參與數(shù)學學習活動的過程中,初步認識一元一次不等式的應用價值,形成實事求是的態(tài)度和獨立思考的習慣。
教學重點:
尋找實際問題中的不等關系,建立數(shù)學模型。
教學難點:
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式。
教學過程(師生活動)
提出問題某學校計劃購實若干臺電腦,現(xiàn)從兩家商店了解到同一型號的電腦每臺報價均為6000元,并且多買都有一定的優(yōu)惠。甲商場的優(yōu)惠條件是:第一臺按原報價收款,其余每臺優(yōu)惠25%;乙商場的優(yōu)惠條件是:每臺優(yōu)惠20%。如果你是校長,你該怎么考慮,如何選擇?
探究新知1、分組活動。先獨立思考,理解題意。再組內交流,發(fā)表自己的觀點。最后小組匯報,派代表論述理由。
2、在學生充分發(fā)表意見的基礎上,師生共同歸納出以下三種采購方案:
(1)什么情況下,到甲商場購買更優(yōu)惠?
(2)什么情況下,到乙商場購買更優(yōu)惠?
(3)什么情況下,兩個商場收費相同?
3、我們先來考慮方案:
設購買x臺電腦,如果到甲商場購買更優(yōu)惠。
問題1:如何列不等式?
問題2:如何解這個不等式?
在學生充分討論的基礎上,教師歸納并板書如下:解:設購買x臺電腦,如果到甲商場購買更優(yōu)惠,則6000+6000(1-25%)(x-1)<6000(1-20%)x。
去括號,得:6000+4500x-45004<4800x
移項且合并,得:-300x<1500
不等式兩邊同除以-300,得<5
答:購買5臺以上電腦時,甲商場更優(yōu)惠。
教師最后作適當點評。
解決問題甲、乙兩個商場以同樣的價格出售同樣的商品,同時又各自推出不同的優(yōu)惠措施。甲商場的優(yōu)惠措施是:累計購買100元商品后,再買的商品按原價的`90%收費;乙商場則是:累計購買50元商品后,再買的商品按原價的95%收費。顧客選擇哪個商店購物能獲得更多的優(yōu)惠?
問題1:這個問題比較復雜。你該從何入手考慮它呢?
問題2:由于甲商場優(yōu)惠措施的起點為購物100元,乙商場優(yōu)惠措施的起點為購物50元,起點數(shù)額不同,因此必須分別考慮。你認為應分哪幾種情況考慮?
分組活動。先獨立思考,再組內交流,然后各組匯報討論結果。
最后教師總結分析:
1、如果累計購物不超過50元,則在兩家商場購物花費是一樣的;
2、如果累計購物超過50元但不超過100元,則在乙商場購物花費小。
3、如果累計購物超過100元,又有三種情況:
(1)什么情況下,在甲商場購物花費小?
(2)什么情況下,在乙商場購物花費?
(3)什么情況下,在兩家商場購物花費相同?
上述問題,在討論、交流的基礎上,由學生自己解決,教師可適當點評。
總結歸納:
通過體驗買電腦、選商場購物,感受實際生活中存在的不等關系,用不等式來表示這樣的關系可為解決問題帶來方便。由實際問題中的不等關系列出不等式,就把實際問題轉化為數(shù)學問題,再通過解不等式可得到實際問題的答案。
布置作業(yè):
教科書第126頁習題9.2第1題(1)(2)第3題1、2。