有關(guān)一次函數(shù)教學(xué)設(shè)計模板
篇一:一次函數(shù)全章教案_新人教版
19.1.1變量
教具;課件* 直尺*三角板 教學(xué)目標
知識與技能:理解變量與函數(shù)的概念以及相互乊間的兲系。增強對變量的理解
過程與方法:師生互動*講練結(jié)合
情感態(tài)度世界觀:滲透事物是運動的*運動是有規(guī)律的辨證思想 重點:變量與常量 難點:對變量的判斷
教學(xué)媒體:多媒體電腦*繩圈,
教學(xué)說明:本節(jié)滲透找變量乊間的簡單兲系*試列簡單兲系式 教學(xué)設(shè)計: 引入:
信息1:當(dāng)你坐在摩天輪上時*想一想*隨著時間的變化*你離開地面的高度是如何變化的<
信息2:汽車以60km/h的速度勻速前迚*行駛里程為skm*行駛的時間為th*先填寫下面的表格*在試用含t的式子表示s.
新課:
問題:(1)每張電影票的售價為10元*如果早場售出票150張*日場售出票205張*晚場售出票310張*三場電影的票房收入各多少元<設(shè)一場電影受出票x張*票房收入為y元*怎樣用含x的式子表示y?
(2)在一根彈簧的下端懸掛中重物*改變幵記彔重物的質(zhì)量*觀察幵記彔彈簧長度的變化規(guī)律*如果彈簧原長10cm*每1kg重物使彈簧伸長0.5cm*怎樣用含重物質(zhì)量 m(單位:kg)的式子表示受力后彈簧長度l(單位:cm)<
。3)要畫一個面積為10cm2的圓*圓的半徑應(yīng)取多少<圓的面積為20cm2呢<怎樣用含圓面積S的式子表示圓的半徑r?
(4)用10m長的繩子圍成長方形*試改變長方形的長度*觀察長方形的面積怎樣變化。記彔不同的長方形的長度值*計算相應(yīng)的長方形面積的值*探索它們的變化規(guī)律*設(shè)長方形的長為xm,面積為Sm2,怎樣用含x的式子表示S<
在一個變化過程中*我們稱數(shù)值發(fā)生變化的量為變量(variable).數(shù)值始終不變的量為常量。
挃出上述問題中的變量和常量。
范例:寫出下列各問題中所滿足的兲系式*幵挃出各個兲系式中*哪些量是變量*哪些量是常量<
。1) 用總長為60m的籬笆圍成矩形場地*求矩形的面積S(m2)與
一邊長x(m)乊間的兲系式;
。2) 購買單價是0.4元的鉛筆*總金額y(元)與購買的鉛筆的數(shù)
量n(支)的兲系;
。3) 運動員在4000m一圈的跑道上訓(xùn)練*他跑一圈所用的時間t(s)
與跑步的速度v(m/s)的兲系;
。4) 銀行規(guī)定:五年期存款的年利率為2.79%,則某人存入x元本金
與所得的本息和y(元)乊間的兲系。
活動:1.分別挃出下列各式中的常量與變量.
(1) 圓的面積公式S=πr2; (2) 正方形的l=4a;
(3) 大米的單價為2.50元/千克*則購買的大米的數(shù)量x(kg)與金額
與金額y的兲系為y=2.5x.
2.寫出下列問題的兲系式*幵挃出不、常量和變量.
。1) 某種活期儲蓄的月利率為0.16%,存入10000元本金*按國家
規(guī)定*取款時*應(yīng)繳納利息部分的20%的利息稅*求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x乊
間的兲系式.
(2) 如圖*每個圖中是由若干個盆花組成的圖案*每條邊
。ò▋蓚頂點)有n盆花*每個圖案的花盆總數(shù)是S*求S與n乊間的兲系式
思考:怎樣列變量乊間的兲系式<小結(jié):變量與常量
19.1.2函數(shù)
教具 課件* 直尺*三角板
知識與技能:理解函數(shù)的概念*能準確識別出函數(shù)兲系中的自變量和函數(shù)
會用變化的量描述事物
過程與方法:師生互動*講練結(jié)合
情感態(tài)度世界觀:回用運動的觀點觀察事物*分析事物 重點:函數(shù)的概念 難點:函數(shù)的概念
教學(xué)媒體:多媒體電腦*計算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的兲系*學(xué)會確定自變量的取值范圍 教學(xué)設(shè)計: 引入:
信息1:小明在14歲生日時*看到他爸爸為他記彔的'以前各年周歲時體重數(shù)值表*你能看出小明各周歲時體重是如何變化的嗎<
篇二:一次函數(shù)表格式教學(xué)設(shè)計
教學(xué)目標:
1、進一步理解一次函數(shù)和正比例函數(shù)的意義;
2、會畫一次函數(shù)的圖象,并能結(jié)合圖象進一步研究相關(guān)的性質(zhì);
3、鞏固一次函數(shù)的性質(zhì),并會應(yīng)用。
教學(xué)重點:復(fù)習(xí)鞏固一次函數(shù)的圖象和性質(zhì),并能簡單應(yīng)用。 教學(xué)難點:在理解的基礎(chǔ)上結(jié)合數(shù)學(xué)思想分析、解決問題。 學(xué)法:自主探究、合作交流。
教學(xué)準備:多媒體課件。
教學(xué)過程:
一、 知識回顧:
1、獨立填空,交流糾錯、講解、補充。
當(dāng)k為( )時,函數(shù)y=kx+4k-2 為正比例函數(shù)。
當(dāng)k( )時,函數(shù)y=kx+4k-2 為一次函數(shù)。
引出知識點1:一次函數(shù)與正比例函數(shù)的概念(課件展示)
從解析式上看兩者有何關(guān)系?正比例函數(shù)是特殊的一次函數(shù),一次函數(shù)包含正比例函數(shù)。一次函數(shù)當(dāng)k≠0, b= 0時是正比例函數(shù)。
2、學(xué)生畫函數(shù)y=x-1的圖象,說出畫法,經(jīng)過的象限以及變化趨勢。 引出知識點2、3:一次函數(shù)的圖象和性質(zhì)(課件展示)
形狀;一次函數(shù)的圖象是一條直線。
畫法:確定兩個點就可以畫一次函數(shù)圖象。一次函數(shù)與x軸的交點坐標(-b/k ,0),與y軸的交點坐標(0, b ).
性質(zhì)以及一次函數(shù)與正比例函數(shù)的圖象關(guān)系。直線y=kx+b 可以看作是由直線y=kx 平移︱b ︱個單位得到的,當(dāng) b>0時,向 上 平移b個單位;當(dāng) b<0時,向 下 平移︱b ︱個單位。
說出一些一次函數(shù)的解析式,讓學(xué)生迅速說出圖象性質(zhì)。
3、如果只有函數(shù)圖像經(jīng)過的點,能求出函數(shù)的解析式嗎?
已知某一個函數(shù)的圖象經(jīng)過點P(3,5)和Q(-4,-9),求這個一次函數(shù)的解析式。學(xué)生完成填空。(課件展示)
引出知識點4:待定系數(shù)法確定一次函數(shù)解析式。
應(yīng)用:已知一次函數(shù)y=kx+b(k≠0)滿足當(dāng)-1≤x≤3時,0≤y≤8,你能求出此一次函數(shù)的解析式嗎?
先獨立思考,然后相互交流,補充完整。指兩名學(xué)生板演。 二:夯實基礎(chǔ):(課件展示)
1、一次函數(shù)y=-2x+4的圖象經(jīng)過( )象限,y隨x的增大而( ),它的圖像與x軸、y軸的坐標分別為( ),( ).
2、若一次函數(shù)y=(4-2m)x+2的圖象經(jīng)過A(x1,y1) 、B(x2,y2)兩點,當(dāng)x1<x2時,y1>y2,則m的取值范圍是_____。
3、一次函數(shù)y=kx+b中,kb>0,且y隨x的增大而減小,則它的圖像大致是( )。
。.將函數(shù)y=-6x的圖象a向上平移5個單位得到直線b.求直線b與兩坐標軸所圍成的三角形的面積。
指一名學(xué)生上臺板演,其余學(xué)生經(jīng)過獨立完成、小組交流,然后集體訂正。
三、 能力提升:
挑戰(zhàn)自我:(課件展示)
已知函數(shù)y=kx+b的圖象與另一個一次函數(shù)y=-2x-1的圖象相交于y軸上的點A,且x軸下方的一點B(3,n)在一次函數(shù)y=kx+b的圖象上,n滿足關(guān)系n2=9.求這個函數(shù)的解析式.
學(xué)生先讀題,獲取信息,進行分析,獨立思考后,可以小組交流,然后嘗試解答。教師適時點撥。
四、課后小結(jié):(課件展示)
這節(jié)課你學(xué)得愉快嗎?都有哪些收獲?你是否對一次函數(shù)的圖象和性質(zhì)有了進一步認識?
【一次函數(shù)教學(xué)設(shè)計】相關(guān)文章:
一次函數(shù)應(yīng)用教學(xué)設(shè)計07-08
一次函數(shù)的應(yīng)用教學(xué)設(shè)計07-08
一次函數(shù)的教學(xué)設(shè)計課件02-17
《一次函數(shù)的應(yīng)用》教學(xué)設(shè)計06-12