1. <rp id="zsypk"></rp>

      2. 上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃

        時(shí)間:2021-06-12 20:45:54 教學(xué)計(jì)劃 我要投稿

        上學(xué)期數(shù)學(xué)集合教學(xué)計(jì)劃模板

          教學(xué)目的:

        上學(xué)期數(shù)學(xué)集合教學(xué)計(jì)劃模板

          (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

          (2)使學(xué)生初步了解“屬于”關(guān)系的意義

          (3)使學(xué)生初步了解有限集、無限集、空集的意義

          教學(xué)重點(diǎn):集合的基本概念及表示方法

          教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

          授課類型:新授課

          課時(shí)安排:1課時(shí)

          教 具:多媒體、實(shí)物投影儀

          內(nèi)容分析:

          1.集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

          把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

          本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

          這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念

          集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 ”這句話,只是對(duì)集合概念的描述性說明

          教學(xué)過程:

          一、復(fù)習(xí)引入:

          1.簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

          2.教材中的章頭引言;

          3.集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見附錄);

          4.“物以類聚”,“人以群分”;

          5.教材中例子(P4)

          二、講解新課:

          閱讀教材第一部分,問題如下:

          (1)有那些概念?是如何定義的?

          (2)有那些符號(hào)?是如何表示的?

          (3)集合中元素的特性是什么?

          (一)集合的有關(guān)概念:

          由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對(duì)象的全體形成一個(gè)集合,或者說,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集.集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素.

          定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.

          1、集合的概念

          (1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)

          (2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

          2、常用數(shù)集及記法

          (1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

          (2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+

          (3)整數(shù)集:全體整數(shù)的集合 記作Z ,

          (4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

          (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R

          注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0 (2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

          3、元素對(duì)于集合的隸屬關(guān)系

          (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

          (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

          4、集合中元素的特性

          (1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里, 或者不在,不能模棱兩可

          (2)互異性:集合中的元素沒有重復(fù)

          (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?

          5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小寫的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫

          三、練習(xí)題:

          1、教材P5練習(xí)1、2

          2、下列各組對(duì)象能確定一個(gè)集合嗎?

          (1)所有很大的實(shí)數(shù) (不確定)

          (2)好心的人 (不確定)

          (3)1,2,2,3,4,5.(有重復(fù))

          3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的`值組成集合的元素是_-2,0,2__

          4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )

          (A)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

          5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

          (1) 當(dāng)x∈N時(shí), x∈G;

          (2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

          證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,

          則x= x+0* = a+b ∈G,即x∈G

          證明(2):∵x∈G,y∈G,

          ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

          ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

          ∵a∈Z, b∈Z,c∈Z, d∈Z

          ∴(a+c) ∈Z, (b+d) ∈Z

          ∴x+y =(a+c)+(b+d) ∈G,

          又∵ =

          且 不一定都是整數(shù),

          ∴ = 不一定屬于集合G

          四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

          1.集合的有關(guān)概念:(集合、元素、屬于、不屬于)

          2.集合元素的性質(zhì):確定性,互異性,無序性

          3.常用數(shù)集的定義及記法

          五、課后作業(yè):

          六、板書設(shè)計(jì)(略)

          七、課后記:

          八、附錄:康托爾簡(jiǎn)介

          發(fā)瘋了的數(shù)學(xué)家康托爾(Georg Cantor,1845-1918)是德國(guó)數(shù)學(xué)家,集合論的創(chuàng)始者 1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷 康托爾11歲時(shí)移居德國(guó),在德國(guó)讀中學(xué).1862年17歲時(shí)入瑞士蘇黎世大學(xué),翌年入柏林大學(xué),主修數(shù)學(xué),1866年曾去格丁根學(xué)習(xí)一學(xué)期.1867年以數(shù)論方面的論文獲博士學(xué)位.1869年在哈雷大學(xué)通過講師資格考試,后在該大學(xué)任講師,1872年任副教授,1879年任教授.由于研究無窮時(shí)往往推出一些合乎邏輯的但又荒謬的結(jié)果(稱為“悖論”),許多大數(shù)學(xué)家唯恐陷進(jìn)去而采取退避三舍的態(tài)度.在1874—1876年期間,不到30歲的年輕德國(guó)數(shù)學(xué)家康托爾向神秘的無窮宣戰(zhàn).他靠著辛勤的汗水,成功地證明了一條直線上的點(diǎn)能夠和一個(gè)平面上的點(diǎn)一一對(duì)應(yīng),也能和空間中的點(diǎn)一一對(duì)應(yīng).這樣看起來,1厘米長(zhǎng)的線段內(nèi)的點(diǎn)與太平洋面上的點(diǎn),以及整個(gè)地球內(nèi)部的點(diǎn)都“一樣多”,后來幾年,康托爾對(duì)這類“無窮集合”問題發(fā)表了一系列文章,通過嚴(yán)格證明得出了許多驚人的結(jié)論.

          康托爾的創(chuàng)造性工作與傳統(tǒng)的數(shù)學(xué)觀念發(fā)生了尖銳沖突,遭到一些人的反對(duì)、攻擊甚至謾罵.有人說,康托爾的集合論是一種“疾病”,康托爾的概念是“霧中之霧”,甚至說康托爾是“瘋子”.來自數(shù)學(xué)權(quán)威們的巨大精神壓力終于摧垮了康托爾,使他心力交瘁,患了精神分裂癥,被送進(jìn)精神病醫(yī)院.

          真金不怕火煉,康托爾的思想終于大放光彩.1897年舉行的第一次國(guó)際數(shù)學(xué)家會(huì)議上,他的成就得到承認(rèn),偉大的哲學(xué)家、數(shù)學(xué)家羅素稱贊康托爾的工作“可能是這個(gè)時(shí)代所能夸耀的最巨大的工作”可是這時(shí)康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅.1918年1月6日,康托爾在一家精神病院去世.

          集合論是現(xiàn)代數(shù)學(xué)的基礎(chǔ),康托爾在研究函數(shù)論時(shí)產(chǎn)生了探索無窮集和超窮數(shù)的興趣.康托爾肯定了無窮數(shù)的存在,并對(duì)無窮問題進(jìn)行了哲學(xué)的討論,最終建立了較完善的集合理論,為現(xiàn)代數(shù)學(xué)的發(fā)展打下了堅(jiān)實(shí)的基礎(chǔ)

          康托爾創(chuàng)立了集合論作為實(shí)數(shù)理論,以至整個(gè)微積分理論體系的基礎(chǔ). 從而解決17世紀(jì)牛頓(I.Newton,1642-1727)與萊布尼茨(G.W.Leibniz,1646-1716)創(chuàng)立微積分理論體系之后,在近一二百年時(shí)間里,微積分理論所缺乏的邏輯基礎(chǔ)和從19世紀(jì)開始,柯西(A.L.Cauchy,1789-1857)、魏爾斯特拉斯(K.Weierstrass,1815-1897)等人進(jìn)行的微積分理論嚴(yán)格化所建立的極限理論

          克隆尼克(L.Kronecker,1823-1891),康托爾的老師,對(duì)康托爾表現(xiàn)了無微不至的關(guān)懷.他用各種用得上的尖刻語(yǔ)言,粗暴地、連續(xù)不斷地攻擊康托爾達(dá)十年之久.他甚至在柏林大學(xué)的學(xué)生面前公開攻擊康托爾

          橫加阻撓康托爾在柏林得到一個(gè)薪金較高、聲望更大的教授職位.使得康托爾想在柏林得到職位而改善其地位的任何努力都遭到挫折.法國(guó)數(shù)學(xué)家彭加勒(H.Poi-ncare,1854-1912):我個(gè)人,而且還不只我一人,認(rèn)為重要之點(diǎn)在于,切勿引進(jìn)一些不能用有限個(gè)文字去完全定義好的東西.集合論是一個(gè)有趣的“病理學(xué)的情形”,后一代將把(Cantor)集合論當(dāng)作一種疾病,而人們已經(jīng)從中恢復(fù)過來了.德國(guó)數(shù)學(xué)家魏爾(C.H.Her-mann Wey1,1885-1955)認(rèn)為,康托爾關(guān)于基數(shù)的等級(jí)觀點(diǎn)是霧上之霧.菲利克斯.克萊因(F.Klein,1849-1925)不贊成集合論的思想.數(shù)學(xué)家H.A.施瓦茲,康托爾的好友,由于反對(duì)集合論而同康托爾斷交.從1884年春天起,康托爾患了嚴(yán)重的憂郁癥,極度沮喪,神態(tài)不安,精神病時(shí)時(shí)發(fā)作,不得不經(jīng)常住到精神病院的療養(yǎng)所去,變得很自卑,甚至懷疑自己的工作是否可靠,他請(qǐng)求哈勒大學(xué)當(dāng)局把他的數(shù)學(xué)教授職位改為哲學(xué)教授職位,健康狀況逐漸惡化,1918年,他在哈勒大學(xué)附屬精神病院去世.流星埃.

          伽羅華(E.Galois,1811-1832),法國(guó)數(shù)學(xué)家伽羅華17歲時(shí),就著手研究數(shù)學(xué)中最困難的問題之一一般π次方程求解問題.許多數(shù)學(xué)家為之耗去許多精力,但都失敗了.直到1770年,法國(guó)數(shù)學(xué)家拉格朗日對(duì)上述問題的研究才算邁出重要的一步 伽羅華在前人研究成果的基礎(chǔ)上,利用群論的方法從系統(tǒng)結(jié)構(gòu)的整體上徹底解決了根式解的難題 他從拉格朗日那里學(xué)習(xí)和繼承了問題轉(zhuǎn)化的思想,即把預(yù)解式的構(gòu)成同置換群聯(lián)系起來,并在阿貝爾研究的基礎(chǔ)上,進(jìn)一步發(fā)展了他的思想,把全部問題轉(zhuǎn)化成或者歸結(jié)為置換群及其子群結(jié)構(gòu)的分析上 同時(shí)創(chuàng)立了具有劃時(shí)代意義的數(shù)學(xué)分支——群論,數(shù)學(xué)發(fā)展史上作出了重大貢獻(xiàn) 1829年,他把關(guān)于群論研究所初步結(jié)果的第一批論文提交給法國(guó)科學(xué)院 科學(xué)院委托當(dāng)時(shí)法國(guó)最杰出的數(shù)學(xué)家柯西作為這些論文的鑒定人 在1830年1月18日柯西曾計(jì)劃對(duì)伽羅華的研究成果在科學(xué)院舉行一次全面的意見聽取會(huì) 然而,第二周當(dāng)柯西向科學(xué)院宣讀他自己的一篇論文時(shí),并未介紹伽羅華的著作 1830年2月,伽羅華將他的研究成果比較詳細(xì)地寫成論文交上去了 以參加科學(xué)院的數(shù)學(xué)大獎(jiǎng)評(píng)選,論文寄給當(dāng)時(shí)科學(xué)院終身秘書J.B.傅立葉,但傅立葉在當(dāng)年5月就去世了,在他的遺物中未能發(fā)現(xiàn)伽羅華的手稿 1831年1月伽羅華在尋求確定方程的可解性這個(gè)問題上,又得到一個(gè)結(jié)論,他寫成論文提交給法國(guó)科學(xué)院 這篇論文是伽羅華關(guān)于群論的重要著作 當(dāng)時(shí)的數(shù)學(xué)家S.K.泊松為了理解這篇論文絞盡了腦汁 盡管借助于拉格朗日已證明的一個(gè)結(jié)果可以表明伽羅華所要證明的論斷是正確的,但最后他還是建議科學(xué)院否定它 1832年5月30日,臨死的前一夜,他把他的重大科研成果匆忙寫成后,委托他的朋友薛伐里葉保存下來,從而使他的勞動(dòng)結(jié)晶流傳后世,造福人類 1832年5月31日離開了人間 死因參加無意義的決斗受重傷 1846年,他死后14年,法國(guó)數(shù)學(xué)家劉維爾著手整理伽羅華的重大創(chuàng)作后,首次發(fā)表于劉維爾主編的《數(shù)學(xué)雜志》上

        【上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃】相關(guān)文章:

        數(shù)學(xué)上學(xué)期的教學(xué)計(jì)劃04-04

        上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃04-01

        初中數(shù)學(xué)上學(xué)期教學(xué)計(jì)劃03-27

        初中數(shù)學(xué)上學(xué)期教學(xué)計(jì)劃07-30

        高二數(shù)學(xué)上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃06-06

        上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃7篇06-04

        小班上學(xué)期數(shù)學(xué)教學(xué)計(jì)劃12-27

        初三數(shù)學(xué)上學(xué)期教學(xué)計(jì)劃04-25

        高二數(shù)學(xué)上學(xué)期教學(xué)計(jì)劃06-06

        高三數(shù)學(xué)上學(xué)期教學(xué)計(jì)劃09-13

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>