數(shù)學(xué)《勾股定理》教學(xué)反思
身為一名到崗不久的老師,教學(xué)是重要的任務(wù)之一,通過教學(xué)反思可以有效提升自己的教學(xué)能力,那要怎么寫好教學(xué)反思呢?下面是小編收集整理的數(shù)學(xué)《勾股定理》教學(xué)反思,僅供參考,希望能夠幫助到大家。
數(shù)學(xué)《勾股定理》教學(xué)反思1
根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位,為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我設(shè)計了以下幾個環(huán)節(jié):
1.創(chuàng)設(shè)情境,提出猜想讓學(xué)生判斷兩位同學(xué)的畫法是否都能得到斜邊為10cm的直角三角形,通過對不同畫法的探究,溫故知新,為用構(gòu)造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時,引導(dǎo)學(xué)生從特殊到一般提出猜想。
2.證明猜想,得出新知。由于有前一環(huán)節(jié)的鋪墊,通過啟發(fā)、引導(dǎo)、討論,讓學(xué)生體會用構(gòu)造全等三角形的方法證明問題的思想,突破定理證明這一難點(diǎn),并適時出示課題。
3.應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運(yùn)用所學(xué)知識解決相應(yīng)問題,提高學(xué)生的分析解題能力,我設(shè)計了三個層次的問題,以達(dá)到教學(xué)目標(biāo).第一層次是讓學(xué)生直接運(yùn)用定理判斷三角形是否是直角三角形,掌握定理基本運(yùn)用;第二層次是強(qiáng)調(diào)已知三角形三邊長或三邊關(guān)系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個層次做好了鋪墊;第三層次是靈活運(yùn)用勾股定理與逆定理解決圖形面積的計算問題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會分割的思想.設(shè)計的題型前后呼應(yīng),使知識有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過合作、交流、反思、感悟的過程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。
4.歸納小結(jié),形成體系讓學(xué)生交流學(xué)習(xí)的收獲、課堂經(jīng)歷的感受和對數(shù)學(xué)思想方法的感悟體會等.幫助學(xué)生內(nèi)化新知,優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),形成能力,減輕課后負(fù)擔(dān)。
5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學(xué)生得到不同層次的發(fā)展
數(shù)學(xué)《勾股定理》教學(xué)反思2
星期三上午第一節(jié)講了《勾股定理逆定理》第一課時,課后效果和我預(yù)想的一樣,由于探究內(nèi)容偏多,課堂容量大,后半部分感覺倉促,留給學(xué)生的思考時間顯得不足。
回頭反思,這節(jié)課的設(shè)計思路比較合理:定理來源于生活,服務(wù)于生活。我由勾股定理引出一道生活實(shí)際問題,引起學(xué)生的求知欲,然后和學(xué)生分三種方法探究,得出“勾股定理逆定理”,經(jīng)過課堂練習(xí)夯實(shí)基礎(chǔ),最后利用新知解決開課時提出的生活實(shí)際問題,首尾呼應(yīng),學(xué)以致用。
對互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點(diǎn)化,而詳細(xì)講解、隨堂練習(xí)可做為第二課時的重點(diǎn),讓出更多時間來做勾股定理逆定理的相應(yīng)練習(xí),特別是應(yīng)加大有靈活度和難度生活習(xí)題的練習(xí),拓寬學(xué)生知識面,提高學(xué)生的發(fā)散思維能力。
總之,課堂設(shè)計要做到一個“狠”字,該刪除的就刪,教學(xué)目標(biāo)不可貪多。我們圍繞授課重點(diǎn)做相應(yīng)探究,練習(xí),次重點(diǎn)可放在下個課時重點(diǎn)講解,探究時間要預(yù)留充足,相應(yīng)練習(xí)寧精勿多,注重雙基才是根本。
數(shù)學(xué)《勾股定理》教學(xué)反思3
勾股定理是我們這學(xué)期教學(xué)中一個非常重要的定理,它揭示了直角三角形的三邊之間的數(shù)量關(guān)系,是典型的數(shù)形結(jié)合思想的運(yùn)用,拿著我們初二數(shù)學(xué)備課組全體老師的精心設(shè)計的講學(xué)稿,上完課后,反思不少。本節(jié)課的設(shè)計主要是根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu),“以畫一畫、量一量、算一算、證一證、用一用”為主線軸展開教學(xué)的,著實(shí)體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,真正地讓學(xué)生體會到觀察、歸納、驗證的思想和數(shù)形結(jié)合的思想,探究出勾股定理的內(nèi)容,并能做到簡單地應(yīng)用,主要成功的地方有:
一、導(dǎo)入新課,設(shè)疑巧激趣。
引入20xx年在北京召開的國際數(shù)學(xué)家大會會標(biāo),展示“弦圖”并設(shè)疑,迅速集中了學(xué)生的注意力,把學(xué)生的思緒帶進(jìn)了特定的學(xué)習(xí)環(huán)境中,激發(fā)了全班同學(xué)的濃厚興趣和強(qiáng)烈的求知欲,為本節(jié)課的成功創(chuàng)造了有利條件。
二、引導(dǎo)量量、猜猜、證證,有條不紊,思路清晰。
讓學(xué)生動手畫直角三角形,觀察、分析,引導(dǎo)學(xué)生自己得出結(jié)論,再對結(jié)論進(jìn)行科學(xué)的論證,用所得的結(jié)論解決數(shù)學(xué)問題。在課堂上,探索目標(biāo)明確,體現(xiàn)了教學(xué)的重點(diǎn)和難點(diǎn),充分發(fā)揮了學(xué)生的主體作用,調(diào)動了學(xué)生的積極性,培養(yǎng)了學(xué)生動手操作的能力,體現(xiàn)了以學(xué)生為主體的意識,各環(huán)節(jié)銜接緊密,學(xué)生課堂反應(yīng)好。
三、注重學(xué)生的情感目標(biāo),實(shí)現(xiàn)加強(qiáng)愛國主義教育。
本節(jié)課在教學(xué)探討的過程中,還滲透著勾股定理的歷史方化背景,激發(fā)學(xué)生的民族自豪感,促使探索新知識的熱情,整個課堂師生和諧,氣氛好;師生共同探討并驗證定理,鼓勵學(xué)生再用其他方法來驗證所得的勾股定理結(jié)論。
四、課堂上充分體現(xiàn)學(xué)生的主體地位,教師是組織者,引導(dǎo)者。
例:在引入拼圖驗證定理時,學(xué)生以前從未接觸過,故在教學(xué)中我就多給學(xué)生適當(dāng)指導(dǎo)和鼓勵,盡量做學(xué)生的組織者、合作者。
通過這節(jié)課,備課、上課之后,感悟點(diǎn)點(diǎn)滴滴,確實(shí)還存在著一些遺憾。
、俑杏X今天這堂課沒有平時上課的氣氛那么濃,部分同學(xué)認(rèn)為是錄像課,不敢拋頭露面,甚至連回答問題的聲音都小了很多,故主動提問的人較少。
②講學(xué)稿編設(shè)的內(nèi)容較多,有點(diǎn)欲速則不達(dá)的感覺。
數(shù)學(xué)《勾股定理》教學(xué)反思4
《勾股定理》一章檢測結(jié)果出來了,學(xué)生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉(zhuǎn)反側(cè)。
一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學(xué)直接根據(jù)勾股定理得:AB=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。
二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學(xué)可能是受勾股數(shù)“3,4,5”的影響,錯把結(jié)果寫成了3c,其實(shí)這里的第三邊是斜邊.
三是缺乏分類思想,考慮問題不全面,導(dǎo)致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結(jié)果應(yīng)該有兩個,但好多同學(xué)都填了一個答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應(yīng)考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。
四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學(xué)認(rèn)為此三角形不是直角三角形,其實(shí)這個三角形是以b為斜邊的直角三角形。
五是缺少方程思想和轉(zhuǎn)化思想,使綜合類試題痛失分?jǐn)?shù)。
六是書寫不規(guī)范。例如:運(yùn)用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學(xué)寫出一句“由勾股定理得”的不恰當(dāng)?shù)臄⑹觥?/p>
針對上述問題,痛定思痛,感悟頗多:
第一,教學(xué)不可削弱技能的訓(xùn)練。要學(xué)生真正掌握某個知識,如果缺少相應(yīng)技能的訓(xùn)練是不科學(xué)的。正如教人開車的教練把開車的要點(diǎn)、技巧講清楚,然后叫學(xué)車的學(xué)生馬上開車去考試一樣。試問:當(dāng)教師在講臺上滔滔不絕地講解時,能否保證每一個學(xué)生都專心去聽?能否保證每一個專心去聽的學(xué)生都聽得明白?能否保證每一個聽得明白的學(xué)生都能解同一類題目?可見:“課堂上教師講,學(xué)生聽,聽就會懂,懂就會做!敝皇墙處熞粠樵傅淖龇ǎ處熤挥胁粷M足于自己的“講清楚”,在課堂上幫助學(xué)生獨(dú)立完成,并進(jìn)行一定量的訓(xùn)練,才能實(shí)現(xiàn)教學(xué)的有效性。
第二,巧設(shè)錯誤案例,讓學(xué)生辨錯、糾錯,即學(xué)生對教師的有意“示錯”進(jìn)行分析、判斷,提高防錯能力。在教學(xué)中,教師有時可恰到好處,有意地把估計學(xué)生易錯的做法顯示給學(xué)生,以引起學(xué)生的注意,然后通過師生共同分析錯因,加以糾錯,達(dá)到及時、有效預(yù)防,并避免學(xué)生出現(xiàn)類似錯誤的目的。這樣,可防患于未然,并提高學(xué)生分析、判斷、解決問題的能力。
第三,教學(xué)應(yīng)注重數(shù)學(xué)思想和方法傳授。理解掌握各種數(shù)學(xué)思想和方法是形成數(shù)學(xué)技能技巧,提高數(shù)學(xué)能力的前提。 學(xué)生學(xué)習(xí)數(shù)學(xué),學(xué)會是基礎(chǔ),會學(xué)是目的,教是為了不教。教學(xué)中,在加強(qiáng)技能訓(xùn)練的同時,要強(qiáng)化數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué),做到講方法聯(lián)系思想,以思想指導(dǎo)方法,使二者相互交融,相得益彰。此外,在教學(xué)中培養(yǎng)學(xué)生的“問題意識”,激勵學(xué)生善于發(fā)現(xiàn)問題、思考問題,并能運(yùn)用數(shù)學(xué)方法去解決廣泛的多種多樣的實(shí)際問題,以便增強(qiáng)學(xué)生探究新知識、新方法的創(chuàng)造能力。
第四,教學(xué)應(yīng)加大綜合訓(xùn)練的力度。目前的綜合題已經(jīng)由單純的知識疊加型轉(zhuǎn)化為知識、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運(yùn)用以及創(chuàng)新意識等特點(diǎn)。教學(xué)時應(yīng)抓好“三轉(zhuǎn)”能力的培養(yǎng):(1)語言轉(zhuǎn)換能力。每道數(shù)學(xué)綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強(qiáng)的語言轉(zhuǎn)換能力,能把普通語言轉(zhuǎn)換成數(shù)學(xué)語言。(2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強(qiáng)的數(shù)學(xué)概念的轉(zhuǎn)換能力。(3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。只有如此,方可找到解決綜合題的突破口。
第五,教學(xué)勿忘發(fā)揮板書的特有功能。板書通過學(xué)生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴(yán)謹(jǐn)?shù)慕獯疬^程的板演,不但便于學(xué)生理解、掌握知識,還會給學(xué)生起到示范作用。
相信通過反思教學(xué),優(yōu)化方法,細(xì)化過程,一定能取得事半功倍之效。
數(shù)學(xué)《勾股定理》教學(xué)反思5
新課程改革要求我們:將數(shù)學(xué)教學(xué)置身于學(xué)生自主探究與合作交流的數(shù)學(xué)活動中,將知識的獲取與能力的培養(yǎng)置身于學(xué)生形式各異的探索經(jīng)歷中,關(guān)注學(xué)生探索過程中的情感體驗,并發(fā)展實(shí)踐能力及創(chuàng)新意識,為學(xué)生的終身學(xué)習(xí)及可持續(xù)發(fā)展奠定堅實(shí)的基礎(chǔ)。
首先講解勾股定理的重要性,讓學(xué)生明白勾股定理是中學(xué)數(shù)學(xué)幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ)。它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+ b2= c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位,從而激發(fā)學(xué)生的求知欲。
一、精心編制數(shù)學(xué)教學(xué)目標(biāo)知識與技能:1.讓學(xué)生在經(jīng)歷探索定理的過程中,理解并掌握勾股定理的內(nèi)容;2.掌握勾股定理的證明及介紹相關(guān)史料;3.學(xué)生能對勾股定理進(jìn)行簡單計算。
過程與方法:在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗證”的數(shù)學(xué)思想,發(fā)展合情推理能力,并體會數(shù)形結(jié)合和特殊到一般的思想方法。
情感態(tài)度與價值觀:體會數(shù)學(xué)文化的價值,通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。
二、優(yōu)化數(shù)學(xué)教學(xué)內(nèi)容的呈現(xiàn)方式(一)創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生思考,激發(fā)學(xué)習(xí)興趣。
1.2002年國際數(shù)學(xué)家大會在北京舉行的意義。
2.電腦顯示:ICM20xx會標(biāo)。
3. 會標(biāo)設(shè)計與趙爽弦圖。
4. 趙爽弦圖與《周髀算經(jīng)》中的“商高問題”。
(二)通過學(xué)生動手操作,觀察分析,實(shí)踐猜想,合作交流,人人參與活動,體驗并感悟“圖形”和“數(shù)量”之間的相互聯(lián)系。
1.觀察網(wǎng)格上的圖形:分別以直角三角形的三邊向外作正方形,三個正方形的面積關(guān)系。再利用幾何畫板演示,引導(dǎo)學(xué)生去觀察,大膽的猜測。
2.引導(dǎo)學(xué)生將正方形的面積與三角形的邊長聯(lián)系起來,讓學(xué)生進(jìn)行分析、歸納,鼓勵學(xué)生用用語言表達(dá)自己的發(fā)現(xiàn)。采取“個人思考——小組活動——全班交流”的形式。
3.讓學(xué)生自己任畫一個直角三角形,再次驗證自己的發(fā)現(xiàn),在此基礎(chǔ)上得到直角三角形三邊的關(guān)系。
4.電腦演示:銳角三角形、鈍角三角形三邊的平方關(guān)系,從而進(jìn)一步認(rèn)識直角三角形三邊的關(guān)系。
5.通過幾個練習(xí),了解直角三角形三邊關(guān)系的作用。
。ㄈ├^續(xù)動手操作實(shí)踐,思考探究,拼圖驗證猜想。
1.學(xué)生動手用準(zhǔn)備好的四個直角三角形拼弦圖。
2.利用弦圖來驗證勾股定理。采取“個人思考——小組活動——全班交流”的形式。
。ㄋ模┩卣寡由,發(fā)揮作為千古第一定理的文化價值。
1.簡單介紹勾股定理的文化價值。
2.閱讀:勾股定理成為地球人與“外星人”聯(lián)系的“使者”。
3.電腦演示:欣賞勾股樹。
4.推薦進(jìn)一步課外學(xué)習(xí)的網(wǎng)址。
5.與課頭的“ICM20xx”在中國舉行的意義首尾呼應(yīng),進(jìn)一步激發(fā)學(xué)生追求遠(yuǎn)大目標(biāo),奮發(fā)學(xué)習(xí)。
本節(jié)課開始我利用了導(dǎo)語中的在北京召開的20xx年國際數(shù)學(xué)家大會的會標(biāo),其圖案為“弦圖”,激發(fā)學(xué)生的興趣。同時出示勾股定理的圖形,讓學(xué)生猜想直角三角形三邊之間的關(guān)系。然后利用正方形網(wǎng)格驗證猜想的正確性,還利用教具在黑板上拼圖,啟發(fā)學(xué)生用面積法得出a2+ b2= c2在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師利用多種證法讓學(xué)生參與勾股定理的探索過程,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論,使得這課的重難點(diǎn)輕易地突破,大大提高教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。
數(shù)學(xué)《勾股定理》教學(xué)反思6
勾股定理是中學(xué)數(shù)學(xué)幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ).它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+b2=c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位.
八年級學(xué)生已具備一定的分析與歸納能力,初步掌握了探索圖形性質(zhì)的基本方法.但是學(xué)生對用割補(bǔ)方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數(shù)有機(jī)的結(jié)合起來還很陌生.
基于以上原因,本節(jié)課把學(xué)生的探索活動放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對探究過程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識.從而教給學(xué)生探求知識的方法,教會學(xué)生獲取知識的本領(lǐng).并確立了如下的教學(xué)目標(biāo):
1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。
2、讓學(xué)生經(jīng)歷圖形分割實(shí)驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經(jīng)驗,在過程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感。
教學(xué)難點(diǎn)將邊不在格線上的'圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.
本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想.另外,我在探索的過程中補(bǔ)充了一個倒水實(shí)驗,(放片子)我個人覺得效果很好,它讓學(xué)生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實(shí)驗很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點(diǎn)燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。
除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動地探求對勾股定理更深入的認(rèn)識、拓展學(xué)生的視野.
數(shù)學(xué)《勾股定理》教學(xué)反思7
對于“勾股定理的應(yīng)用”的反思和小結(jié)有以下幾個方面:
1、課前準(zhǔn)備不充分:
基礎(chǔ)題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設(shè)計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結(jié)論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實(shí)質(zhì)即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學(xué)生竟然不知道。其二是課件準(zhǔn)備不充分,其中有一道例題的答案是跟著例題同時出現(xiàn)的,再去修改,又浪費(fèi)了一點(diǎn)時間。其三,用面積法求直角三角形的高,我認(rèn)為是一個非常簡單的數(shù)學(xué)問題,但在實(shí)際教學(xué)中,發(fā)現(xiàn)很多學(xué)生仍然很難理解,說明我在備課時備學(xué)生不充分,沒有站在學(xué)生的角度去考慮問題。
2、課堂上的語言應(yīng)該簡練。這是我上課的最大弱點(diǎn),我不敢放手讓學(xué)生去獨(dú)立思考問題,會去重復(fù)題目意思,實(shí)際上不需要的,可以留時間讓學(xué)生去獨(dú)立思考。教師是無法代替學(xué)生自己的思考的,更不能代替幾十個有差異的學(xué)生的思維。課堂上老師放一放,學(xué)生得到的更多,老師放多少,學(xué)生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門藝術(shù),我要好好向老教師學(xué)習(xí)!
3、鼓勵學(xué)生的藝術(shù)。教師要鼓勵學(xué)生嘗試并尊重他們不完善的甚至錯誤的意見,經(jīng)常鼓勵他們大膽說出自己的想法,大膽發(fā)表自己的見解,真正體現(xiàn)出學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。
4、啟發(fā)學(xué)生的技巧有待提高。啟發(fā)學(xué)生也是一門藝術(shù),我的課堂上有點(diǎn)啟而不發(fā)。課堂上應(yīng)該多了解學(xué)生。
數(shù)學(xué)《勾股定理》教學(xué)反思8
在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復(fù)演示幾遍,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點(diǎn)輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。學(xué)生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。
在教學(xué)應(yīng)用勾股定理時,老是運(yùn)用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學(xué)們一看,興趣來了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生的想像力。
最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。
數(shù)學(xué)有與其他學(xué)科不同的特點(diǎn),自然科學(xué)常發(fā)生新理論代替舊理論的情形,但數(shù)學(xué)不會如此。數(shù)學(xué)學(xué)習(xí)是數(shù)學(xué)發(fā)展史的縮影,是一個累進(jìn)過程。勾股定理是人類幾千年的文化遺產(chǎn),是經(jīng)典的定理,擁有科學(xué)簡潔的數(shù)學(xué)語言。而數(shù)學(xué)教學(xué)的核心不是知識本身,而是數(shù)學(xué)的思維方式。認(rèn)識是個人獨(dú)特的構(gòu)造結(jié)果,人的思維活動有強(qiáng)烈的個性特征。每個學(xué)生都有自己的生活背景、家庭環(huán)境,這種特定的文化氛圍,導(dǎo)致不同的學(xué)生有不同的思維方式和解決問題的策略。學(xué)生已有豐富的數(shù)學(xué)活動經(jīng)驗,特別是運(yùn)用數(shù)學(xué)解決問題的策略。學(xué)生只有用自己創(chuàng)造與體驗的方法來學(xué)習(xí)數(shù)學(xué),才能真正地掌握數(shù)學(xué)。因而數(shù)學(xué)教學(xué)要展現(xiàn)數(shù)學(xué)的思維過程,要學(xué)生領(lǐng)會和實(shí)現(xiàn)數(shù)學(xué)化,自己去“發(fā)現(xiàn)”結(jié)果。這一課的學(xué)習(xí)就主要通過讓學(xué)生自主地探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動腦動手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實(shí)驗室”,學(xué)生通過自己的活動得出結(jié)論、使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。
數(shù)學(xué)《勾股定理》教學(xué)反思9
反思之一:教學(xué)觀念的轉(zhuǎn)變。
“教師教,學(xué)生聽,教師問,學(xué)生答,教師出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學(xué)生的實(shí)踐能力,而且會造成機(jī)械的學(xué)習(xí)知識,形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,《新課標(biāo)》要求老師一定要改變角色,變主角為配角,把主動權(quán)交給學(xué)生,讓學(xué)生提出問題,動手操作,小組討論,合作交流,把學(xué)生想到的,想說的想法和認(rèn)識都讓他們盡情地表達(dá),然后教師再進(jìn)行點(diǎn)評與引導(dǎo),這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會與日劇增。上這節(jié)課前教師可以給學(xué)生布置任務(wù):查閱有關(guān)勾股定理的資料(可上網(wǎng)查,也可查閱報刊、書籍),提前兩三天由幾位學(xué)生匯總(教師可適當(dāng)指導(dǎo))。這樣可使學(xué)生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學(xué)生認(rèn)識到勾股定理的重要性,學(xué)習(xí)勾股定理是非常必要的,激發(fā)學(xué)生的學(xué)習(xí)興趣,對學(xué)生也是一次愛國主義教育,培養(yǎng)民族自豪感,激勵他們奮發(fā)向上,同時培養(yǎng)學(xué)生的自學(xué)能及歸類總結(jié)能力。
反思之二:教學(xué)方式的轉(zhuǎn)變。
學(xué)生學(xué)會了數(shù)學(xué)知識,卻不會解決與之有關(guān)的實(shí)際問題,造成了知識學(xué)習(xí)和知識應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問題,對于學(xué)生實(shí)踐能力的培養(yǎng)非常不利的,F(xiàn)在的數(shù)學(xué)教學(xué)到處充斥著過量的、重復(fù)的題目訓(xùn)練。我認(rèn)為真正的教學(xué)方式的轉(zhuǎn)變要體現(xiàn)在這兩個方面:一是要關(guān)注學(xué)生學(xué)習(xí)的過程。首先要關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動過程和所獲得的結(jié)論等;同時要關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理。二是要關(guān)注學(xué)生學(xué)習(xí)的知識性及其實(shí)際應(yīng)用。本節(jié)課的主要目的是掌握勾股定理,體會數(shù)形結(jié)合的思想。現(xiàn)在往往是學(xué)生知道了勾股定理而不知道在實(shí)際生活中如何運(yùn)用勾股定理,我們在學(xué)生了解勾股定理以后可以出一個類似于《九章算術(shù)》中的應(yīng)用題:在平靜的湖面上,有一棵水草,它高出水面3分米,一陣風(fēng)吹來,水草被吹到一邊,草尖與水面平齊,已知水草移動的水平距離為6分米,問這里的水深是多少?
教學(xué)方式的轉(zhuǎn)變在關(guān)注知識的形成同時,更加關(guān)注知識的應(yīng)用,特別是所學(xué)知識在生活中的應(yīng)用,真正起到學(xué)有所用而不是枯燥的理論知識。這一點(diǎn)上在新課標(biāo)中體現(xiàn)的尤為明顯。
反思之三:多媒體的重要輔助作用。
課堂教學(xué)中要正確地、充分地引導(dǎo)學(xué)生探究知識的形成過程,應(yīng)創(chuàng)造讓學(xué)生主動參與學(xué)習(xí)過程的條件,培養(yǎng)學(xué)生的觀察能力、合作能力、探究能力,從而達(dá)到提高學(xué)生數(shù)學(xué)素質(zhì)的目的。多媒體教學(xué)的優(yōu)化組合,在幫助學(xué)生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補(bǔ)來驗證勾股定理并不是所有的學(xué)生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學(xué)生的學(xué)習(xí)興趣。
反思之四:轉(zhuǎn)變教學(xué)的評價方式,提高學(xué)生的自信心。
評價對于學(xué)生來說有兩種評價的方式。一種是以他人評價為基礎(chǔ)的,另一種是以自我評價為基礎(chǔ)的。每個人素質(zhì)生成都經(jīng)歷著這兩種評價方式的發(fā)展過程,經(jīng)歷著一個從學(xué)會評價他人到學(xué)會評價自己的發(fā)展過程。實(shí)施他人評價,完善素質(zhì)發(fā)展的他人監(jiān)控機(jī)制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發(fā)展的成熟、素質(zhì)的完善主要建立在自我評價的基礎(chǔ)上,是以素質(zhì)的自我評價、自我調(diào)節(jié)、自我教育為標(biāo)志的。因此要改變單純由教師評價的現(xiàn)狀,提倡評價主體的多元化,把教師評價、同學(xué)評價、家長評價及學(xué)生的自評相結(jié)合。
在本節(jié)課的教學(xué)中,老師可以從多方面對學(xué)生進(jìn)行合適的評價。如以學(xué)生的課前知識準(zhǔn)備是一種態(tài)度的評價,上課的拼圖能力是一種動手能力的評價,對所結(jié)論的分析是對猜想能力的一種評價,對實(shí)際問題的分析是轉(zhuǎn)化能力的一種評價等等。
數(shù)學(xué)《勾股定理》教學(xué)反思10
勾股定理整章書的內(nèi)容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時,本節(jié)課主要是和學(xué)生一起探究勾股地理的認(rèn)識。在教學(xué)的過程中感覺有幾個方面需要轉(zhuǎn)變的。
一 、轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。由于高效課堂中教學(xué)模式需要進(jìn)行學(xué)生自主討論交流學(xué)習(xí),在探究勾股定理的發(fā)現(xiàn)時分四人一小組由同學(xué)們合作探討作圖,去發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的直角三角形不具有這種性質(zhì)?扇匀蛔C明不了我們的猜想是否正確。之后用拼圖的方法再來驗證一下。讓學(xué)生們拿出準(zhǔn)備好的直角三角形和正方形,利用拼圖和面積計算來證明 + = (學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。 新課標(biāo)下要求教師個人素質(zhì)越來越高,教師自身要不斷及時地學(xué)習(xí)學(xué)科專業(yè)知識,接受新信息,對自己及時充電、更新,而且要具有幽默藝術(shù)的語言表達(dá)能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標(biāo)。 “教師教,學(xué)生聽,教師問,學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學(xué)生的實(shí)踐能力,而且會造成機(jī)械的學(xué)習(xí)知識,形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動權(quán)交給學(xué)生,讓學(xué)生提出問題,動手操作,小組討論,合作交流,把學(xué)生想到的,想說的想法和認(rèn)識都讓他們盡情地表達(dá),然后教師再進(jìn)行點(diǎn)評與引導(dǎo),這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會與日劇增。
二、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會學(xué)習(xí)過程。 學(xué)生學(xué)會了數(shù)學(xué)知識,卻不會解決與之有關(guān)的實(shí)際問題,造成了知識學(xué)習(xí)和知識應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問題,對于我們這兒的學(xué)生起點(diǎn)低、數(shù)學(xué)基礎(chǔ)差、實(shí)踐能力差,對學(xué)生的各種能力培養(yǎng)非常不利的。課堂中要特別關(guān)注:
1、關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動過程和所獲得的結(jié)論等;
2、關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理。
3、學(xué)習(xí)的知識性:掌握勾股定理,體會數(shù)形結(jié)合的思想。
三、提高教學(xué)科技含量,充分利用多媒體。 勾股定理知識屬于幾何內(nèi)容,而幾何圖形可以直觀地表示出來,學(xué)生認(rèn)識圖形的初級階段中主要依靠形象思維。對幾何圖形的認(rèn)識始于觀察、測量、比較等直觀實(shí)驗手段,現(xiàn)代兒童認(rèn)識幾何圖形亦如此,可以通過直觀實(shí)驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數(shù)種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進(jìn)行直觀實(shí)驗所得到的認(rèn)識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置。 培養(yǎng)邏輯推理能力,作了認(rèn)真的考慮和精心的設(shè)計,把推理證明作為學(xué)生觀察、實(shí)驗、探究得出結(jié)論的自然延續(xù)。教科書的幾何部分,要先后經(jīng)歷“說點(diǎn)兒理”“說理”“簡單推理”幾個層次,有意識地逐步強(qiáng)化關(guān)于推理的初步訓(xùn)練,主要做法是在問題的分析中強(qiáng)調(diào)求解過程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。 由于信息技術(shù)的發(fā)展與普及,直觀實(shí)驗手段在教學(xué)中日益增加,本節(jié)課利用我們學(xué)校建立了電教教室,通過制作課件對于幾何學(xué)的學(xué)習(xí)起到積極作用。
數(shù)學(xué)《勾股定理》教學(xué)反思11
一、教學(xué)的成功體驗
《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”.數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動、共同發(fā)展的過程,是“溝通”與“合作”的過程.本節(jié)課我結(jié)合勾股定理的歷史和畢答哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗到數(shù)學(xué)知識來源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性.為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會,通過“觀察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會數(shù)學(xué)知識的產(chǎn)生、形成、發(fā)展與應(yīng)用過程.通過引導(dǎo)學(xué)生在具體操作活動中進(jìn)行獨(dú)立思考,鼓勵學(xué)生發(fā)表自己的見解,學(xué)生自主地發(fā)現(xiàn)問題、探索問題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動中思考,在思考中活動.
二、信息技術(shù)與學(xué)科的整合
在信息社會,信息技術(shù)與課程的整合必將帶來教育者的深刻變化.我充分地利用多媒體教學(xué),為學(xué)生創(chuàng)設(shè)了生動、直觀的現(xiàn)實(shí)情景,具有強(qiáng)列的吸引力,能激發(fā)學(xué)生的學(xué)習(xí)欲望.心理學(xué)專家研究表明:運(yùn)動的圖形比靜止的圖形更能引起學(xué)生的注意力.在傳統(tǒng)教學(xué)中,用筆、尺和圓規(guī)在紙上或黑板上畫出的圖形都是
靜止圖形,同時圖形一旦畫出就被固定下來,也就是失去了一般性,所以其中的數(shù)學(xué)規(guī)律也被掩蓋了,呈現(xiàn)給學(xué)生的數(shù)學(xué)知識也只能停留在感性認(rèn)識上.本節(jié)課我通過Flash動畫演示結(jié)果和拼圖程以及呈現(xiàn)教學(xué)內(nèi)容。真正體現(xiàn)數(shù)學(xué)規(guī)律的應(yīng)用價值.把呈現(xiàn)給學(xué)生的數(shù)學(xué)知識從感性認(rèn)識提升到理性認(rèn)識,實(shí)現(xiàn)一種質(zhì)的飛躍.
數(shù)學(xué)《勾股定理》教學(xué)反思12
一、教學(xué)的成功體驗
《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”。數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動、共同發(fā)展的過程,是“溝通”與“合作”的過程。本節(jié)課我結(jié)合勾股定理的歷史和畢大哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗到數(shù)學(xué)知識來源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性。為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會,通過“觀察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會數(shù)學(xué)知識的產(chǎn)生、形成、發(fā)展與應(yīng)用過程。通過引導(dǎo)學(xué)生在具體操作活動中進(jìn)行獨(dú)立思考,鼓勵學(xué)生發(fā)表自己的見解,學(xué)生自主地發(fā)現(xiàn)問題、探索問題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動中思考,在思考中活動。
二、信息技術(shù)與學(xué)科的整合
在信息社會,信息技術(shù)與課程的整合必將帶來教育者的深刻變化。我充分地利用多媒體教學(xué),為學(xué)生創(chuàng)設(shè)了生動、直觀的現(xiàn)實(shí)情景,具有強(qiáng)列的吸引力,能激發(fā)學(xué)生的學(xué)習(xí)欲望。心理學(xué)專家研究表明:運(yùn)動的圖形比靜止的圖形更能引起學(xué)生的注意力。在傳統(tǒng)教學(xué)中,用筆、尺和圓規(guī)在紙上或黑板上畫出的圖形都是靜止圖形,同時圖形一旦畫出就被固定下來,也就是失去了一般性,所以其中的數(shù)學(xué)規(guī)律也被掩蓋了,呈現(xiàn)給學(xué)生的數(shù)學(xué)知識也只能停留在感性認(rèn)識上。本節(jié)課我通過幾何畫板演示結(jié)果和拼圖程以及呈現(xiàn)教學(xué)內(nèi)容。真正體現(xiàn)數(shù)學(xué)規(guī)律的應(yīng)用價值。把呈現(xiàn)給學(xué)生的數(shù)學(xué)知識從感性認(rèn)識提升到理性認(rèn)識,實(shí)現(xiàn)一種質(zhì)的飛躍。
數(shù)學(xué)《勾股定理》教學(xué)反思13
我對本節(jié)課的教學(xué)過程是這樣設(shè)計的:
1、欣賞圖片,激發(fā)興趣
通過欣賞xxxx年在我國北京召開的國際數(shù)學(xué)家大會的會徽圖案,引出“趙爽弦圖”,讓學(xué)生了解我國古代輝煌的數(shù)學(xué)成就,引入課題。
接下來,讓學(xué)生欣賞傳說故事:相傳2500年前,畢達(dá)格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。
這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。
2、分析探究,得出猜想
通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗由特殊到一般的探究過程,學(xué)習(xí)這種研究方法。
在這一過程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)交流,然后在全班交流,盡量學(xué)習(xí)更多的方法。
3、拼圖證明,得出定理
先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己剪拼,并利用圖形進(jìn)行證明。
由于難度比較大,組織學(xué)生開展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。
4、反思?xì)w納,總結(jié)升華
一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(當(dāng)然多數(shù)為具體的知識和方法)。二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時對大家進(jìn)行思想教育。
5、練習(xí)鞏固
主要練習(xí)勾股定理的其它證明方法。
6、作業(yè)設(shè)計
請你利用網(wǎng)絡(luò)資源,收集有關(guān)勾股定理的證明方法來進(jìn)行學(xué)習(xí)。寫出有關(guān)勾股定理知識的小論文。一個月過去了,我已忘記了這一項特殊的作業(yè),但部分學(xué)生卻寫出了出乎意料的小論文。
通過這節(jié)課的兩種不同的上法,以及學(xué)生的不同表現(xiàn)與收獲,讓我更深刻地認(rèn)識到:
(1)新課改理念只有全面滲透到教育教學(xué)工作中,與平時工作緊密結(jié)合,才能夠促進(jìn)學(xué)生的全面發(fā)展;
。2)教師要充分利用課堂內(nèi)容為整體課程目標(biāo)服務(wù),不要僅限于本節(jié)課的知識目標(biāo)與要求,就知識“教”知識,而要通過知識的學(xué)習(xí)獲得學(xué)習(xí)這些知識的方法,同時,還要充分利用課堂對學(xué)生進(jìn)行情感態(tài)度價值觀的教育,真正讓教材成為教育學(xué)生的素材,而不是學(xué)科教學(xué)的全部;
。3)要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會(如布置開放性的學(xué)習(xí)任務(wù):數(shù)學(xué)實(shí)踐活動、研究學(xué)習(xí)、寫小論文等)。
我相信:只要堅持不懈地這樣去做,不但能很好地實(shí)施新課改,實(shí)現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績;不過,這樣教師一定不會輕松。
數(shù)學(xué)《勾股定理》教學(xué)反思14
今后的教學(xué)中:
。1)立足教材,鉆研教學(xué)大綱的要求;試卷中較多題目是根據(jù)課本的題目改編而來,從學(xué)生的考試情況來看課本的題目掌握不理想,這說明在平時的教學(xué)中對書本的重視不夠,過多地追求課外題目的訓(xùn)練,但忽略學(xué)生實(shí)實(shí)在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學(xué)生,讓學(xué)生積極參與到課堂中,多機(jī)會給學(xué)生展示,表演,講題,把思路和方法講出來,使學(xué)生更清淅地理解題目,提升自己對數(shù)學(xué)的理解。多點(diǎn)讓學(xué)生獨(dú)立思考,發(fā)現(xiàn)問題,解決問題。
。2)注重培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。
。3)加強(qiáng)例題示范教學(xué),培養(yǎng)學(xué)生解題書寫表達(dá)。
。4)多一些數(shù)學(xué)方法、數(shù)學(xué)思想的滲透,少一些知識的生搬硬套。
。5)在數(shù)學(xué)教學(xué)過程中,課堂上系統(tǒng)地對數(shù)學(xué)知識進(jìn)行整理、歸納、溝通知識間的內(nèi)在聯(lián)系,形成縱向、橫向知識鏈,從知識的聯(lián)系和整體上把握基礎(chǔ)知識。
(6)針對學(xué)生的兩極分化,加強(qiáng)課外作業(yè)布置的針對性。讓每個學(xué)生課外有適合的作業(yè)做,對不同層次的學(xué)生布置不同難度的作業(yè),提高課外學(xué)習(xí)的效率,減輕學(xué)生課外作業(yè)的負(fù)擔(dān)。正確看待學(xué)生學(xué)習(xí)數(shù)學(xué)的差異,克服兩極分化。數(shù)學(xué)課堂上多考慮、關(guān)照中下生,讓他們在數(shù)學(xué)課堂上聽得進(jìn),肯用手。
。7)教師在平時的課堂教學(xué)中必須致力于改變教師的教學(xué)行為和學(xué)生的學(xué)習(xí)方式,加強(qiáng)學(xué)法指導(dǎo),提高學(xué)生的閱讀能力,平時培養(yǎng)學(xué)生的自學(xué)能力,使學(xué)生實(shí)實(shí)在在地理解課本知識,提高思維能力。平時要關(guān)注課本、關(guān)注運(yùn)算能力、關(guān)注教學(xué)中的薄弱環(huán)節(jié)。
數(shù)學(xué)《勾股定理》教學(xué)反思15
數(shù)學(xué)學(xué)習(xí)中工作量最大的部分就是解數(shù)學(xué)習(xí)題,這也是講所學(xué)基礎(chǔ)知識轉(zhuǎn)化為基本技能的必經(jīng)之路,沒有大量習(xí)題的跟進(jìn)是不可能很好的形成基本解題技能的。習(xí)題課就是通過各種相關(guān)習(xí)題的練習(xí),期望能夠鞏固和深化對所學(xué)基礎(chǔ)知識的理解和認(rèn)識,將這些基礎(chǔ)知識盡快的轉(zhuǎn)化為基本技能。
今天是第十七章《勾股定理》的一節(jié)全章小結(jié)部分的習(xí)題課,在學(xué)生講解習(xí)題的時候,講的最不好的地方就是這個或這類習(xí)題的解題思路和解題的方法,還有就是解題的基本入手點(diǎn)。也就是說很多的孩子,他們在做課后習(xí)題的時候,沒有在分析、思考各類習(xí)題的解題思路或方法或入手點(diǎn)方面投入更多的精力,這一點(diǎn)也是我們的學(xué)生學(xué)習(xí)一直不能有大幅度提高的主要問題,也是制約他們有效學(xué)習(xí)的基本因素。
新的課程理念把教師的角色定義為“教師是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者”,教師的主要作用是組織、引導(dǎo)、參與學(xué)生的課堂學(xué)習(xí)活動。而教師在學(xué)生的學(xué)習(xí)活動中更多的是一種指導(dǎo)的作用,而教師的指導(dǎo)更多的應(yīng)該側(cè)重于方法、思想的指導(dǎo)。教師必須介入的就是解題的思路和方法。在這一點(diǎn)上應(yīng)該是必須的。特別是習(xí)題課,教師可以完全不講題,但是在解題方法、思路、入手點(diǎn)這些方面必修介入,以提高學(xué)生學(xué)習(xí)的效率和效果。
另外,學(xué)生講題過程中的語言的運(yùn)用也需要不斷地加以指導(dǎo),爭取能夠用較為簡練的語言講清楚一個問題的解決過程。
【數(shù)學(xué)《勾股定理》教學(xué)反思】相關(guān)文章:
八年級勾股定理教學(xué)反思10-15