《矩形的判定》優(yōu)秀的教學(xué)反思
作為一名優(yōu)秀的教師,教學(xué)是重要的任務(wù)之一,教學(xué)反思能很好的記錄下我們的課堂經(jīng)驗(yàn),優(yōu)秀的教學(xué)反思都具備一些什么特點(diǎn)呢?以下是小編為大家整理的《矩形的判定》優(yōu)秀的教學(xué)反思,僅供參考,歡迎大家閱讀。
《矩形的判定》優(yōu)秀的教學(xué)反思1
本節(jié)課是關(guān)于矩形的學(xué)習(xí)。這是圖形的學(xué)習(xí)。在進(jìn)行本節(jié)書(shū)的學(xué)習(xí)的時(shí)候,老師要結(jié)合以前小學(xué)學(xué)過(guò)的長(zhǎng)方形和正方形一起來(lái)講。讓學(xué)生在原來(lái)的基礎(chǔ)上,更好地理解新學(xué)的知識(shí)。把新舊知識(shí)結(jié)合起來(lái),更有利于學(xué)生的理解和在實(shí)際練習(xí)中的應(yīng)用。
關(guān)于矩形的判定教學(xué)的反思是:在進(jìn)行該章節(jié)的學(xué)習(xí)的時(shí)候,最好讓學(xué)生自作立體圖形,讓學(xué)生在制作圖形中懂得矩形與以前學(xué)過(guò)的那些圖形有什么區(qū)別和聯(lián)系,加深他們的學(xué)習(xí)能力及理解能力。讓學(xué)生通過(guò)自己動(dòng)手的同時(shí)學(xué)會(huì)思考問(wèn)題,在思考問(wèn)題的過(guò)程中,加深對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。
關(guān)于矩形的判定的課件設(shè)計(jì):
一教學(xué)目的:讓學(xué)生明白如何去進(jìn)行判定。通過(guò)幾個(gè)圖形的演示,學(xué)生能夠明白這些圖形之間的區(qū)別和聯(lián)系。
二教學(xué)重難點(diǎn):通過(guò)什么方法來(lái)判定一個(gè)圖形是矩形。
三教學(xué)過(guò)程:
1引入:讓學(xué)生觀看大屏幕上的圖形,指出這些圖形有什么特點(diǎn)。先叫學(xué)生思考,也鼓勵(lì)他們進(jìn)行討論,然后讓學(xué)生代表把自己的看法說(shuō)出來(lái)。
2讓學(xué)生把課本上的知識(shí)內(nèi)容進(jìn)行閱讀思考,然后得出結(jié)論:如何去判斷一些圖形是什么圖形?
3知識(shí)點(diǎn)講解:什么是矩形呢?
條件:
1有一個(gè)角是直角。
2這個(gè)圖形是平行四邊。
3這個(gè)圖形的對(duì)角線相等。
4對(duì)角線要相等。
5這個(gè)圖形中有三個(gè)內(nèi)角是直角。
6對(duì)角線相等并且互相平分。
對(duì)于這些判斷的條件,要求學(xué)生要僅僅地記住。在講完這些條件的時(shí)候,老師也給出很多相關(guān)的`相似的或者不同的圖形讓學(xué)生進(jìn)行判斷,以加深對(duì)這些圖形的認(rèn)識(shí)和掌握。
《矩形的判定》優(yōu)秀的教學(xué)反思2
本節(jié)課主要講解的是矩形的性質(zhì)與判定,本節(jié)課一共分為5個(gè)環(huán)節(jié)。在環(huán)節(jié)一知識(shí)回顧,由平行四邊形入手,通過(guò)直觀觀察平行四邊形與矩形內(nèi)角的異同以及觀察平行四邊形與矩形的形狀特點(diǎn),這是落實(shí)核心價(jià)值觀直觀想象的過(guò)程,學(xué)生建立邏輯關(guān)系——平行四邊形形狀與邊角大小之間的關(guān)系(直觀想象是顯性的,邏輯推理是隱形的)。在環(huán)節(jié)二探索活動(dòng)一,利用橡皮筋套木框改變橡皮筋的松緊長(zhǎng)短程度從而改變平行四邊形的形狀,觀察平行四邊形演變?yōu)榫匦蔚倪^(guò)程,這是通過(guò)直觀形象產(chǎn)生疑惑,有想法,進(jìn)而升華為邏輯推理——改變平行四邊形的對(duì)角線長(zhǎng)短關(guān)系引起角的變化,這個(gè)變化過(guò)程中當(dāng)一個(gè)角是直角時(shí)將平行四邊形演變?yōu)榫匦,這是落實(shí)顯性的直觀形象與隱性的邏輯推理的過(guò)程。
在環(huán)節(jié)三探索活動(dòng)二,利用小芳畫(huà)矩形的過(guò)程引入矩形的第二種判別方法,同樣小芳畫(huà)的過(guò)程是學(xué)生進(jìn)行直觀形象的過(guò)程,小芳畫(huà)出來(lái)的學(xué)生觀察確實(shí)是一個(gè)矩形,進(jìn)而反問(wèn)學(xué)生為什么是?這就是邏輯推理過(guò)程了,也是數(shù)學(xué)抽象的過(guò)程了,通過(guò)數(shù)學(xué)邏輯證明,得出確實(shí)是,從而抽象出——三個(gè)角都是直角的四邊形是矩形。這個(gè)環(huán)節(jié)落實(shí)的數(shù)學(xué)學(xué)科核心素養(yǎng)顯性的是直觀想象,隱性的是邏輯推理,深入挖掘出數(shù)學(xué)抽象也是在這節(jié)課落實(shí)的素養(yǎng)。在環(huán)節(jié)四議一議中,只利用一根繩子,是否能判斷出平行四邊形、矩形、菱形?這是一個(gè)開(kāi)放性的問(wèn)題,也就是脫離角是否可以判斷四邊形的形狀?直觀形象這是首先落實(shí)到的核心素養(yǎng),進(jìn)而學(xué)生考慮四邊形只考慮邊的特點(diǎn),不考慮角,是否可以判斷,邏輯推理過(guò)程在這個(gè)過(guò)程中落實(shí)的淋漓盡致,其實(shí)質(zhì)數(shù)學(xué)抽象——將繩子與邊結(jié)合起來(lái),這也是這個(gè)環(huán)節(jié)不可小視的核心素養(yǎng)。
經(jīng)過(guò)本節(jié)課的講解,深感落實(shí)數(shù)學(xué)學(xué)科核心素養(yǎng)在數(shù)學(xué)課堂中的重要作用,直觀想象是本節(jié)課最顯性的核心素養(yǎng),而邏輯推理是在直觀想象后升華的部分,數(shù)學(xué)抽象很多人或許會(huì)忽視,但會(huì)發(fā)現(xiàn),在數(shù)學(xué)學(xué)科中,數(shù)學(xué)抽象雖然看不到也講解不到,但在知識(shí)的升華過(guò)程中數(shù)學(xué)抽象才會(huì)產(chǎn)生質(zhì)的飛躍,脫離現(xiàn)實(shí)數(shù)據(jù)抽象出數(shù)學(xué)真知。
《矩形的判定》優(yōu)秀的教學(xué)反思3
《矩形的判定》一課,是在學(xué)習(xí)了《平行四邊形的判定》以后提出的。因?yàn)橛辛似叫兴倪呅蔚呐卸ǚ椒ㄗ鰹榛A(chǔ),所以本節(jié)課采用了“類(lèi)比學(xué)習(xí)”的方法,引導(dǎo)學(xué)生通過(guò)“類(lèi)比學(xué)習(xí)”的方法進(jìn)行新知的探索與學(xué)習(xí)。在設(shè)計(jì)中,通過(guò)平行四邊形的演示活動(dòng)引出主題“矩形”,運(yùn)用回憶的方法,對(duì)“矩形的定義及性質(zhì)”進(jìn)行了預(yù)備知識(shí)檢測(cè),再對(duì)矩形的判定方法進(jìn)行猜想與驗(yàn)證,緊接下來(lái)設(shè)計(jì)了幾道練習(xí)題讓學(xué)生學(xué)以致用,最后用一流程圖進(jìn)行了小結(jié)。
在設(shè)計(jì)中,我一直想要抓住發(fā)展學(xué)生數(shù)學(xué)思維,讓學(xué)生有足夠的時(shí)間去思索猜想新知驗(yàn)證新知,課堂上也看到了學(xué)生們?cè)诜e極認(rèn)真的思考問(wèn)題,但是因部分學(xué)生的基礎(chǔ)比較差,對(duì)于探索證明的方法還是有些欠缺,加上課堂上關(guān)于邏輯思維的證明引導(dǎo)的不夠充分徹底,不能夠?yàn)閷W(xué)生做好充分的鋪墊,所以部分學(xué)生感覺(jué)推理困難,這是最遺憾的地方。在學(xué)生應(yīng)用判定定理做習(xí)題中,也沒(méi)有能夠有足夠的時(shí)間匯總巡視學(xué)生做題中出現(xiàn)的共性問(wèn)題進(jìn)行討論,只是做個(gè)別指導(dǎo)。等等的問(wèn)題,在今后教學(xué)中,自己一定要更加的注意這些問(wèn)題的出現(xiàn)并想辦法解決,讓教學(xué)中的“遺憾”少一些。
【《矩形的判定》優(yōu)秀的教學(xué)反思】相關(guān)文章:
矩形的判定教學(xué)反思范文12-25
職高優(yōu)秀教學(xué)反思12-18
《觀潮》優(yōu)秀教學(xué)反思11-10
《我的伯父魯迅先生》優(yōu)秀教學(xué)反思07-09
初中地理優(yōu)秀教學(xué)反思01-15