1. <rp id="zsypk"></rp>

      2. 《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思

        時間:2023-02-16 11:17:41 教學(xué)反思 我要投稿

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思

          身為一名到崗不久的老師,課堂教學(xué)是我們的任務(wù)之一,對教學(xué)中的新發(fā)現(xiàn)可以寫在教學(xué)反思中,那么大家知道正規(guī)的教學(xué)反思怎么寫嗎?下面是小編整理的《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思,希望能夠幫助到大家。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思1

          在年級研究課里,我選擇了《倒數(shù)的認(rèn)識》一課來執(zhí)教,教學(xué)倒數(shù)的認(rèn)識后,我的感觸很多。教材里這部分內(nèi)容,是直接讓學(xué)生計算結(jié)果是1的算式,再讓學(xué)生觀察算式的特點,然后再讓學(xué)生理解互為的意思,最后總結(jié)出倒數(shù)的意義。我感到有一種牽著學(xué)生鼻子走的感覺。通過參考他人的教學(xué),我重新設(shè)計了教案。我覺得這樣設(shè)計才是讓學(xué)生自己通過觀察、比較、歸納總結(jié)出倒數(shù)的意義,是學(xué)生自己通過參與整個學(xué)習(xí)過程后有了真正的收獲。特別是通過比賽的`形式激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)生發(fā)現(xiàn)了算式的特點,并讓學(xué)生舉例后發(fā)現(xiàn),有這樣特點的算式是寫不完的。然后讓學(xué)生仿照老師的樣子,通過例子說倒數(shù)的意義,并強(qiáng)調(diào)說倒數(shù)的關(guān)鍵字詞。這對學(xué)生掌握概念是非常必要的。當(dāng)學(xué)生很高興的自認(rèn)為是掌握了求一個數(shù)的倒數(shù)的方法時,我有給學(xué)生設(shè)計了障礙:怎樣求帶分?jǐn)?shù)、小數(shù)和整數(shù)的倒數(shù)。雖然教材新授內(nèi)容沒有這些知識,但在以后的練習(xí)中出現(xiàn)了。我把它提到前面來,大家一起研究。我覺得很有必要。這樣,使學(xué)生避免把帶分?jǐn)?shù)的倒數(shù)也用把分子分母顛倒位置的方法來求。這樣就不會給學(xué)生的認(rèn)知造成誤導(dǎo)。學(xué)生在知道了分?jǐn)?shù)、帶分?jǐn)?shù)、整數(shù)、小數(shù)的求倒數(shù)的方法以后,我又提出是不是所有的數(shù)都有倒數(shù)?使學(xué)生想到0的倒數(shù)問題。以前我是直接問學(xué)生0有倒數(shù)嗎?好像暗示學(xué)生0沒有倒數(shù)。改換成今天這樣問,學(xué)生通過自己思考,得出兩種答案,0有倒數(shù),另一種是0沒有倒數(shù)。有了分歧意見,又一次把學(xué)生帶入了問題王國。學(xué)生分別發(fā)表自己的見解。最后,大家一致認(rèn)為0沒有倒數(shù)。因0不能做除數(shù),也就是0不能作分母。我覺得這節(jié)課的教學(xué)比以往教學(xué)有了本質(zhì)的轉(zhuǎn)變,就是發(fā)揮了學(xué)生的主體作用。

          這節(jié)課最大的缺點是時間分配得不夠合理,有些環(huán)節(jié)用時太多,使后面的教學(xué)流于形式,匆忙結(jié)束,以后要注意這方面的問題,盡量把一節(jié)課上得更好。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思2

          《倒數(shù)的認(rèn)識》這部分內(nèi)容是在分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。學(xué)習(xí)倒數(shù)主要是為后面學(xué)習(xí)分?jǐn)?shù)除法做準(zhǔn)備的。因為一個數(shù)除以一個分?jǐn)?shù)的計算方法是歸結(jié)為一個數(shù)乘這個分?jǐn)?shù)的倒數(shù)。

          也給了我不少啟示:

          啟示一:處理好“教教材”和“用教材”的關(guān)系

          當(dāng)新課程以全新的理念走進(jìn)課堂時,我們也應(yīng)積極參與,并努力超越,實現(xiàn)用活教材,落實新理念。那么如何用活教材呢?這節(jié)課上,我采用了開門見山式的教學(xué)方法,正確處理了“教教材”和“用教材”的關(guān)系。

          1、在本課的引入中,我沒有采用多種鋪墊,而是直接通過讓學(xué)生計算教材中的三個乘法算式,觀察積的特點與算式中兩個因數(shù)的特點,直接對倒數(shù)形成了初步的認(rèn)識,更明白了只要調(diào)換分子與分母的位置就會得到一個新的分?jǐn)?shù)。然后讓學(xué)生對具有這樣特點的兩個分?jǐn)?shù)起名,學(xué)生不約而同的叫它們倒數(shù)。

          2、變例題教學(xué)為學(xué)生舉例說明。學(xué)生在深入思考中得出結(jié)論,這就是學(xué)生學(xué)習(xí)的成果。我覺得,這樣做不僅增添了課堂活力,而且還讓學(xué)生經(jīng)歷了探索的過程,解決了學(xué)生的困惑,更讓學(xué)生體會到了成功的快樂。

          3、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,如在倒數(shù)意義揭示后,為了鞏固對概念的理解,進(jìn)行了一組針對性練習(xí)。

          啟示二:相信學(xué)生,處理好扶與放的關(guān)系

          通過教學(xué),我感受到教師在教學(xué)中應(yīng)該相信學(xué)生的.能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者,正確處理好扶與放的關(guān)系。

          1、給學(xué)生獨立思考的時間。相信學(xué)生能具有獨立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。教學(xué)中,我在讓學(xué)生舉例時不僅給學(xué)生充足的時間,而且讓學(xué)生把算式寫下來。

          2、給學(xué)生合作學(xué)習(xí)的機(jī)會。當(dāng)學(xué)生有困惑時,教師要引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。

          3、創(chuàng)設(shè)平等、和諧的課堂氛圍。新課標(biāo)強(qiáng)調(diào)學(xué)生在獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到進(jìn)步和發(fā)展。為此作為教學(xué)活動中合作者、組織者,在創(chuàng)設(shè)平等、和諧的課堂氛圍上應(yīng)多“扶”。

          當(dāng)然這節(jié)課,在課堂教學(xué)中也存在著很多的問題:

          1、由于自己的性格所至,仍然存在著對學(xué)生不放心的思想,放手不夠大膽,總要講得面面俱到,導(dǎo)致后邊的教學(xué)時間倉促,在概括方法、比較大小時主要以教師為主,處理的比較匆忙,忽視了學(xué)生學(xué)習(xí)的主體性,在一定的程度束縛了學(xué)生的發(fā)展。

          2、對于有些問題的處理完全可以放手讓學(xué)生進(jìn)行評價,這樣既能調(diào)動學(xué)生的積極性,還能使學(xué)生更深刻的掌握知識。

          課堂教學(xué)是一門藝術(shù),如何使自己的教學(xué)相得益彰,需要我們不斷地進(jìn)行嘗試反思這樣才能不斷成長進(jìn)步。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思3

          在課的導(dǎo)入部分,通過游戲激發(fā)學(xué)生的學(xué)習(xí)興趣,由一些有趣的詞語引出本節(jié)課所要探究的問題——倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊?谒愀傎愂菫閷W(xué)生自學(xué)課本做鋪墊。

          在教學(xué)例題時,變例題教學(xué)為學(xué)生自學(xué)課本,發(fā)現(xiàn)求一個數(shù)的`倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,再總結(jié)出求一個數(shù)的倒數(shù)的方法。通過教學(xué),我感受到教師在教學(xué)中應(yīng)相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者。教學(xué)中處理好扶與放的關(guān)系;1、給學(xué)生獨立思考的時間;相信學(xué)生能具有獨立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。2、給學(xué)生合作學(xué)習(xí)的機(jī)會。當(dāng)學(xué)生有困惑時,教師可以充分發(fā)揮學(xué)生集體智慧。在教學(xué)中,我對于探求“整數(shù)有沒有倒數(shù)”、“0和1有沒有倒數(shù)”這幾個環(huán)節(jié),通過學(xué)生練習(xí)遇到障礙,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑,便充分發(fā)揮合作交流的作用,群策群力解決問題。

          當(dāng)然,這節(jié)課也有許多不足。如帶分?jǐn)?shù)、小數(shù)有沒有倒數(shù),怎樣求帶分?jǐn)?shù)和小數(shù)的倒數(shù),在這一節(jié)課沒有顧及。也就是沒有完全突破難點。這是考慮到我班的基礎(chǔ)知識比較薄弱,一節(jié)課很難接受這么多。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思4

          “倒數(shù)的認(rèn)識”是一節(jié)概念教學(xué)課,這部分內(nèi)容是在學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義,會求一個數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生只有學(xué)好這部分知識,才能更好地掌握后面的分?jǐn)?shù)除法的計算和應(yīng)用題。

          一、課前的思考與預(yù)設(shè)

          針對本課內(nèi)容,看似簡單,實質(zhì)內(nèi)涵非常豐富的特點,結(jié)合本班學(xué)生大多數(shù)基礎(chǔ)薄弱的現(xiàn)狀。認(rèn)真思考了本節(jié)課中教學(xué)目標(biāo)和重、難點。力爭能讓學(xué)生聽的清楚,練的活潑,學(xué)的輕松。所以課前思考時從以下幾個方面入手。

          1、本課的知識點

          本課的學(xué)習(xí)內(nèi)容是“倒數(shù)的認(rèn)識”即對倒數(shù)的認(rèn)知與識別。如何能夠讓學(xué)生很清晰的明白倒數(shù)的意義呢?以及如何找準(zhǔn)一個數(shù)的倒數(shù)呢?

          2、本課的關(guān)鍵點

          《小學(xué)數(shù)學(xué)新課程標(biāo)準(zhǔn)》中指出既要關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,又要關(guān)注學(xué)生的學(xué)習(xí)過程。對倒數(shù)的意義教學(xué),進(jìn)行了仔細(xì)的剖析,把意義分為幾個部分:“乘積是1”,“兩個數(shù)”,“互為倒數(shù)”這三個部分,看起來簡單,但是每個部分再仔細(xì)推敲,就發(fā)現(xiàn)“怎么才能得到1;幾個數(shù),是幾個什么樣的數(shù);“互為”如何理解呢?,在生活中有類似的思路可以遷移的事物嗎?這些方面對學(xué)生清楚理解倒數(shù)的.意義非常重要。

          3、本課的著力點

          基于對關(guān)鍵點的認(rèn)真思考,發(fā)現(xiàn)“互為”一詞比另兩個關(guān)鍵點更難理解,難說的清楚。因此,必須在這個方面需要花功夫,下力氣,因為理解這一關(guān)鍵點是學(xué)生掌握倒數(shù)意義的標(biāo)志,也是幫助學(xué)生能識別“倒數(shù)”這一概念的方法之一。

          4、本課的深化點(預(yù)設(shè))

          基于對倒數(shù)的意義的思考,發(fā)現(xiàn)定義中的“兩個數(shù)”這一關(guān)鍵點的外延非常豐富,兩個怎樣的數(shù)呢?能不能 都是整數(shù)?能不能都是分?jǐn)?shù)?能不能都是小數(shù)?……有沒有特殊的數(shù)呢?比如整數(shù)都有倒數(shù)嗎?小數(shù)都有倒數(shù)嗎?分?jǐn)?shù)都有倒數(shù)嗎?因為整數(shù)中有0、1這樣特殊的數(shù),還有負(fù)整數(shù)。小數(shù)中有有限小數(shù)、無限小數(shù)、無限不循環(huán)小數(shù)。它們有沒有倒數(shù)這樣的情況課堂中學(xué)生會出現(xiàn)這些疑問嗎?出現(xiàn)了如何處理呢。如果不出現(xiàn)又如何處理呢。

          二、課堂的實施與體會

          1、創(chuàng)設(shè)情景導(dǎo)入新課

          在課的導(dǎo)入部分,由一些有趣的文字引出本節(jié)課所要探究的問題----倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊。

          2、合作探究學(xué)習(xí)

          變例題教學(xué)為學(xué)生自學(xué)課本,找到倒數(shù)的意義,并與學(xué)生一起剖析,發(fā)現(xiàn)求一個數(shù)的倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,小組合作討論:0和1的倒數(shù)問題,再總結(jié)出求一個數(shù)的倒數(shù)的方法。

          3、練習(xí)形式多樣

          充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。比如設(shè)計的“每人出題同桌互說”,讓學(xué)生不僅在課堂上學(xué),也在課堂上用,做到真正掌握。

          三、課后思考與感悟

          通過教學(xué),我感受到教師在教學(xué)中應(yīng)相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者,教學(xué)中處理好扶與放的關(guān)系。

          1、給學(xué)生獨立思考的時間;相信學(xué)生能具有獨立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。

          2、 給學(xué)生合作學(xué)習(xí)的機(jī)會;當(dāng)學(xué)生有困惑時,教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。

          在教學(xué)中,我對于探求“0和1有沒有倒數(shù)”環(huán)節(jié),充分發(fā)揮合作交流的作用,群策群力解決問題。為深入淺出的理解“互為”,我舉例“互為同桌”,“互為朋友”,讓學(xué)生覺得“互為”就在身邊,對于理解關(guān)鍵點,就能引起共鳴。

          在練習(xí)中,緊緊圍繞關(guān)鍵點設(shè)計了三條判斷練習(xí),讓學(xué)生在練習(xí)中明白成為倒數(shù)的條件,缺一不可。

          3、存在的困惑與不足

          通過本節(jié)課的教學(xué),我發(fā)現(xiàn):大部分學(xué)生能夠理解倒數(shù)的意義,掌握求一個數(shù)的倒數(shù)的方法,但有少數(shù)學(xué)生對于倒數(shù)的認(rèn)識,僅僅是停留在是不是分子、分母顛倒這一表面形式上,忽略了兩個數(shù)的乘積為1這一本質(zhì)條件,于是他們錯誤的認(rèn)為小數(shù)和帶分?jǐn)?shù)是沒有倒數(shù)的。后來,雖然大部分學(xué)生通過簡單的交流討論,明白了小數(shù)和帶分?jǐn)?shù)也是有倒數(shù)的,但是在找倒數(shù)時還是出現(xiàn)了0.5的倒數(shù)是5.0, 1 的倒數(shù)是1 錯誤的情況。

          面對這樣的情況,我感覺有些困惑,為什么教材僅在整數(shù)和真、假分?jǐn)?shù)范圍內(nèi)教學(xué)倒數(shù)呢?后面分?jǐn)?shù)除法的計算方面也涉及到小數(shù)和帶分?jǐn)?shù)的倒數(shù)問題,我們在實際教學(xué)中是否需要補(bǔ)上相關(guān)的內(nèi)容呢?

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思5

          《倒數(shù)的認(rèn)識》是在學(xué)生掌握了分?jǐn)?shù)乘法的基礎(chǔ)上教學(xué)的。在這節(jié)課中,我抓住了兩大主要內(nèi)容展開教學(xué):1、學(xué)習(xí)理解倒數(shù)的意義。2、學(xué)習(xí)求一個數(shù)的倒數(shù)的方法。我以玩文字游戲?qū)胄抡n,吸引學(xué)生的注意力,同時給學(xué)生灌輸“倒”的想法,把游戲的現(xiàn)象融入到數(shù)學(xué)當(dāng)中。在理解倒數(shù)的意義時,讓學(xué)生抓住關(guān)鍵的詞語“乘積、互為”來理解,并強(qiáng)調(diào)倒數(shù)不是孤立的,而是對于兩個數(shù)來說的。有了文字游戲的導(dǎo)入,學(xué)生觀察到了互為倒數(shù)的兩個數(shù)分子、分母的位置發(fā)生了倒換了,對求真分?jǐn)?shù)和假分?jǐn)?shù)的倒數(shù)容易掌握了,因而課堂的氛圍很濃,積極踴躍回答問題的同學(xué)很多。但對自然數(shù)的倒數(shù)以及小數(shù)、帶分?jǐn)?shù)的倒數(shù),大部分學(xué)生的思維一下子還轉(zhuǎn)不過彎了,只有極少數(shù)的學(xué)生能夠說出方法。對于特殊的數(shù)1和0,學(xué)生基本上能夠知道他們的倒數(shù)。

          這節(jié)課需要改進(jìn)的'地方是:求一個數(shù)的倒數(shù)還有另外一個方法就是一個數(shù)乘以另一個數(shù),乘積是1,那另一個數(shù)就是這個數(shù)的倒數(shù)。如5×( )=1,括號里的數(shù)就是5的倒數(shù)。這個方法在這節(jié)課中,我沒有明顯強(qiáng)調(diào)出來,還不能讓學(xué)生真正去理解倒數(shù)的意義。因此,知識與技能方面的目標(biāo)還不能完成達(dá)到。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思6

          學(xué)情預(yù)設(shè)反思:

          本課所學(xué)內(nèi)容相對于學(xué)生來說,確實簡單易懂,難度較低,大部分學(xué)生都基本掌握了相關(guān)知識,并能較好地完成各項習(xí)題。

          課前學(xué)生掌握情況預(yù)知不夠準(zhǔn)確,所設(shè)計的教學(xué)課件與教學(xué)預(yù)案相對落后,較低地估計了學(xué)生對本課知識的掌握情況。

          重難點突破反思:

          本課的教學(xué)重點為:理解倒數(shù)的意義,掌握求一個數(shù)的倒數(shù)的方法。教學(xué)難點為:熟練地寫出一個數(shù)的倒數(shù)。在本次課堂教學(xué)過程中,都一一解決,達(dá)到了教學(xué)預(yù)設(shè)目標(biāo)。

          教學(xué)過程總體反思:

          雖說對學(xué)生掌握情況的預(yù)設(shè)不足,但課前的隨機(jī)應(yīng)變,使得本課的教學(xué)又出了“新彩”,將一堂新授課,變?yōu)轭A(yù)習(xí)成果匯報課,充分發(fā)揮了學(xué)生的積極主動性,引學(xué)生在課堂上暢所欲言,并在熱烈的討論中,識記知識點,強(qiáng)調(diào)重點,攻破難點。學(xué)生在這樣的氛圍中,感受到數(shù)學(xué)的學(xué)習(xí)是如此的輕松、有趣,課前的預(yù)習(xí)是如此的有成就,進(jìn)而引得學(xué)生以更大的'積極性,投入到數(shù)學(xué)的學(xué)習(xí)中來。我個人認(rèn)為課堂教學(xué)做得比較成功。

          總的來說,本節(jié)課的教學(xué)有得也有失,最大的失就是沒有十分準(zhǔn)確地預(yù)知學(xué)生的情況,此失很有可能成為以后教學(xué)的重大失誤,所以,我一定吸取教訓(xùn),避免此類事情再次發(fā)生。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思7

          學(xué)校交流課我準(zhǔn)備講《倒數(shù)的認(rèn)識》,起因是幾年前講過一節(jié),這次想挖掘不同的感覺。定下課題之后就開始思考,如何講出這節(jié)課的與眾不同,求變出新。幾年前的課堂引入是用語文中“呆”變“杏”,“吳”變“吞”,讓孩子體會到上下結(jié)構(gòu)的變化,進(jìn)而引入倒數(shù)的知識。可是學(xué)生理解能力的不同所對應(yīng)的教學(xué)方法也不盡相同,知識基礎(chǔ)的差異所發(fā)生的教學(xué)實踐也需要調(diào)整。本班孩子在暑假里有不少已經(jīng)預(yù)習(xí)過了,對倒數(shù)有了一定的了解,更有家長認(rèn)為暑假學(xué)過的就應(yīng)該全會的,因此我想借此契機(jī)讓孩子感覺到認(rèn)識≠了解,知道≠學(xué)會。

          于是我的課堂思路就已經(jīng)有了雛形,以預(yù)習(xí)為主,直接引入,讓孩子們自己尋找知識點。課堂將以學(xué)生的主動來挖掘知識的迷惑地帶。

          9道聽算是平時的常規(guī)訓(xùn)練,這次除了1/21+14/21,其余全部得數(shù)為1,由此學(xué)生想到倒數(shù),引入課題:倒數(shù)的認(rèn)識。

          接著,提問學(xué)生:“你預(yù)習(xí)到了倒數(shù)的什么知識?”預(yù)設(shè)的學(xué)生會回答:倒數(shù)的概念、找倒數(shù)的'方法、以及關(guān)于1和0等問題,結(jié)果實際上課時令我大跌眼鏡,學(xué)生并沒有關(guān)注到“乘積是1的兩個數(shù)互為倒數(shù)”這句話,只注重了倒數(shù)就是分子分母調(diào)換位置。因此我轉(zhuǎn)換引導(dǎo)方式,從聽算題目入手,一題一題從分子分母調(diào)換位置入手,孩子們逐漸發(fā)現(xiàn)原來成為倒數(shù)的兩個數(shù)是相乘關(guān)系,在5÷5=1這道題時,研究到了5×1/5=1,因此5和1/5互為倒數(shù),研究完所有題目后,才發(fā)現(xiàn)原來倒數(shù)是乘積是1的兩個數(shù)。這才轉(zhuǎn)換了學(xué)生思想,認(rèn)識到倒數(shù)的實質(zhì),不再固執(zhí)的認(rèn)為僅僅調(diào)換位置那么簡單。

          而后進(jìn)行的找一個數(shù)的倒數(shù)知識點,采用的是開放式教學(xué),從“一個數(shù)”入手,這個數(shù)可以是分?jǐn)?shù),小數(shù),整數(shù)。學(xué)生紛紛舉例,得出方法,特別是有些孩子能舉出特例:帶分?jǐn)?shù),0、1。發(fā)現(xiàn)除0以外的數(shù)都能寫成分?jǐn)?shù),然后用調(diào)換分子分母位置的方法找到這個數(shù)的倒數(shù)。很喜歡這期間孩子活躍的思維,但是讓我感到遺憾的是忘記了每一題應(yīng)該用“乘積是1的兩個數(shù)互為倒數(shù)”這句話再來驗證答案是否正確。

          這節(jié)課到最后所準(zhǔn)備的課件有一些練習(xí)還未處理,當(dāng)發(fā)現(xiàn)時間不足時,該講的知識點已講解完畢,我就因時利導(dǎo),直接進(jìn)行總結(jié),重新回歸倒數(shù)的概念,強(qiáng)化檢驗兩個數(shù)是否互為倒數(shù)的金標(biāo)準(zhǔn)是“乘積是1的兩個數(shù)互為倒數(shù)”。

          課后反思:很喜歡今天自己的課堂設(shè)計,在實際授課過程中并沒有受課件的限制,充分調(diào)動學(xué)生自由發(fā)揮的擴(kuò)散性思維,最大程度的開放教學(xué)。學(xué)生學(xué)到了知識,提升了能力,知道預(yù)習(xí)應(yīng)該從哪里出發(fā),懂得了:認(rèn)識≠了解,知道≠學(xué)會。很得意自己處理“求一個數(shù)的倒數(shù)”這一環(huán)節(jié)的處理方法,不是老師出題學(xué)生做,而是學(xué)生自己想“一個數(shù)”都可以是哪些數(shù),教會學(xué)生考慮問題的角度,為以后逐步自學(xué)做準(zhǔn)備。美中不足的是:①講找倒數(shù)的方法,沒有用倒數(shù)的概念來強(qiáng)化,使課堂重心有所偏離。②課堂時間不充足,后面準(zhǔn)備的小高潮沒有展示出來。小組反思時我提出這個問題,梁芳老師說:因為課堂學(xué)生太多,這種開放式教學(xué)受到影響。期待小課堂的出現(xiàn),能真正的將所想的素質(zhì)教育,開放教學(xué)真正實施起來。也提醒親愛的同行們,課件是為課堂教學(xué)服務(wù)的,不能讓課件控制課堂教學(xué)!

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思8

          今年教學(xué)倒數(shù)的認(rèn)識后,我的感觸很多。以往教學(xué)這部分內(nèi)容,我是直接讓學(xué)生寫出結(jié)果是1的算式,再從學(xué)生說的算式中把乘積是1的算式板演在黑板上,再讓學(xué)生觀察算式的特點,然后再讓學(xué)生理解互為的意思,最后總結(jié)出倒數(shù)的`意義。現(xiàn)在想起來有一種牽著學(xué)生鼻子走的感覺。

          通過看雜志和其他教學(xué)刊物,我重新設(shè)計了教案。我覺得這樣設(shè)計才是讓學(xué)生自己通過觀察、比較、歸納總結(jié)出倒數(shù)的意義,是學(xué)生自己通過參與整個學(xué)習(xí)過程后有了真正的收獲。特別是通過比賽的形式激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)生發(fā)現(xiàn)了算式的特點,并讓學(xué)生舉例后發(fā)現(xiàn),有這樣特點的算式是寫不完的。然后讓學(xué)生仿照老師的樣子,通過例子說倒數(shù)的意義,并強(qiáng)調(diào)說倒數(shù)的關(guān)鍵字詞。這對學(xué)生掌握概念是非常必要的。當(dāng)學(xué)生很高興的自認(rèn)為是掌握了求一個數(shù)的倒數(shù)的方法時,我有給學(xué)生設(shè)計了障礙:怎樣求帶分?jǐn)?shù)、小數(shù)和整數(shù)的倒數(shù)。雖然教材新授內(nèi)容沒有這些知識,但在以后的練習(xí)中出現(xiàn)了。我把它提到前面來,大家一起研究。我覺得很有必要。這樣,使學(xué)生避免把帶分?jǐn)?shù)的倒數(shù)也用把分子分母顛倒位置的方法來求。這樣就不會給學(xué)生的認(rèn)知造成誤導(dǎo)。學(xué)生在知道了分?jǐn)?shù)、帶分?jǐn)?shù)、整數(shù)、小數(shù)的求倒數(shù)的方法以后,我又提出是不是所有的數(shù)都有倒數(shù)?使學(xué)生想到0的倒數(shù)問題。以前我是直接問學(xué)生“0“有倒數(shù)嗎?好像暗示學(xué)生”0“沒有倒數(shù)。改換成今天這樣問,學(xué)生通過自己思考,得出兩種答案,”0“有倒數(shù),另一種是”0“沒有倒數(shù)。有了分歧意見,又一次把學(xué)生帶入了問題王國。學(xué)生分別發(fā)表自己的見解。

          最后,大家一致認(rèn)為”0“沒有倒數(shù)。因為“0”不能做除數(shù),也就是0不能作分母。我覺得這節(jié)課的教學(xué)比以往教學(xué)有了本質(zhì)的轉(zhuǎn)變,就是發(fā)揮了學(xué)生的主體作用。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思9

          《倒數(shù)的認(rèn)識》這一課的核心內(nèi)容是“倒數(shù)的意義和求法”!暗箶(shù)的意義”屬于概念的教學(xué),我認(rèn)為,只有讓學(xué)生關(guān)注基礎(chǔ)知識本身,讓學(xué)生在深入剖析“倒數(shù)的意義”的過程中,學(xué)會數(shù)學(xué)思考,體會解決問題所帶來的成功體驗,才能使學(xué)習(xí)真正成為學(xué)生的'需要。

          本節(jié)課我在設(shè)計教學(xué)時力求充分發(fā)揮學(xué)生學(xué)習(xí)的主動性和積極性,引導(dǎo)學(xué)生自主探索與交流合作中再現(xiàn)知識發(fā)生的過程,提高學(xué)生的觀察分析和概括歸納的能力,實現(xiàn)知識技能與學(xué)生智能的同步發(fā)展。通過這節(jié)課的實際教學(xué),結(jié)合新課標(biāo),也給了我不少啟示。

          啟示一:處理好“教教材”和“用教材”的關(guān)系:

          1、在課的導(dǎo)入部分,聯(lián)系學(xué)生熟悉的生活情景,由倒影和一些有趣的文字引出本節(jié)課所要探究的問題――倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊

          2、變例題教學(xué)為學(xué)生自學(xué)課本,發(fā)現(xiàn)求一個數(shù)的倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,再總結(jié)出求一個數(shù)的倒數(shù)的方法。

          3、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。比如設(shè)計的“比較大小”,在比較大小之后,讓學(xué)生找找其中的規(guī)律,為接下來的分?jǐn)?shù)除法做鋪墊。“猜一猜“,不僅用到了倒數(shù)的知識,也聯(lián)系到前面學(xué)的分?jǐn)?shù)乘法應(yīng)用題。

          啟示二:相信學(xué)生,處理好扶與放的關(guān)系:

          1、給學(xué)生獨立思考的時間,相信學(xué)生能具有獨立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。

          2、給學(xué)生合作學(xué)習(xí)的機(jī)會;當(dāng)學(xué)生有困惑時,教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。在教學(xué)中,我對于探求“整數(shù)有沒有倒數(shù)”、“0和1有沒有倒數(shù)”、“小數(shù)有沒有倒數(shù)”這幾個環(huán)節(jié),充分發(fā)揮學(xué)生合作交流的作用,去共同解決問題。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思10

          倒數(shù)的認(rèn)識這部分內(nèi)容是在分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。學(xué)習(xí)倒數(shù)主要是為后面學(xué)習(xí)分?jǐn)?shù)除法作準(zhǔn)備的。因為一個數(shù)除以一個分?jǐn)?shù)的計算方法是歸結(jié)為乘這個分?jǐn)?shù)的倒數(shù)。所以學(xué)好這部分內(nèi)容對之后學(xué)習(xí)分?jǐn)?shù)除法是至關(guān)重要的。由于我是六年級數(shù)學(xué)組第一單元的把關(guān)教師,本課又是我的單元課,所以在課前,看了不少關(guān)于這課的教學(xué)設(shè)計,覺得是五花八門,各有所長,最終根據(jù)我班學(xué)生的學(xué)習(xí)情況,設(shè)計了教學(xué)方案,取得了不錯的教學(xué)效果,主要表現(xiàn)在以下幾點:

          一、特色引入,直奔主題。

          在本課的引入中,我通過談話讓學(xué)生了解對比相互的反義詞及位置交換,再通過讓男女學(xué)生計算小黑板不同的兩組乘法算式,觀察積的特點與算式中兩個因數(shù)的特點,直接對倒數(shù)形成了初步的認(rèn)識,更明白了只要調(diào)換分子與分母的'位置就會得到一個新的分?jǐn)?shù)。然后讓學(xué)生對具有這樣特點的兩個分?jǐn)?shù)起名,學(xué)生不約而同的叫它們倒數(shù)。為了使學(xué)生深入了解倒數(shù)的意義,我引導(dǎo)學(xué)生舉了大量分?jǐn)?shù)的例子,并通過觀察、計算等方法使學(xué)生明確“互為倒數(shù)的兩個數(shù)的乘積是1”、“倒數(shù)的兩個數(shù)只是把分子和分母的位置進(jìn)行調(diào)換”、更讓我高興的是學(xué)生能注意到“倒數(shù)是相互依存的”。抓住學(xué)生的這一發(fā)現(xiàn),我引導(dǎo)他們很快就總結(jié)出了倒數(shù)的概念——乘積是1的兩個數(shù)叫做互為倒數(shù)。在強(qiáng)調(diào)重點時,學(xué)生發(fā)現(xiàn)在數(shù)學(xué)上還有像倒數(shù)這樣的情況,如約數(shù)和倍數(shù),倒數(shù)也是相互依存的。

          二、讓學(xué)生在碰撞中體驗到成功的快樂。

          著名教育家蘇霍姆林斯基說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者!倍趦和男睦恚@種需求特別強(qiáng)烈。為了符合學(xué)生的這一心理特點,我在教學(xué)求一個數(shù)的倒數(shù)的方法上讓學(xué)生以生問生答的形式進(jìn)行,在我的鼓勵下,學(xué)生開始是提出整數(shù)、真分?jǐn)?shù)、假分?jǐn)?shù),接著想到帶分?jǐn)?shù)、小數(shù),進(jìn)一步想到兩個特例1和0, 面對特殊的0和1這兩個數(shù)時,學(xué)生們出現(xiàn)了小小的“爭執(zhí)”。有人認(rèn)為:“0和1有倒數(shù)。”有人認(rèn)為:“0和1沒有倒數(shù)!睂τ趯W(xué)生的“爭執(zhí)”我沒有直接介入,而是引導(dǎo)他們互相說說自己的理由,在他們的交流中,學(xué)生們達(dá)成了一致的認(rèn)識:0沒有倒數(shù),1的倒數(shù)是它本身。并且在說明理由時,學(xué)生還認(rèn)為“0不能做分母,所以0沒有倒數(shù)”,“0乘任何數(shù)都得0,不可能得到1”這兩個理由,拓展了我所提供給學(xué)生的知識內(nèi)容,學(xué)生在深入思考中得出結(jié)論,這就是學(xué)生學(xué)習(xí)的成果。我覺得,這樣做不僅增添了課堂活力,而且還讓學(xué)生經(jīng)歷了探索的過程,解決了學(xué)生的困惑,更讓學(xué)生體會到了成功的快樂。

          本課我最大的收獲是學(xué)生自己進(jìn)行了充分的辯論,讓我驚喜萬分,感到十分高興,我覺的是本課最大的收獲,在學(xué)生的辯論在,連我都充滿了激情。我想,在教學(xué)中需要我充分預(yù)設(shè),放開手腳,這樣定能讓我的課堂煥發(fā)精彩。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思11

          本節(jié)課是一節(jié)概念課,是陳述性知識,放在這個單元是起到了承上啟下作用,是為了銜接分?jǐn)?shù)乘法和分?jǐn)?shù)除法計算法則。其目的就是為除以一個數(shù)等于乘這個數(shù)的倒數(shù)做鋪墊,在這個問題上我一直認(rèn)為:為什么要乘這個數(shù)的倒數(shù)這個問題要說清楚,否則分?jǐn)?shù)除法的計算法則不好理解。

          教學(xué)從尋找乘積是1的兩個分?jǐn)?shù)開始。在給出的8個分?jǐn)?shù)中,學(xué)生能夠找到三對乘積是1的分?jǐn)?shù)。這項貌似游戲的活動凸顯了“倒數(shù)”是乘積為1的兩個數(shù)之間的關(guān)系,這正是建立倒數(shù)概念必須充分注意的內(nèi)涵。教材在三對乘積是1的分?jǐn)?shù)基礎(chǔ)上,指出“乘積是1的兩個數(shù)互為倒數(shù)”。學(xué)生準(zhǔn)確理解這句話的意思,不僅要知道互成“倒數(shù)”的兩個數(shù)的乘積是1,還要明白兩個數(shù)是“互為倒數(shù)”的。教材里三個卡通的交流,說的都是兩個分?jǐn)?shù)的乘積是1。下面的文字?jǐn)⑹鰪?qiáng)調(diào)兩個數(shù)“互為倒數(shù)”,還以3/8和8/3為例,引導(dǎo)學(xué)生體會“甲數(shù)是乙數(shù)的倒數(shù),乙數(shù)也是甲數(shù)的倒數(shù)”。

          求已知數(shù)的倒數(shù)分三個層次教學(xué):先求3/5、2/3等分?jǐn)?shù)的倒數(shù),然后求5、1等整數(shù)的倒數(shù),最后是0沒有倒數(shù)。在第一個層次里,要求學(xué)生觀察互為倒數(shù)的兩個分?jǐn)?shù),發(fā)現(xiàn)它們的分子、分母剛好互換位置,一方面進(jìn)一步體會互為倒數(shù)的兩個數(shù)的乘積是1,另一方面找到了寫出一個數(shù)的倒數(shù)的方法。第二個層次寫出整數(shù)的倒數(shù)。可以從概念出發(fā),尋找與這個整數(shù)相乘等于1的數(shù)。如果把整數(shù)看成分母是1的分?jǐn)?shù),就能像分?jǐn)?shù)那樣直接寫出它的倒數(shù)。第三個層次理解0沒有倒數(shù),并要求作出相應(yīng)的解釋。這是因為0和任何數(shù)相乘的積都是0,不存在與0相乘能夠得到1的數(shù)。

          倒數(shù)的意義就是一句話:乘積是1的兩個數(shù)互為倒數(shù)。但是對于這句話的理解是有著比較豐富的內(nèi)涵的,這也就是概念內(nèi)涵的體現(xiàn)。這節(jié)課的教學(xué)流程分為這樣幾個基本塊面:首先通過例題7提出的問題——給出倒數(shù)的含義——分層突擊理解倒數(shù)含義——出示形式上的經(jīng)典錯例(特別是小數(shù)的倒數(shù))——處理1和0的問題(這是本節(jié)課的難點)。

          本文所談的不是教學(xué)流程上的問題,而是通過倒數(shù)這個概念,談一談對概念教學(xué)的理解,從拆句的角度,乘積是1的兩個數(shù)互為倒數(shù)拆為:乘積是1、兩個數(shù)、互為倒數(shù)。

          針對倒數(shù)這個概念,我認(rèn)為:內(nèi)涵是指向正例的,外延是指向反例的。比如:書上出示乘積是1的正例,我們需要出示商、和、差是1的反例;書上說的是兩個數(shù)互為倒數(shù),沒有出示3個數(shù)的反例。這兩個反例是針對倒數(shù)概念本身的。

          學(xué)生在倒數(shù)的答案呈現(xiàn)上,習(xí)慣于用等號表示“的倒數(shù)是”這樣的錯誤,比如2=1/2,從數(shù)學(xué)表達(dá)式上說這是非常明顯的錯誤,學(xué)生確實犯了,而且每屆都有這樣的情況,在今年的教學(xué)中我已經(jīng)強(qiáng)調(diào)并且糾正了這樣的錯誤,這說明教學(xué)方式對于不同學(xué)生是不一樣的,學(xué)生本身的理解和態(tài)度的端正與否也是重要的問題,需要引起重視。

          本節(jié)課需要重視的第二個問題就是1和0的.問題,這兩個問題實際上牽涉到其他的概念:假分?jǐn)?shù)、整數(shù)、自然數(shù)。假分?jǐn)?shù)分為1和大于1的假分?jǐn)?shù);整數(shù)和自然數(shù)里都有0,在這個問題上需要處理好,學(xué)生的理解需要通過不同的方式來體現(xiàn)。

          單獨的概念教學(xué),或者說倒數(shù)概念本身不是一個很復(fù)雜的問題,有關(guān)倒數(shù)的知識主要包括兩點:一點是倒數(shù)的意義,另一點是求倒數(shù)的方法。學(xué)生建立倒數(shù)的概念以后,求一個數(shù)的倒數(shù)就容易了。因此,例7十分重視概念的形成以及對概念的準(zhǔn)確把握。

          相同的教學(xué)內(nèi)容,幾年的教學(xué)實踐下來,發(fā)現(xiàn):同樣的教學(xué)內(nèi)容,同樣的知識點,為什么會出現(xiàn)這么大的差別?究其原因就是因為我們需要關(guān)注概念結(jié)構(gòu)出現(xiàn)的次序,比如:整數(shù)的概念是復(fù)習(xí)、假分?jǐn)?shù)的概念是辨析。

          皮亞杰理論中認(rèn)知發(fā)展的三個基本過程——同化、順應(yīng)、平衡,對于倒數(shù)概念來說,學(xué)生之前毫無經(jīng)驗,是屬于順應(yīng),其實順應(yīng)更類似一個質(zhì)變的過程,有對于知識結(jié)構(gòu)的擴(kuò)展和修正,會形成一個新的認(rèn)知圖式。

          但是本節(jié)課的教學(xué)難度不大,原因是這個知識點本身是不難的,從形式到本質(zhì),需要考慮的問題主要就是0,所以我在教學(xué)的時候特別關(guān)注了數(shù)字0的問題,然后在書本上39頁第19題的處理上特別強(qiáng)調(diào)了數(shù)字1的問題。

          從整個概念系統(tǒng)來說,同化和順應(yīng)是相互依存的,如:本節(jié)課中倒數(shù)的概念是順應(yīng),而用到的外圍概念是整數(shù)、自然數(shù)、假分?jǐn)?shù),我在學(xué)習(xí)的時候注重對概念本身的解讀,數(shù)包括自然數(shù)和整數(shù),倒數(shù)的形式是分?jǐn)?shù),但不是分?jǐn)?shù)的整數(shù)和小數(shù)需要先轉(zhuǎn)化為最簡分?jǐn)?shù)之后再處理。

          在概念的形式實現(xiàn)之后的環(huán)節(jié)就是對倒數(shù)概念的辨析,如:題目a都有倒數(shù),這句話本身是有問題的,但是我們關(guān)注的點應(yīng)該是a這個數(shù)的取值范圍,是取正整數(shù)?負(fù)整數(shù)?0?非正整數(shù)?非負(fù)整數(shù)?自然數(shù)?這里都是學(xué)生需要考慮的問題,其實有沒有倒數(shù)的核心概念就是:0沒有倒數(shù),但是對于具體的表現(xiàn)形式是我們需要花時間去思量的問題。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思12

          教材中《倒數(shù)的認(rèn)識》這一節(jié)課的內(nèi)容不多,首先是用兩個數(shù)的乘積是1這樣的幾個算式來引出倒數(shù)的概念,然后觀察互為倒數(shù)的兩個數(shù),它們分子、分母的位置發(fā)生了什么變化?來總結(jié)出:求一個分?jǐn)?shù)的倒數(shù)時,只要把這個分?jǐn)?shù)的分子、分母調(diào)換位置就可以了。進(jìn)而對一些特殊的數(shù)求倒數(shù),比如整數(shù)的倒數(shù)(1的倒數(shù),0有倒數(shù)嗎?)。最后進(jìn)行課堂練習(xí),在練習(xí)中鞏固求一個數(shù)的倒數(shù),并且總結(jié)出:

          (1)真分?jǐn)?shù)的倒數(shù)都是大于1的假分?jǐn)?shù);

         。2)大于1的假分?jǐn)?shù)的倒數(shù)都是真分?jǐn)?shù);

         。3)分?jǐn)?shù)單位的倒數(shù)都是自然數(shù);

         。4)非零整數(shù)的'倒數(shù)都是幾分之一。

          以上的教學(xué)過程上課之前我認(rèn)為還是比較合理的,認(rèn)為《倒數(shù)的認(rèn)識》這一節(jié)課主要是為以后分?jǐn)?shù)的除法做準(zhǔn)備的,然而學(xué)生對這節(jié)課的掌握效果超出了我預(yù)期的準(zhǔn)備。一節(jié)40分鐘的課,在20多分鐘時學(xué)生已將上面的內(nèi)容全部進(jìn)行完成,而且掌握的效果還是很不錯的,由于課前沒有做好充分的準(zhǔn)備,自己也是第一次教六年級,在題型的積累上很欠缺,使得在后面10多分鐘的時間里只進(jìn)行相同類型的練習(xí)就結(jié)束了這節(jié)課。

          在課后我進(jìn)行了很長時間的反思,如果僅僅這樣教這節(jié)課,那么浪費的時間太多了,雖然教材中這節(jié)課的內(nèi)容就這么多,但是在考試中倒數(shù)知識方面的題卻是很多形式,單憑上面老師教的東西學(xué)生來完成還是比較吃力的,有些題必須是老師引導(dǎo)才能完成的。所以說,如果在當(dāng)初的新授課中我將這些題型進(jìn)行滲透,那么,在以后的練習(xí)中、考試中學(xué)生就能很輕松的自己來完成,我也不用將它作為一個新知識點來講而又花費時間。在課后的我進(jìn)行了搜集和整理,將與倒數(shù)的知識有關(guān)的題型全部整理出來,然后有進(jìn)行了篩選,選擇一些難易適中的題添補(bǔ)到這節(jié)課中來,題不能太難,因為畢竟這是一節(jié)新課,要考慮到學(xué)生的消化能力,但題必須有拓展性,對于以后的稍難的題一部分學(xué)生還是可以根據(jù)前面的知識有能力完成的,而對于差一點的學(xué)生也不至于遇到這樣的題而無從下手。所以在選題上我比較慎重,題太難學(xué)生學(xué)習(xí)沒有積極性,會認(rèn)為數(shù)學(xué)學(xué)習(xí)高不可攀,享受不到學(xué)習(xí)時收獲的快樂。

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思13

          教學(xué)說明:

          讓學(xué)生經(jīng)歷提出問題、自探問題、應(yīng)用知識的過程,理解倒數(shù)的意義自主總結(jié)出求倒數(shù)的方法。

          反思:

          本節(jié)課中,在探究新知之前,我打破數(shù)學(xué)教學(xué)常規(guī),進(jìn)行學(xué)科整合,借助語文學(xué)科與數(shù)學(xué)學(xué)科之間的聯(lián)系為切入點,由文字構(gòu)成規(guī)律引發(fā)學(xué)生數(shù)學(xué)思維火花,把文字構(gòu)成規(guī)律變成數(shù)字,進(jìn)行鋪墊。引發(fā)學(xué)生探究數(shù)學(xué)的欲望,極大調(diào)動學(xué)生學(xué)習(xí)的興趣。接著設(shè)疑引發(fā)學(xué)生提出問題:關(guān)于倒數(shù)你想知道些什么?學(xué)生提出的問題是:什么是倒數(shù)?倒數(shù)的意義是什么?倒數(shù)有什么特點?學(xué)生在探究新知識的同時,能夠自己舉一些倒數(shù)的例子,提出自己的問題,讓學(xué)生自己發(fā)現(xiàn)倒數(shù)的一些特點:每組中的兩個數(shù)相乘的積是1;每組中的兩個數(shù)的分子和分母的位置互相顛倒;每組中的兩個數(shù)是相互依存的關(guān)系,不能孤立。依據(jù)倒數(shù)的特點讓學(xué)生自己舉例驗證以上發(fā)現(xiàn)是否正確。

          在爭論數(shù)字0和1的倒數(shù)問題時,我創(chuàng)設(shè)情景境,通過兩個卡通人物(明明、紅紅)發(fā)生爭論 ――0和1都有倒數(shù),0和1都沒有倒數(shù),課堂上學(xué)生引起了較大的爭議,學(xué)生沒有從分?jǐn)?shù)的`角度去發(fā)現(xiàn)0不能作為分?jǐn)?shù)的分母,所以產(chǎn)生了0有倒數(shù)的念頭,再次的小組辯論。得出0不能作除數(shù)、0不能作分母。0沒有倒數(shù)的結(jié)論。而1這個數(shù)字學(xué)生還是會發(fā)現(xiàn)1的倒數(shù)就是一分之一,也就是1。在教學(xué)求倒數(shù)的方法時,學(xué)生也能根據(jù)已學(xué)的知識自主解決,老師只是作為輔助,學(xué)生自行總結(jié)求倒數(shù)的法。但是整數(shù)到底有沒有倒數(shù)?整數(shù)怎么樣來求倒數(shù)?要怎么樣把一個整數(shù)看成是分母是1的分?jǐn)?shù),再調(diào)換它們的位置。這樣開放性題目,學(xué)生要經(jīng)過小組合作才可以填出來,沒有辦法獨立思考。所以,我覺得以后的內(nèi)容就應(yīng)該多出一些具有挑戰(zhàn)性的題目,以幫助學(xué)生更好地理解新知識的應(yīng)用。

        【《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思】相關(guān)文章:

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思11-17

        數(shù)學(xué)倒數(shù)的認(rèn)識教學(xué)反思07-29

        數(shù)學(xué)倒數(shù)的認(rèn)識教學(xué)反思10-14

        倒數(shù)的認(rèn)識數(shù)學(xué)教學(xué)反思02-17

        數(shù)學(xué)《倒數(shù)的認(rèn)識》教學(xué)反思范文07-03

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思范文06-30

        小學(xué)數(shù)學(xué)《倒數(shù)的認(rèn)識》教學(xué)反思11-19

        數(shù)學(xué)倒數(shù)的認(rèn)識教學(xué)反思通用12-12

        數(shù)學(xué)倒數(shù)的認(rèn)識教學(xué)反思13篇10-04

        《倒數(shù)的認(rèn)識》數(shù)學(xué)教學(xué)反思(精選14篇)09-18

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>