《圓柱的體積》教學(xué)片斷與課后反思
案例背景:
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)是人們對(duì)客觀世界定性把握和定量刻畫、逐漸抽象概括形成方法和理論并進(jìn)行廣泛應(yīng)用的過(guò)程。這一描述,明確了小學(xué)數(shù)學(xué)的內(nèi)涵,即數(shù)學(xué)學(xué)習(xí)是一個(gè)過(guò)程。近日,在市小學(xué)數(shù)學(xué)名師課堂教學(xué)展示中,天福小學(xué)的劉愛(ài)芳校長(zhǎng)執(zhí)教的《圓柱的體積》一課,使我對(duì)個(gè)人的專業(yè)素養(yǎng)和課堂的設(shè)計(jì)內(nèi)涵,都有了很深的觸動(dòng)。
案例描述:
片段一:
師:同學(xué)們,往這里看,今天老師帶來(lái)了三件物體:玻璃杯、橡皮泥、金屬零件。這三件物體有什么共同點(diǎn)?
生:都是圓柱。
師:圓柱形的物體生活中很多,以這三樣為例,你能提出哪些數(shù)學(xué)問(wèn)題?
生1:水杯的容積是多少?
生2:水杯的表面積是多少?
生3:水杯的體積是多少?
師:這三個(gè)問(wèn)題很好,我們記下一個(gè)。
師板書,水杯容積
生繼續(xù)提出關(guān)于橡皮泥和金屬容器的體積的問(wèn)題,師板書:橡皮泥體積,金屬零件體積。
師:關(guān)于表面積的問(wèn)題前面我們已經(jīng)研究過(guò),這節(jié)課我們來(lái)研究圓柱體積的問(wèn)題。
師板書:圓柱體積
師:以你現(xiàn)在的知識(shí)儲(chǔ)備,你能解決哪個(gè)問(wèn)題?
生:水杯的容積
師:怎樣求?
生:可以把水杯的裝滿水,倒進(jìn)一個(gè)長(zhǎng)方體的容器中,計(jì)算出長(zhǎng)方體容器中水的體積,也就求出了水杯的容積。
師:瞧,“裝滿水”,“滿”這個(gè)字用的多好,把水杯中的水倒進(jìn)長(zhǎng)方體容器中,從而求出水的體積。在這個(gè)過(guò)程中,運(yùn)用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化。
師板書:倒---長(zhǎng)方體,轉(zhuǎn)化。
師:在轉(zhuǎn)化過(guò)程中,水的什么變了?什么沒(méi)變?
生:水的形狀變了,體積沒(méi)變。
師:水杯的容積解決了,橡皮泥的體積呢?金屬零件的體積呢?
師:根據(jù)學(xué)生回答分別板書:捏---正方體,浸----長(zhǎng)方體。
師:剛才我們根據(jù)這三個(gè)物體的共同特點(diǎn),通過(guò)轉(zhuǎn)化,把它們轉(zhuǎn)化成我們以前學(xué)過(guò)的長(zhǎng)方體或正方體的體積。是不是通過(guò)這三個(gè)方法,就可以解決所有的圓柱的體積的問(wèn)題?
生:不能。
師:為什么?
生交流,得知物體很大時(shí),沒(méi)法進(jìn)行轉(zhuǎn)化。
師:因此,我們需要尋找一種通用的方法,你想到了什么方法?
生:計(jì)算。
師:圓柱體體積與什么有關(guān)?猜想一下怎樣計(jì)算?
……
片段二:
師:回顧這節(jié)課的學(xué)習(xí)過(guò)程,你認(rèn)為你最有收獲的是什么?
師:前面大家根據(jù)長(zhǎng)方體和正方體的體積公式猜測(cè)出圓柱的體積公式也是底面積×高,通過(guò)驗(yàn)證得知大家的猜測(cè)是正確的。
師:這三個(gè)立體圖形有什么共同點(diǎn)?
師:像這樣的形體在數(shù)學(xué)上叫做直柱體。
課件出示:長(zhǎng)方體、正方體、圓柱及它們的體積公式都是底面積×高。
師:生活中的直柱體還有哪些?
師:它們的形體是否也是底面積×高?有興趣的同學(xué)可以課后研究。
案例反思:
片段一的教學(xué)中,教師出示了三樣精心準(zhǔn)備的物體----玻璃杯、橡皮泥、金屬零件(都是圓柱體),在學(xué)生圍繞這三種物體提出數(shù)學(xué)問(wèn)題后,教師并沒(méi)有直接引導(dǎo)學(xué)生去探求如何計(jì)算圓柱體的體積,而是通過(guò)“以你現(xiàn)在的知識(shí)儲(chǔ)備,你能解決哪個(gè)問(wèn)題?”“在轉(zhuǎn)化過(guò)程中,水的什么變了?什么沒(méi)變?”“瞧,‘裝滿水’,‘滿’這個(gè)字用的多好,把水杯中的水倒進(jìn)長(zhǎng)方體容器中,從而求出水的體積。在這個(gè)過(guò)程中,運(yùn)用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化!薄八娜莘e解決了,橡皮泥的體積呢?金屬零件的體積呢?”這些引導(dǎo)性語(yǔ)言,使學(xué)生明白有些物體的體積可以分別通過(guò)倒、捏、浸轉(zhuǎn)化成長(zhǎng)方體或正方體的體積來(lái)解決,“轉(zhuǎn)化”的提出為學(xué)生后面構(gòu)建數(shù)學(xué)模型,探究圓柱體積公式奠定了基礎(chǔ)。緊接著“是不是通過(guò)這三個(gè)方法,就可以解決所有的'圓柱的體積的問(wèn)題?”這個(gè)問(wèn)題,點(diǎn)燃了學(xué)生的探究欲望,這是這節(jié)課成功的起點(diǎn),通過(guò)極限思想的滲透,使學(xué)生體會(huì)到了探究圓柱體積的計(jì)算方法的必要性。
片段二的教學(xué)中,教師在引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)反思的基礎(chǔ)上,進(jìn)行了拓展延伸。通過(guò)對(duì)長(zhǎng)方體、正方體、圓柱體積公式的歸納匯總,引出直柱體的概念,學(xué)生進(jìn)行了對(duì)直柱體表象的交流。此時(shí),學(xué)生的探究欲望、學(xué)習(xí)激情,并沒(méi)有隨著課的尾聲而有所減弱,而是探究熱情再一次被點(diǎn)燃,孩子們帶著強(qiáng)烈的研究熱情結(jié)束了本節(jié)課的學(xué)習(xí)。
教材是一種重要的課程資源,對(duì)于學(xué)校和教師來(lái)說(shuō),課程實(shí)施更多地應(yīng)該是如何更好地“用教材”,而不是簡(jiǎn)單地“教教材”。我們?cè)谟媒滩臅r(shí)不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實(shí)際的“跳板”。因此,教學(xué)時(shí),我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實(shí)際,研究學(xué)生學(xué)習(xí)起點(diǎn),讓學(xué)生親歷完整的數(shù)學(xué)學(xué)習(xí)過(guò)程,觸摸數(shù)學(xué)鮮活生動(dòng)的生命脈息,體會(huì)到知識(shí)產(chǎn)生過(guò)程中的前因和后果,從而進(jìn)行有效的數(shù)學(xué)思考。
【《圓柱的體積》教學(xué)片斷與課后反思】相關(guān)文章:
《圓柱的體積》教學(xué)片斷與反思11-21
圓柱的體積教學(xué)反思04-18
《圓柱的體積》的教學(xué)反思10-30
圓柱的體積教學(xué)反思12-04
圓柱的體積教學(xué)反思06-02
《圓柱的體積》教學(xué)反思07-19
《圓柱的體積》教學(xué)反思01-04
圓柱的體積教學(xué)反思01-31