反比例的意義教學設計和反思
教學目標:
1.通過探究活動,理解反比例的意義,并能正確判斷成反比例的量。
2.引導學生揭示知識間的聯(lián)系,培養(yǎng)學生分析判斷、推理能力
教學流程:
一、復習鋪墊,猜想引入
師:(1)表格里有哪兩個相關(guān)聯(lián)的量?(2)這兩個相關(guān)聯(lián)的量成正比例關(guān)系嗎?為什么?
2.猜想
師:今天我們要學習一種新的比例關(guān)系反比例關(guān)系。(板書:反比例)
師:從字面上看反比例與正比例會是怎樣的關(guān)系?
生:相反的。
師:既然是相反的,你能聯(lián)系正比例關(guān)系猜想一下,在反比例關(guān)系中,一個量會怎樣隨著另一個量的變化而變化?它們的變化會有怎樣的規(guī)律?
生:(略)
反思:根據(jù)學生認知新事物大多由猜而起的規(guī)律,從概念的名稱正、反兩宇為切入點,引導學生顧名思義,對反比例的意義展開合理的猜想,激起學生研究問題的愿望。
二、提供材料,組織研究
1.探究反比例的意義
師:大家的猜想是否合理,還需要進一步證明。下面我提供給大家?guī)讖埍砀,以小組為單位研究以下幾個問題。
(1)表中有哪兩個相關(guān)聯(lián)的量?
(2)兩個相關(guān)聯(lián)的量,一個量是怎樣隨著另一個量的變化而變化的?變化規(guī)律是什么?
2.小組討論、交流。(教師巡回查看,并做適當指導。)
3.匯報研究結(jié)果
(在匯報交流時,學生們紛紛發(fā)表自己的看法。當分析到表3時,大家開始爭論起來。)
生1:剩下的路程隨著已行路程的擴大而縮小,但積不一定。
生2:已行路程十剩下路程=總路程(一定)。
您現(xiàn)在正在閱讀的人教版《反比例的意義》教學設計及反思文章內(nèi)容由收集!本站將為您提供更多的精品教學資源!人教版《反比例的意義》教學設計及反思生3:我認為第一個同學的說法不準確,應該換成增加和減小
(最后通過對比大家達成共識:只有表2和表3的變化規(guī)律有共性。)
師:表2和表3中兩個量的變化規(guī)律有哪些共性?(生答略。)
師:這兩個相關(guān)聯(lián)的量叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。(完成板書。)
師:如果用字母A和B表示兩個相關(guān)聯(lián)的量,用C表示它們的.積,你認為反比例關(guān)系可以用哪個關(guān)系式表示?[板書]
反思:教材中兩個例題是典型的反比例關(guān)系,但問題過瘦過小,思路過于狹窄,雖然學生易懂,但容易造成知其然,而不知其所以然。通過增加表3,更利于學生發(fā)現(xiàn)長寬=長方形的面積(一定)這一關(guān)系式,有助于學生探究規(guī)律。同時還增加了表1、表4,把正比例關(guān)系、反比例關(guān)系、與反比例雷同(和一定)的情況混合在一起,給學生提供了甄別問題的機會。
4.做一做(略)
5.學習例6
師:剛才我們是參照表格中的具體數(shù)據(jù)來研究兩個量是不是成反比例關(guān)系,如果這兩個量直接用語言文字來描述,你還會判斷它們成不成反比例關(guān)系嗎?(投影出示例題。)
三、鞏固練習,拓展應用
1.基本練習。(略)
2.拓展應用。
師:你能舉一個反比例的例子嗎?(先自己舉例,寫在本子上,再集體交流。)
交流時,學生們爭先恐后,列舉了許多反比例的例子。課正在順利進行時,一個同學舉的正方形的邊長邊長=面積(一定),邊長和邊長成反比例的例子引起了學生們的爭論。,教師沒有馬上做判斷,而是問學生:能說出你的理由嗎?有的學生說:因為乘積一定,所以邊長和邊長成反比例關(guān)系。對他的意見有的同學點頭稱是,而有的同學卻搖頭忽然,一名同學像發(fā)現(xiàn)新大陸一樣大聲叫起來:不對!邊長不隨著邊長的擴大而縮小!這是一種量!一句話使大家恍然大悟:對啊!邊長是一種量,它們不是相關(guān)聯(lián)的兩個量,所以邊長和邊長不成反比例。后來又有一名同學舉例:邊長4=正方形的周長(一定),邊長和4成反比例。話音剛落,學生們就齊喊起來:不對!邊長和4不是相關(guān)聯(lián)的兩個量。
反思:通過你能舉一個反比例的例子嗎?這樣一個開放性練習題,讓學生聯(lián)系已有的知識,使新舊知識有機結(jié)合,幫助學生建立起良好的認知結(jié)構(gòu),這同時也是對數(shù)量關(guān)系一次很好的整理復習機會,通過舉例進一步明確如何判斷兩個量是否成反比例。
3.綜合練習
四、總結(jié)
反思:
《數(shù)學課程標準》中指出:學生的數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數(shù)學活動。而現(xiàn)行的小學數(shù)學高年級教材,內(nèi)容偏窄、偏深,部分知識抽象嚴密、邏輯性強、脫離學生的生活實際,與新教材相比明顯滯后。如何將新的課改理念與舊教材有機整合,是我們每一個數(shù)學教師應該思考探索的課題。
【反比例的意義教學設計和反思】相關(guān)文章:
反比例的意義的教學反思11-01
反比例的意義教學設計05-19
《正比例和反比例的意義》教學反思12-26
《正比例和反比例的意義》教學反思11-27
《正反比例的意義》教學反思07-06
正、反比例的意義教學設計06-06
《正比例和反比例的意義》教學反思范文12-11
《約數(shù)和倍數(shù)的意義》教學設計及反思06-26
反比例意義教學反思(通用19篇)07-12