五年級數(shù)學《最大公因數(shù)》教學反思(通用15篇)
在發(fā)展不斷提速的社會中,教學是重要的工作之一,所謂反思就是能夠迅速從一個場景和事態(tài)中抽身出來,看自己在前一個場景和事態(tài)中自己的表現(xiàn)。那么應當如何寫反思呢?以下是小編為大家收集的五年級數(shù)學《最大公因數(shù)》教學反思,歡迎大家借鑒與參考,希望對大家有所幫助。
五年級數(shù)學《最大公因數(shù)》教學反思 篇1
教學例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米、寬12厘米的長方形,教師選擇正方形紙片鋪長方形的活動教學公因數(shù),是因為這一活動能吸引學生發(fā)現(xiàn)和提出問題,能引導學生思考。學生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現(xiàn)的兩種結果,會發(fā)現(xiàn)“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價值的問題。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關,于是產(chǎn)生進一步研究長方形邊長和正方形邊長關系的愿望。分析長方形的長、寬和正方形邊長之間的關系,按學生的認知規(guī)律,設計成兩個層次:第一個層次聯(lián)系鋪的過程與結果,從長方形的長、寬除以正方形的邊長沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)邊長6厘米的正方形正好鋪滿長18厘米、寬12厘米的長方形、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經(jīng)驗,聯(lián)想邊長幾厘米的正方形還能正好鋪滿長18厘米、寬12厘米的長方形。先找到這些正方形,把它們邊長從小到大排列,知道這樣的正方形的個數(shù)是有限的。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。
反思:突出概念的內(nèi)涵、外延,讓學生準確理解概念。
我用“既是……又是……”的描述,讓學生理解“公有”的意思。例3先聯(lián)系用邊長1、2、3、6厘米的正方形正好能鋪滿長18厘米、寬12厘米的長方形紙片的現(xiàn)象,從長方形的長、寬分別除以正方形邊長都沒有余數(shù),得出正方形的邊長“既是12的因數(shù),又是18的因數(shù)”,一方面概括了這些正方形邊長的特點,另一方面讓學生體會“既是……又是……”的意思。然后進一步概括“1、2、3、6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)”,形成公因數(shù)的概念。
由于知識的遷移,學生很容易想到用集合圖直觀形象地顯示公因數(shù)的含義。第27頁把8的因數(shù)和12的因數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個集合圖,再填寫第28頁的集合圖,學生能進一步體會公因數(shù)的含義。概念的外延是指這個概念包括的一切對象。
運用數(shù)學概念,讓學生探索找兩個數(shù)的最大公因數(shù)的方法。
例4教學求兩個數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問題的方法。學生有的先分別寫出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導學生選擇第一種。練習五的第3題就是這種方法的應用。
充分利用教育資源,自制課件,協(xié)助教學。
限于操作的局部性,我認真制作了實用的課件,讓直觀、清晰的頁面直接輔助我教學,學生表現(xiàn)積極,課堂氣氛比較活躍,提問、釋疑、解惑,練習的熱情很高。
本課設計目的是使學生學習公因數(shù)、最大公因數(shù)的意義,并學會找兩個數(shù)的最大公因數(shù)的方法,從整節(jié)課學生表現(xiàn)情況和課后作業(yè)反饋來看,學生對本部分知識知識掌握較好,學習積極并具有熱情,就實效性講很令人滿意。
五年級數(shù)學《最大公因數(shù)》教學反思 篇2
本節(jié)課,我從學生已有的知識和經(jīng)驗出發(fā),精心設計一個童話情境,激發(fā)了學生的學習欲望。先讓學生動手操作、自學討論,幫助王叔叔選擇地板磚。再思考探索正方形地板磚的邊長與長方形地面的長、寬之間的關系。然后用問題的形式,通過復習16和12的因數(shù),讓學生再找兩個數(shù)的因數(shù)、找兩個數(shù)的公有的因數(shù)、找兩個數(shù)公有的因數(shù)中最大的因數(shù)的過程中,發(fā)現(xiàn)用邊長1厘米、2厘米、4厘米的正方形都正好鋪滿長16厘米,寬12厘米的長方形。在此基礎上,引導學生思考1、2、4這些數(shù)和16、12有什么關系,同時揭示公因數(shù)和最大公因數(shù)的概念。
總之,我在教學的過程中,不但復習鞏固舊知,讓學生在不知不覺中學會了新知。而且還讓學生帶著自己的數(shù)學現(xiàn)實參與數(shù)學課堂,不斷地利用原有的經(jīng)驗背景對新的問題做出解釋。此過程中我還注意了鼓勵每一個學生參與探索,重視引發(fā)學生思考,注重學生間的交流,讓學生用自己的語言表述自己的發(fā)現(xiàn),對于有困難的學生,我從方法上作進一步指導,小組長幫助,生生互幫等。以“學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者為主。培養(yǎng)了學生動手操作的能力,使他們在愉快的學習氛圍中學會了本節(jié)課的內(nèi)容。
五年級數(shù)學《最大公因數(shù)》教學反思 篇3
本課是在學生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎上進行教學,通過找公因數(shù)的過程,讓學生懂得找公因數(shù)的基本方法。在此基礎上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進一步引導學生觀察分析、討論,讓學生明確找兩個數(shù)公因數(shù)的方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。在此過程中要注意鼓勵每一個學生參與探索,重視引發(fā)學生思考,注重學生間的交流,讓學生用自己的語言表述自己的發(fā)現(xiàn),但不要歸納成固定的模式讓學生記憶。對于找公因數(shù)有困難的學生,教師要從方法上作進一步指導。
《數(shù)學課程標準》指出:“學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學課,設計成為學生探索問題,解決問題的過程,這樣設計各個環(huán)節(jié)的教學流程,體現(xiàn)了教師是組織者——提供數(shù)學學習的材料;引導者——引導學生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學生共同探討規(guī)律。
在整個教學的過程中,學生真正成了課堂學習的主人,尋找最大公因數(shù)的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學生個性得到發(fā)揮,課堂成了學習的天地。
五年級數(shù)學《最大公因數(shù)》教學反思 篇4
一、找一個數(shù)的因數(shù)
要成對找,這在教學因數(shù)時就是一個難點。
二、教學例題3時,應先組織學生大膽猜測:“哪種紙片能正好鋪滿這個長方形?”再讓學生實踐驗證。
猜測、驗證的過程是學生進行探究活動的必要途徑。在實踐驗證的過程中,我緊扣用邊長xx厘米的正方形鋪長方形,能鋪xx層,每層鋪xx個。并與其中有兩種正方形不能正好鋪滿長方形的情況作比較,組織學生交流:“怎樣的正方形才能正好鋪滿這個長方形?”由于前面鋪墊充分,學生很順利地得出了結論。例題3的教學,“哪種哪種紙片能正好鋪滿這個長方形?”“還有哪些邊長整厘米數(shù)的正方形能正好鋪滿這個長方形?”“任何兩個數(shù)的公因數(shù)個數(shù)都是有限的嗎?”將學生的思維一步步引向深入,就能激發(fā)學生自主探究的熱情。
三、教學例4時,應充分放手讓學生探索8和12的公因數(shù)以及最大公因數(shù)。
交流中,應充分肯定學生的方法,學生在交流中出現(xiàn)問題時,應讓他們自我修正,自我完善。并對四種方法進行比較“看哪種方法更便捷”。最大公因數(shù)的概念也要通過練習,讓學生自己談對最大公因數(shù)的感悟。
五年級數(shù)學《最大公因數(shù)》教學反思 篇5
“因數(shù)和倍數(shù)”的知識,向來是小學數(shù)學教學的難點!白畲蠊驍(shù)”這節(jié)課是在學生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎上進行的,通過這節(jié)課的學習,學生會說出兩個數(shù)的公因數(shù)和最大公因數(shù),會求兩個數(shù)的最大公因數(shù),并為后面學習分數(shù)的約分打好基礎。反思這節(jié)課我認為有以下幾點:
一、精心設計數(shù)學活動,讓學生大膽探究。
1、通過找8和12的因數(shù),引出公因數(shù)的概念。
教師引導學生先寫出8和12的因數(shù),再觀察發(fā)現(xiàn)8和12有公有的因數(shù),自然引出了公因數(shù)的概念。然后通過集合圈的形式,直觀呈現(xiàn)什么是公因數(shù),什么又是最大公因數(shù)。促進學生建立”公因數(shù)和最大公因數(shù)”的概念。
2、通過找18和27的最大公因數(shù),掌握找最大公因數(shù)的方法。
掌握了公因數(shù)的概念之后,教師放手給予學生足夠的時間,讓學生自主探究找最大公因數(shù)的方法。交流反饋時,考慮到中下水平的學生,教師只匯報了書本中的三種基本方法,并沒有提到短除法。
二、思路清晰,環(huán)環(huán)相扣。
本節(jié)課,教師從認識公因數(shù)——理解最大公因數(shù)——探究找最大公因數(shù)的方法——相應的練習鞏固這幾個環(huán)節(jié)入手,每個環(huán)節(jié)都是層層遞進,環(huán)環(huán)相扣,促進了學生對概念的理解。
《數(shù)學課程標準》指出:“學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。”在本節(jié)課中,我努力將找最大公因數(shù)的概念教學課,設計成為學生探索問題,解決問題的過程,各個環(huán)節(jié)的學習流程,體現(xiàn)了教師是組織者——提供數(shù)學學習的材料;引導者——引導學生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學生共同探討規(guī)律。在整個教學的過程中,學生真正成了課堂學習的主人,尋找最大公因數(shù)的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學生個性得到發(fā)揮。
五年級數(shù)學《最大公因數(shù)》教學反思 篇6
本節(jié)課教學的內(nèi)容是認識公因數(shù)、最大因數(shù)以及求兩個數(shù)的最大公因數(shù)的方法,這些知識是在學生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎上教學的。結合本節(jié)課的特點,聯(lián)系本班學生的實際情況,教師在教學過程中做了如下的嘗試
一、適時地滲透集合思想。在教學例1時,解題過程不僅呈現(xiàn)了用列舉法解決問題。還引導學生用集合圖來表示答案,從而滲透了集合思想,為后續(xù)的學習奠定感性認識。
二、關注學生探究活動的空間,將自主探究活動貫徹始終。在教學中,教師為學生創(chuàng)設了三次自主探究的機會。即一在情境中通過動手操作認識公因數(shù),二用集合圖表示因數(shù)之間的關系,三用自己的方法求出兩個數(shù)的最大公因數(shù)。在這幾次的探究活動中,教師始終積極地調(diào)動學生的情感,啟發(fā)他們主動參與,引導學生感知、理解,從而在腦中形成系統(tǒng)的知識體系。
本節(jié)課是教學運用最大公因數(shù)的有關知識來解決生活中的實際問題。通過創(chuàng)設生活情境,讓學生借助學具擺一擺,算一算或在紙上用彩筆畫一畫的方法把出現(xiàn)的幾種情況記錄下來,既提高學生的學習積極性,也讓學生體會到新知與生活的密切聯(lián)系。同時,通過引導學生自主探索、組織交流并驗證結論,讓學生體會獲得成功的喜悅,更加積極地探索新知,掌握所學知識。
本節(jié)課的不足之處在于練習部分時間過于倉促,沒有足夠的時間讓學生交流與理解,部分學困生掌握不夠到位。這需要教師在今后教堂中合理安排時間,避免時間過于緊迫。
五年級數(shù)學《最大公因數(shù)》教學反思 篇7
公因數(shù)與最大公因數(shù)這一課教材設計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學生在解決實際問題中探索公因數(shù)的認識。因此,在教學中要重視通過嘗試解決問題讓學生聯(lián)系已有的知識來引入公因數(shù)的認識。使學生初步體會學習公因數(shù)在解決實際問題中有著重要作用。
這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學生作業(yè)反饋情況來看,部分學生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進去,這一情況在預設時我雖然想到了學生會錯,也在課堂上進行了說明,但是少數(shù)學生還是出現(xiàn)了錯誤。
用例舉的策略找出所有公因數(shù)的教學中,教材上有種層次不同學生可以掌握的方法參考,在這里的教學中我只是參照教材注重了這兩種方法的講解,這里教材的應是要求學生有序地列舉就行了,不同水平的學生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學時,有些學生運用了一些比較獨特的方法尋找公因數(shù),教師應該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學生出現(xiàn)的各種方法可以讓學生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優(yōu)化。
五年級數(shù)學《最大公因數(shù)》教學反思 篇8
公因數(shù)和最大公因數(shù)這一課應注重引導學生體驗“概念形成”的過程,讓學生“研究學習”、“自主探索”,學生不應是被動接受知識的容器,而應是在學習過程中主動積極的參與者,是認知過程的探索者,是學習活動的主體。
我是這樣組織教學的:
在教學過程中,我們不僅要求學生掌握抽象的數(shù)學結論,更應注重學生概念形成的過程。應引導學生參與探討知識的形成過程,盡可能挖掘學生潛能,能讓學生通過努力,自己解決問題,形成概念。通過創(chuàng)設生活情境,幫助王叔叔鋪地裝,將學生自然地帶入求知的情境中去,在學生已有知識經(jīng)驗的基礎上放手讓學生去交流、探索!澳囊粋正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,為什么?”這樣更利于培養(yǎng)學生自主探索、提出問題和解決問題的能力。接著進一步引導學生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學生在反復地思考和交流中加深對公因數(shù)這一概念的理解。
教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調(diào)動了已有知識經(jīng)驗、方法、技能,找出“16和12的公因數(shù)和最大公因數(shù)”。在這個過程中,由學生自己建構了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構者,而不是模仿者,充分的發(fā)掘了學生的自主意識。
思考:
1.增強師生和生生之間的互動
在教學過程中各個環(huán)節(jié)的銜接不夠緊湊,本課時的教學內(nèi)容比較枯燥,在課堂上如何調(diào)動學生的積極性,活躍課堂氣氛,使學生學的輕松、扎實。今后的教學中,在這一點上要都多下功夫。本課時的教學中,在組織學生交流找“16和12的公因數(shù)”的方法時,指名回答的形式過于單調(diào),有的`同學沒有選著擺一擺的方法,而是直接用邊長去除以小正方形邊長來判斷,我沒有很好利用學生生成的資源,幫助學生理解,局限學生的思維發(fā)展。
2.方法多樣化和方法優(yōu)化
在組織學生進行交流時,應該注重引導學生有層次地介紹各種不同的方法。同時還要引導學生進行方法的比較和優(yōu)化。
五年級數(shù)學《最大公因數(shù)》教學反思 篇9
一、我認為,這節(jié)課的閃光點有以下幾個方面:
1、在復習的過程中,引導學生復習用多種方法找每個數(shù)的因數(shù),豐富學生解決問題的多樣性。
2、通過復習、發(fā)現(xiàn)、總結,什么是公因數(shù)及最大公因數(shù),在研究的過程中交流、總結自己的發(fā)現(xiàn)。
3、通過填寫集合圖,使學生了解集合的思想,并進一步體會公因數(shù)和最大公因數(shù)的關系。
4、通過練一練活動,引導學生獨立發(fā)現(xiàn)并總結出:
。1)倍數(shù)關系的兩個數(shù),最大的數(shù)就是這兩個數(shù)的最大公因數(shù);
(2)公因數(shù)只有“1”的兩個數(shù)(互質數(shù)),它們的最大公因數(shù)就是這兩個數(shù)的乘積。
5、在進一步的練習中,在學生獨立解決問題的基礎上,讓學生說出自己的思考方法,進行集體交流,相互學習,豐富學生解決問題的策略。
二、這節(jié)課的不足,有以下幾方面:
1、教學過程中,缺少對學生學習情況的評價特別是鼓勵性的評價。
2、教學思想“由一般到抽象”的過程體現(xiàn)的不夠明了。
3、對于教材的拓展不夠深入。
三、改進措施:
1、加強和提高對學生評價的意識,重視評價的功能。
2、在備課時,要清楚把握教學內(nèi)容的梯度,使教學思想融入教學過程之中。
3、加強對教材的拓展,切實做到以教材為載體,以教學內(nèi)容為導向,發(fā)展學生的數(shù)學能力。
五年級數(shù)學《最大公因數(shù)》教學反思 篇10
一、分析基礎知識,準確制定教學目標。
本節(jié)課是在學生已經(jīng)理解和掌握因數(shù)、倍數(shù)的含義,初步學會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎上進行教學的。這部分內(nèi)容既是“數(shù)與代數(shù)”領域基礎知識的重要組成部分,又是進一步學習約分和分數(shù)四則計算的基礎。我根據(jù)教材的編寫特點準確地制定了教學目標,即理解公因數(shù)及最大公因數(shù)的意義。知道任意兩個數(shù)都有公因數(shù);能夠采用枚舉法找到兩個數(shù)的最大公因數(shù)。通過動手、觀察、思考等教學活動,從拼擺過程中發(fā)現(xiàn)公因數(shù),再通過進一步探究明確公因數(shù)及最大公因數(shù)的含義。
二、在現(xiàn)實的情境中教學概念,借助直觀操作活動,經(jīng)歷概念的形成過程。
以往教學公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。而本節(jié)課注意引導學生通過找出已知面積的長方形的長和寬的長度,確定怎樣使這樣的兩個長方形拼成一個新的長方形。其次,引導學生觀察這樣的幾組數(shù)據(jù)與長方形面積之間的關系——右面的這些數(shù)據(jù)都是左面這些數(shù)據(jù)的因數(shù)。三是揭示出公因數(shù)和最大公因數(shù)的含義——指出用紅筆標出的這些數(shù)據(jù)是左面這兩個數(shù)的公因數(shù),找到這里面最大的一個公因數(shù),完成由形象到抽象的過程,把感性認識提升為理性認識。
三、把握內(nèi)涵外延,準確理解概念的含義。
概念的內(nèi)涵是指這個概念的所反映的一切對象的共同的本質屬性。公因數(shù)是幾個數(shù)公有的因數(shù),可見“幾個數(shù)公有的”是公因數(shù)的本質屬性。因此在因數(shù)的基礎上學習公因數(shù),關鍵在于突出“公有”的含義。本節(jié)課突出概念的內(nèi)涵是“既是……也是……”即“公有”。教學中,我首先讓學生在練習本上找出12和16的因數(shù),然后借助直觀的集合圖揭示出“既是12的因數(shù),又是16的因數(shù)”這句話的含義,幫助學生進一步理解公因數(shù)和最大公因數(shù)的意義。這樣安排有兩點好處:一是學生通過操作活動,能體會公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。
概念的外延是指這個概念包含的一切對象。對具體事例是否屬于概念作出判斷,就是識別概念的外延,這對加深概念的認識很有好處。本節(jié)課我注意利用反例,來凸現(xiàn)公因數(shù)的含義。在用集合圖法來表示12和16的公因數(shù)的時候,找到填寫錯誤的學生的例子,提示學生注意:并集里填寫的是兩個數(shù)的公因數(shù),而沒有交在一起的集合圖中,只填寫這兩個數(shù)的都有的因數(shù),從而進一步明確公因數(shù)的概念。
四、教學中的不足:
教師的提問有時指向性不是很強,學生不能很快地明白老師的意圖,影響了學生的思考,須進一步提高。在教學“兩個長和寬都是整厘米數(shù)的長方形的面積分別是2平方厘米和3平方厘米,這兩個長方形的長、寬分別是多少?”時,學生有些困難,我應該讓學生動手在本上畫一畫,幫助學生找到,降低難度,這點考慮不周,沒有切實聯(lián)系實際。
自己要學的東西還有很多,應注意提高自身修養(yǎng)。多閱讀、多聽課,努力提高自己的教學水平,更好地為學生服務。
五年級數(shù)學《最大公因數(shù)》教學反思 篇11
學生的學習過程是一種特殊的認知過程,必須在積極主動的情況下在自己的逐步思考和探究中達到解決的目的。
1、小組討論合作學習研究多了,獨立思考就有所忽視。從數(shù)學學習的本質來說,獨立思考是主流,合作交流應在獨立思考的基礎上進行。只有在獨立思考的前提下,才有交流的可能。因此,在本課設計時,求兩數(shù)的最大公約數(shù)。先讓學生課前獨立探究方法,在學生有充分獨立思考的基礎上再交流評價。才真正實現(xiàn)每個學生潛質的開發(fā)和學生之間真正的差異互補。
2、獨特的見解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來的,在教學中應放下架子,蹲下身子來傾聽學生,相信每個學生都會有精彩的表現(xiàn)。正如陶行知所說的:“學生能做許多你不能做的事,也能做許多你認為他不能做的事!辈灰】戳撕⒆樱獙γ课缓⒆映錆M信心,從而使課堂頻頻發(fā)出精彩的光芒。如本課時在開放題的解答過程中,學生能在一些簡單的嘗試開始,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應用獲得的規(guī)律來實現(xiàn)問題解決的最優(yōu)化,不得不驚奇孩子能力的巨大。
3、當數(shù)學問題情境作用于思考者時就有可能展開數(shù)學思維活動,可以說,問題的設計和問題的情境的創(chuàng)設是促進數(shù)學思考的客觀性因素。讓學生在問題情境中層層推出數(shù)學思考“還有沒有其他的方法”“他的方法你認為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學,錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學習的學生都是一個發(fā)現(xiàn)、創(chuàng)造的大空間。
兩個數(shù)的最大公約數(shù)的教學反思有探究就有發(fā)現(xiàn),有發(fā)現(xiàn)就是
學習的成功。成功所帶來的喜悅總是進一步學習的最大動力,自主探究的課堂,為個性不同的學生的發(fā)展留下了必要的空間,讓他們都有機會表達自己的思想,以自己獨特的方式去學習數(shù)學,發(fā)展知識,各自體驗到學習數(shù)學的成功感。
五年級數(shù)學《最大公因數(shù)》教學反思 篇12
分析基礎知識:本單元是在學生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎上進行教學的。這部分內(nèi)容既是“數(shù)與代數(shù)”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數(shù)四則計算的基礎。教材分兩段安排教學內(nèi)容:第一段,認識公倍數(shù)、最小公倍數(shù),探索找兩個數(shù)的最小公倍數(shù)的方法;第二段,認識公因數(shù)、最大公因數(shù),探索找兩個數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實踐與綜合應用《數(shù)字與信息》。
一、借助操作活動,經(jīng)歷概念的形成過程。
以往教學公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的操作活動,讓學生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過程。這樣安排有兩點好處:一是學生通過操作活動,能體會公倍數(shù)和公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。在這節(jié)課上,讓學生按要求自主操作,發(fā)現(xiàn)用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發(fā)現(xiàn)結果的同時,還引導學生聯(lián)系除法算式進行思考,對直觀操作活動的初步抽象。再把初步發(fā)現(xiàn)的結論進行類推,發(fā)現(xiàn)用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎上,引導學生思考1、2、3、6這些數(shù)和18、12有什么關系。這時揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合圖顯示公因數(shù)的意義。實實在在讓學生經(jīng)歷了概念的形成過程,效果較好。
二、預設探究過程,增強學生主體意識。
例3中,教師宣布游戲規(guī)則后,放手讓學生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學生探究廣闊的平臺,教師拋出問題后,讓學生獨立探究。為了解決問題,學生充分調(diào)動了已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個過程中,由學生自己建構了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構者,而不是模仿者,充分的發(fā)掘了學生的自主意識,也充分體現(xiàn)了教師駕馭教材,調(diào)控學生的能力。
三、重視方法和策略的滲透,提高學生學習能力。
課程標準只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學用分解質因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:一是通過列舉出兩個數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對公倍數(shù)和公因數(shù)意義的理解;二是學生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學生的學習負擔。所以在教學找公倍數(shù)或公因數(shù)時,應提倡思考方法多樣化。例4教學中,學生得出了三種方法來尋找12和18的公因數(shù)和最大公因數(shù)。(當然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優(yōu)化的過程,哪一種方法會更簡單?通過對比,大多數(shù)學生贊同方法二。通過討論,引導學生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導、小結、鼓勵,師生共同得出結論。
復習題中回顧了四年級知識基礎、列舉法和標記法,在例3中,學生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎。例4中,學生也知道用列舉法和標記法來解決問題。
特別是用集合圖來表示因數(shù)和公因數(shù)的教學值得一提。有趣的游戲,預料中的爭執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學生如何填更有效,也更不易遺忘。練習五,第一題在填完集合圖后對公有因數(shù)和獨有因數(shù)意義的的提升,為下面的學習作了伏筆。體會初步的集合思想。
練一練,并沒有局限于畫畫△、○,找找公因數(shù)和最大公因數(shù),而是進一步指導學生觀察,發(fā)現(xiàn)公因數(shù)都比小的數(shù)小(18和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。
所以請老師們在平時的教學中也去分析、思考,把握例題和練習中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。
五年級數(shù)學《最大公因數(shù)》教學反思 篇13
這節(jié)課是在學習了公因數(shù)和最大公因數(shù)之后教學的,在實際教學中我發(fā)現(xiàn)學生不能靈活利用最大公因數(shù)的知識解決實際問題,有的同學一看到求最大、最多、最長是多少,便不假思索,直接求它們的最大公因數(shù),至于為什么是求最大公因數(shù),有的同學不理解,或是知其然而不知其所以然;诖耍以O計了這節(jié)課。在教學中,我努力做大了以下幾點:
1、借助操作活動,讓學生形成解決問題的策略。在教學中,我以學生感興趣的六一節(jié)活動貫穿始終,讓學生在積極、歡愉的氛圍中學習。通過給學生提供具體的材料,讓他們利用已有的材料,剪一剪、畫一畫、折一折、想一想、算一算,用不同的方法來解決問題。從動手操作中理解要解決這個問題,實質上是求已知數(shù)量的最大公因數(shù),并結合課件演示明確為什么是求最大公因數(shù)。提升了學生的思維層次。再通過后面的嘗試應用,練一練,靈活應用等環(huán)節(jié)進一步明確思路。學生在解決問題的過程中獲得感悟,初步形成解決此類問題的策略。
2、預設探究過程,增強學生的主體意識。嘗試應用環(huán)節(jié)更是學生自主探究的廣闊平臺,我拋出問題后讓學生獨立探究。為了解決問題,學生充分調(diào)動已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出各種求正方形的邊長最長是多少的方法,從中再次體驗到要解決這個問題實質上還是求已知數(shù)量的最大公因數(shù)。整個教學過程學生能主動的建構知識,而不是簡單模仿,充分體現(xiàn)了學生是課堂學習的主人,課堂是學生學習的天地。
3、教學中我充分發(fā)揮小組合作學習能力,給學生充分的交流與研究時間,讓學生在交流展示中明確解決此類問題的策略,達到把復雜的問題變得簡單,把簡單的問題變得有厚度。
五年級數(shù)學《最大公因數(shù)》教學反思 篇14
本課是在學生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎上進行教學的。這部分內(nèi)容既是“數(shù)與代數(shù)”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數(shù)四則計算的基礎。
第一節(jié)課,根據(jù)教材是以鋪地磚的生活實際作為切入點,要鋪整分米數(shù)的地磚而且要求要整數(shù)塊,引入了求兩個數(shù)的公因數(shù)的必要性。教材主要的教學方法是先分別求出兩個數(shù)的因數(shù),并按照從大到小的順序排列出來,從而找出兩個數(shù)的公有因數(shù),稱為這兩個數(shù)的公因數(shù),其中最大的數(shù)就是這兩個數(shù)的最大公因數(shù)。通過例1的教學后,我引導學生總結出求兩數(shù)的公因數(shù)以及最大公因數(shù)的方法。練習時發(fā)現(xiàn)部分學生還是容易在找一個數(shù)的因數(shù)的有疏漏,導致求出來的公因數(shù)和最大公因數(shù)出錯。
第二節(jié)課,我引入了求最大公因數(shù)的另一種方法,分解質因數(shù)法,介紹用短除法求兩個數(shù)的最大公因數(shù)。這種方法學生掌握起來比較容易,但也發(fā)現(xiàn)部分學生沒有除盡,最后的商不是互質數(shù),導致找錯最大公因數(shù)。
不過相對于第一鐘方法,第二種方法在書寫上更簡便,學生解題時還是比較容易理解,寫起來也比較簡潔,大部分學生在求幾個數(shù)的最大公因數(shù)時還會選擇第二種方法。當然,我還是鼓勵學生選擇自己喜歡的方法,關鍵是能理解,懂應用。
五年級數(shù)學《最大公因數(shù)》教學反思 篇15
日本著名數(shù)學教育家米山國藏指出:“作為知識的數(shù)學出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學的精神,數(shù)學的思想、研究的方法和著眼點等,這些隨時隨地發(fā)生作用,使他們終身受益!睆倪@個教學的設計中我們可以看到,教學中不只是讓學生接受一個概念知識或一種求最大公約數(shù)的方法;不只是注重數(shù)學形式層面的教學,而是更重視數(shù)學發(fā)現(xiàn)層面的教學,即讓學生在經(jīng)歷“數(shù)學家”解決問題的過程中去理解、去感受一種數(shù)學的思想和觀念──數(shù)學化思想。學生先是感知地板磚中隱含的數(shù)學,會用約數(shù)、倍數(shù)知識解釋簡單的生活現(xiàn)象,進而思考并嘗試解決畫廊內(nèi)裝飾畫的設計,學生自然會聯(lián)想到地板磚中數(shù)學知識。但是,從解釋到應用設計,在沒有學習公約數(shù)的情況下會存在較大的難度。于是,創(chuàng)設了做數(shù)學的空間。讓他們在設計正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的數(shù)學模型。再反思與總結,引導學生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。
數(shù)學化思想觀念是指用數(shù)學眼光去認識和處理周圍事物或數(shù)學問題,可以培養(yǎng)學生良好的“用數(shù)學”意識,使數(shù)學關系成為學生的一種思維模式。而我們的課堂中,大多還是圍繞知識就事論事,沒有從形成學生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學思想,去隱含重要的數(shù)學方法,這樣,學生學到的只是知識的堆砌,沒有自主的發(fā)展和對數(shù)學本質的領悟。
【五年級數(shù)學《最大公因數(shù)》教學反思(通用15篇)】相關文章:
《最大公因數(shù)》教學反思15篇04-07
最大公因數(shù)說課稿11-04
最大公因數(shù)簡要說課11-12
45和54的最大公因數(shù)10-12
數(shù)學教學反思通用15篇04-09
五年級數(shù)學教學反思02-28
小學五年級數(shù)學教學反思01-26
高三數(shù)學教學反思(通用15篇)04-07
通用小學數(shù)學教學反思范文5篇02-26
淺談數(shù)學教學反思03-07