八年級(jí)數(shù)學(xué)上冊(cè)《平方差》教學(xué)反思
節(jié)課的目標(biāo)是會(huì)推導(dǎo)公式(a+b)(a-b)=a2-b2,并能簡(jiǎn)單計(jì)算。上一節(jié)學(xué)了多項(xiàng)式×多項(xiàng)式的運(yùn)算法則,因此在回顧舊知識(shí)利用法則來計(jì)算(a+2)(a-2),(2x-y)(2x+y)的同時(shí)直接引入本節(jié)課的內(nèi)容,問學(xué)生上面的兩個(gè)多項(xiàng)式乘多項(xiàng)式中各個(gè)式有什么特征?結(jié)果又有什么特征,學(xué)生的回答跟預(yù)測(cè)的差不多看是能看出來但要把他描述出來有點(diǎn)困難,因此指導(dǎo)并和學(xué)生一起用語言描述:二項(xiàng)式乘二項(xiàng)式中其中一項(xiàng)相同,另一項(xiàng)互為相反數(shù)的積等于(自己不回答學(xué)生回答)兩項(xiàng)的平方差,這時(shí)就問對(duì)嗎?學(xué)生很快就能反映過來,更能加深印象結(jié)果應(yīng)該等于相同項(xiàng)的平方—互為相反數(shù)項(xiàng)的平方。繼續(xù)探究同類型的計(jì)算:(x+1)(x-1);(m+2)(m-2);(2x+1)(2x-1),都能找到此規(guī)律,讓學(xué)生歸納出結(jié)論(用式子),因?yàn)閺奶厥獾揭话愕臍w納學(xué)生比較擅長(zhǎng),得出結(jié)論是:(a+b)(a-b)=a2-b2,因?yàn)榻Y(jié)果是平方差所以把公式的名稱叫為平方差公式。接著那學(xué)生嘗試著用文字歸納,為了歸納的方便把連接兩項(xiàng)的符號(hào)看成運(yùn)算符號(hào),該怎么描述此規(guī)律:兩項(xiàng)的和乘兩項(xiàng)的差(提示學(xué)生這兩項(xiàng)跟前面的兩項(xiàng)是一樣的)等于這兩項(xiàng)的平方差,接著幾個(gè)二項(xiàng)式乘二項(xiàng)式的練習(xí)讓學(xué)生板演,目的是看看學(xué)生的易錯(cuò)點(diǎn)并一起歸納怎樣做不容易出錯(cuò)及應(yīng)注意那些事項(xiàng):利用平方公式計(jì)算,首先觀察是否符合公式的特點(diǎn),用不同的`符號(hào)把找到相同的項(xiàng)和相反的項(xiàng)表示出來,并把它寫成公式的形式,先不要急著答案出來。讓學(xué)生比較用法則計(jì)算跟用公式計(jì)算的區(qū)別,平方差公式(a-b)(a+b)=a2-b2它是特殊的整式的乘法,運(yùn)用這一公式可以迅速而簡(jiǎn)捷地計(jì)算出符合公式的特征的多項(xiàng)式乘法的結(jié)果,但運(yùn)用公式計(jì)算一定要看是否符合公式的特征,嚴(yán)格要求不能亂套公式。
為了讓學(xué)生理解公式的幾何背景,通過拼圖計(jì)算,既可以直觀說明公式的幾何特征,又可以體現(xiàn)數(shù)形結(jié)合現(xiàn)要將其中一塊邊長(zhǎng)為b米的正方形地塊改種玫瑰花,請(qǐng)問剩下的郁金香花圃的面積有多少平方米?你可以有哪些方法計(jì)算這部分面積?學(xué)生經(jīng)過動(dòng)手實(shí)踐,拼出了許多種圖形都充分說明了平方差公式,用幾何圖形的面積說明平方差公式,為學(xué)生營(yíng)造一個(gè)寬松、和諧的學(xué)習(xí)環(huán)境。只有設(shè)計(jì)出具有豐富而準(zhǔn)確內(nèi)涵的特定數(shù)學(xué)活動(dòng),才能使我們的課堂教學(xué)在不同水平的數(shù)學(xué)活動(dòng)的相互交融遞進(jìn)中,更好地達(dá)成新課程強(qiáng)調(diào)的過程。
【八年級(jí)數(shù)學(xué)上冊(cè)《平方差》教學(xué)反思】相關(guān)文章:
八年級(jí)數(shù)學(xué)上冊(cè)《平方差公式》的教學(xué)反思06-29
人教版八年級(jí)數(shù)學(xué)上冊(cè)《平方差公式》教學(xué)反思06-29
平方差公式教學(xué)反思07-04
平方差公式的教學(xué)反思08-12
平方差公式教學(xué)反思09-03
《平方差公式》教學(xué)反思參考01-04