1. <rp id="zsypk"></rp>

      2. 《解方程二》教學反思

        時間:2024-05-17 19:05:33 金磊 教學反思 我要投稿

        《解方程(二)》教學反思(通用17篇)

          在現(xiàn)實社會中,我們都希望有一流的課堂教學能力,反思過往之事,活在當下之時。那么你有了解過反思嗎?以下是小編幫大家整理的《解方程(二)》教學反思,僅供參考,大家一起來看看吧。

        《解方程(二)》教學反思(通用17篇)

          《解方程二》教學反思 1

          今天上了解方程(二)的內(nèi)容,感覺沒什么明顯的精彩地方。學生由于有了關于加減的等式的性質(zhì)的了解,在通過例題中兩組方程的觀察,適當提醒學生聯(lián)系前面學習的`等式的性質(zhì),很自然的就能得出有關乘除的等式的性質(zhì)。

          只是在讓學生舉例的時候,沒有學生能想到同時除以0,結果是怎樣的。只能由自己向?qū)W生提出問題,簡單討論后,很快想到除法中除數(shù)不能為0,因而得出同時除以一個不為0的數(shù)的范圍。

          計算中有較多的問題,特別是很多學生對于小數(shù)的乘除法計算,有很多的錯誤,需要加強鞏固訓練。

          《解方程二》教學反思 2

          有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導學生會解形如a-x=b及a÷x=b方程。

          本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補充講解,且屬于學生必會、考試必考內(nèi)容。原因如下:1、在列方程解決實際問題時,學生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。2、如果教師有意回避,會使學生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。

          基于上述原因,我今天在教學完例2后為學生補充了相應內(nèi)容,但教學效果較差。雖然許多學生能根據(jù)加減乘除各部分之間的關系推導出X的值,但當要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導,全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的`常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復雜。

          值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關系教好呢,還是按等式的性質(zhì)教學好呢?

          《解方程二》教學反思 3

          今天對五年級上冊《解方程》進行了教學。本課主要對教學例一和例二進行了教學。

          一、本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設計和安排上,盡量為突破教學重點和難點服務,因此我進行了大膽的嘗試,在講解方程的解時,給學生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學生的好奇心,通過練習讓學生充分感知“方程的解”的神奇之處。既讓學生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學會了本節(jié)課的知識。對于概念的理解也很扎實。

          二、在練習題的安排上也做了精心的安排,當講授完利用天平平衡的'道理解方程后,馬上進行了“填空練習”,這四個練習題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學和課后的練習看,學生對解方程掌握的還不錯。

          三、本課主要對解方程進行了解題練習。通過搶奪小紅花等游戲的形式大大提高了學生學習數(shù)學的樂趣和興趣!

          四、通過本課的作業(yè)檢測,有少量學生還是對本課的內(nèi)容練習不是很到位。需要教師在課下不斷的指導。

          五、學生對于方程的書寫格式掌握的很好,這一點很讓人欣喜。

          總之,“興趣是學生最好的老師”,只要緊緊抓住這一點,教學質(zhì)量的提高指日可待。

          《解方程二》教學反思 4

          本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設計和安排上,盡量為突破教學重點和難點,因此我進行了大膽的嘗試,在講解方程的解時,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例1,讓學生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導學生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當于6個方塊,從而得到x=6。

          你能把稱的過程用算式表示出來嗎?大部分學生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標是求一個x的多少,所以要把多余的3減去。在此基礎上我引導學生總結天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的`數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。另外我還要求學生掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關系來求出方程中的未知數(shù)。

          在做練習時我發(fā)現(xiàn)大部分的學生在解方程的時候,還是運用了加、減法各部分間的關系來求出方程中的未知數(shù),只有個別學生懂得運用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。

          《解方程二》教學反思 5

          教學《解方程》這部分內(nèi)容時,我一開始就有些擔心學生不容易學好。因為方程的思維方式和原來的解決問題思考方式完全不同,而學生已經(jīng)著慣了原來的思考模式,恐怕很難接受新的方法,即使這種方法的思維含量更少,完全不用拐彎抹角地思考,不用逆向思維。學生對于新的東西,總是因為不熟悉而否定它的簡便好用,因為對他們來說用起來不熟練就是不方便的。其次是解方程、驗算、用方程解決問題等都需要固定的格式,學生要花時間適應這種格式記住這種格式,并熟練地應用也是一大難點。

          在上課時,我是先按照書上例子展開教學。然后我說明,列方程解決問題就是把實際情況最直接地表示出來,比如天平左邊是杯子和水,水的質(zhì)量是x 克,就寫100+x ,右邊是砝碼250 克,左右平衡,用等號連接,列成的方程就是100+x=250 。

          接著教學怎么解方程,求出方程的解。我讓學生自己來求x 等于多少,學生都能解決。書上介紹的方法是兩邊同時減去同一個數(shù),左右兩邊仍然相等。但是學生的方法都是根據(jù)加法算式中各數(shù)的關系來求的。即使有些學生說不清自己是用什么方法,我也能看得出來是用這種方法。我肯定了學生的方法,再從天平的原理出發(fā)介紹了書上的方法,然后問學生:你們喜歡哪種方法?學生幾乎異口同聲地肯定了自己的方法。因此,我說,那我們就用自己用得好的方法來求方程中的未知數(shù),。同時, 介紹了使方程左右兩邊相等的未知數(shù)的值叫方程的解,求出方程的解的過程叫解方程。認識了概念后,要及時加以鞏固。我出了兩道題幫助學生鞏固概念。

          二是讓學生來解方程。學生很快能算出來,我告訴學生解方程的寫法跟我們以前的計算寫法不同,它有特定的格式,我一邊講解格式一邊板書。要求學生讀一讀解方程的.過程,看是否理解,再在自己的本子上寫出過程。然后重新做了一道加以鞏固。接下來的難點是驗算。我先講解怎么驗算,再請學生來說驗算過程,然后把驗算過程也按照特定格式寫下來。

          學生作業(yè)反饋時,有幾個問題:一、用方程表示題目中的數(shù)量關系很多都用老方法;二、解方程的格式寫法容易出錯;三、方程的解的驗算過程不是很理解,經(jīng)常出錯。

          作業(yè)講評時我們一起糾正了錯誤,概括了錯誤類型,要求學生避免這些錯誤,然而一些學生依然在重復原來的錯誤。這是數(shù)學教學中常有的現(xiàn)象,有些題目第一次用了錯誤的方法,往往糾正很多次還是著慣用錯誤的方法。

          我反思了自己的教學,也有幾點想法:

          一、用方程來表示數(shù)量關系學生出現(xiàn)困難,是通過我的幫助列出方程,我并沒有及時讓學生鞏固方法。

          二、解方程、驗算的過程和格式的教學以我的講解為主,而那時我沒有想辦法很好的提高學生的注意力,因此學生練著時丟三落四較多。

          三、我的講解過多,學生自己的思考過少,類似于灌輸,學生學著較被動,到最后模仿解法和格式為主,卻沒有理解為什么這樣寫,因此學生有時正確,有時出錯,沒有掌握好。

          四、這個教學內(nèi)容對我們的學生來說,難點較多,而我并沒有為學生的接受能力進行減負思考,一股腦地把所有新的東西都倒給學生,造成學生超負荷。

          《解方程二》教學反思 6

          這節(jié)課的內(nèi)容包括兩個方面:一是探索并理解“等式兩邊同時加上或減去同一個數(shù),所得結果仍然是等式”;二是應用等式的性質(zhì)解只含有加法和減法運算的簡便方程。解方程是學生剛接觸的新鮮知識,學生在知識經(jīng)驗的儲備上明顯不足,因此數(shù)學中老師要時刻關注學生的學習狀態(tài),引領學生經(jīng)歷將現(xiàn)實、具體的問題加以數(shù)學化,引導學生通過操作、觀察、分析和比較,由具體到抽象理解等式的性質(zhì),并應用等式的性質(zhì)解方程。在這節(jié)課的.教學中,讓學生理解并掌握等式的性質(zhì)應是解決一系列問題的關鍵。

          一、讓學生在操作中發(fā)現(xiàn)

          課開始,老師出示天平并在兩邊各放一個50克的砝碼,“你能用式子表示出兩邊的關系嗎?”學生寫出 50=50;老師在天平的一邊增加一個20克砝碼,“這時的關系怎么表示?”學生寫出50+20>50,“這時天平的兩邊不相等,怎樣才能讓天平兩邊相等?”學生交流得出在天平的另一邊增加同樣重量的砝碼;“你有什么發(fā)現(xiàn)嗎?”“自己寫幾個等式看一看!蓖ㄟ^具體的操作為學生探究問題,尋找結論提供了真實的情境,輔以啟發(fā)性、引領性的問題,讓學生經(jīng)歷了解決問題的.過程,并在問題的解決中發(fā)現(xiàn)并獲得知識。

          二、讓學生在發(fā)現(xiàn)中操作

          引入了等式的性質(zhì),其目的就是讓學生應用這一性質(zhì)去解方程,第一次學生解方程,學生心理上難免會有些準備不足,為了幫助學生應用等式的性質(zhì)解方程,教者先利用天平所顯示的數(shù)量關系,引導學生發(fā)現(xiàn)“在方程的兩邊都減去100,使方程的左邊只剩下x”,通過這樣有步驟的練習,幫助學生逐漸掌握解方程的方法。

          《解方程二》教學反思 7

          本節(jié)課的內(nèi)容是在學生學了等式的性質(zhì)和解形如a+x=b x — a =b ax=bx÷a =b這樣的一般方程基礎上進行教學的。成功之處:如何解決形如a — x =b a÷x =b這樣的特殊方程,關鍵是啟發(fā)學生思考,根據(jù)哪一條等式性質(zhì),怎樣將新的問題轉(zhuǎn)化為已經(jīng)解決的舊的問題。在教學中,我首先讓學生試做看看遇到了什么樣的難題,部分學生發(fā)現(xiàn)20—x=9解:20—x—20=9—20在解決問題的過程中遇到了方程右邊不夠減的情況,方程左邊是“—x”。正當學生無從下手,不知所措的情形下,啟發(fā)學生當我們遇到新問題時怎么解決呢?學生會想到聯(lián)系前面學習的舊知識來解決,那你認為應該把這樣的減法方程轉(zhuǎn)化為什么運算的方程呢?學生很容易想到把這樣的減法方程轉(zhuǎn)化為加法方程就可以解決新問題,接著教師再緊跟著啟發(fā)學生,如何根據(jù)我們學過的知識進行轉(zhuǎn)化呢?

          通過學生思考、討論和交流,可以根據(jù)等式的性質(zhì)進行轉(zhuǎn)化,從而得出:20—x=9在解決特殊方程的過程中,學生有的解:20—x+x=9+x還想到利用加減法之間的關系來解決,直20=9+x接得出9+x=20也是可以的,肯定學生的9+x =20思考方法的合理性,但是也要告訴學生,9+x—9 =20—9這樣的思考方法到了中學解決更加復雜X=11的..方程就無能為力了,為了使小學和中學的知識能更好的銜接,我們重點應用等式的性質(zhì)把特殊方程轉(zhuǎn)化為一般方程,然后依據(jù)一般方程的方法解決問題。不足之處:在練習中出現(xiàn)個別學生不注意觀察方程是一般方程還是特殊方程,導致出錯。再教設計:重點強化特殊方程的特點,讓學生在解方程的過程中首先要觀察方程的特點,然后采取相應的解決問題的方法。

          《解方程二》教學反思 8

          解方程是是數(shù)學知識里面很關鍵很重要的一個知識點,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學生開始學習解方程,作為教師的我更應該讓學生吃透這方程,突破這重難點。

          在教這單元之前,我一直困惑解方程要采用初中的“移項”解題,還是運用書本的“等式性質(zhì)”解題,面對困惑,向老教師請教,原來還有第三種老教材的“四則運算之間的關系”解題,方法多了,學生該吸收那種方法呢?困惑,學生該如何下手,運用“移項”解題,學生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時,在碰到a-x=b和a÷x=b此類的方程,學生能如何下手,“四則運算之間的關系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學參考書):新教材編寫者如此說明:長期以來,小學教學簡易方程時,方程變形的依據(jù)總是加減運算的關系或乘除運算之間的`關系,這實際上是用算術的思路求未知數(shù)。到了中學又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學解方程。小學的思路及其算法掌握得越牢固,對中學代數(shù)起步教學的負遷移就越明顯。

          因此,現(xiàn)在根據(jù)《標準》的要求,從小學起就引入等式的基本性質(zhì),并以此為基礎導出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學數(shù)學教學的銜接。從這不難看出,為了和中學教學解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學生清楚準確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學生帶來的是局部的銜接,而存在局部對學生會更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運用等式基本性質(zhì)教學孩子會解簡單的方程,以便初中學習可以銜接,而初中的“移項”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的方便性,我再教學老教材的“四則運算關系”解放程,至少這樣能讓現(xiàn)在的學生會解各種題型的方程。在我看來,這樣的教學書本的知識不丟,方法又可以多種變通。所以我在教學解方程的時候,給他們灌輸了兩種方法,第一種方法就是課本上的根據(jù)等式的性質(zhì)去解方程,另一種方式就是初中階段的“移項”,在這里的時候,我給初中的“移項”起了一個新的名字:移——變號。引入了這一個方法,學生解方程的興致有了很大的提高,解方程也變得容易了許多。

          但是在移-變號這種情況下,有出現(xiàn)了21÷x=7,和20-x=3的這樣的特殊情況,而我則讓他們記住,只要x在后面,就要運用到四則運算“除數(shù)=被除數(shù)÷商”和“減數(shù)=被減數(shù)-差”這兩種情況。通過練習,學生解方程正確率有了很大的提高,但是與之而來的是,學生忘了等式的興致,忘了移—變號是怎么來的,而我,則在移-變號的基礎上,再一次的回顧,讓他們明白移-變號的立腳點就是等式的性質(zhì),如此反復,學生加強了對解方程的認識,也更牢固的記住了等式的興致。而通過這一次的上課,我意識到,老師在上課之前,一定要更好的預設,只有在這樣的情況下,生成的結果,才不會顧此失彼。而身為老師,一定要好好的研究教材,鉆研透知識點,只有這樣,才能夠給學生清晰的思路。

          《解方程二》教學反思 9

          《解方程》是人教課標版小學數(shù)學五年級上冊第四單元內(nèi)容,本節(jié)課是在認識用字母表示數(shù)的基礎上進行教學的,新課程解方程教學與以往的最大不同就是,不是利用加減乘除各部分間的關系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。

          我對課時安排及教學設計均做了較大調(diào)整。原訂計劃是第一課時完成“方程的解”及“解方程”概念教學,要求學生掌握方程檢驗的書寫格式,第二課時完成加、減、乘、除各類型方程解法的教學。調(diào)整后的教案改為第一課時完成“方程的解”及“解方程”概念教學、會解形如X±A=B的方程,掌握檢驗的格式;第二課時只完成乘除法方程的解法。我上的是第一課時,其次對于教學設計也做了相應處理,將例1 改為:X+20=70,又將X-a=b形式的方程穿插學習過程之中。

          為什么我會做如此改動呢?基于以下兩點原因:

          1、考慮到學生一節(jié)課內(nèi)如要掌握加減乘除各種類型方程的解法、理解解方程的原理,規(guī)范書寫格式,內(nèi)容太多,怕影響教學效果。2、如果能將“解方程”與“方程的解”這兩個概念結合規(guī)范的解方程書寫過程和結果來向?qū)W生解釋,更利于學生理解掌握?傮w思路如下:

          1、從復習天平保持平衡的道理入手,引出課題,引導學習質(zhì)疑,有利于激發(fā)學生主動探究、深入學習的積極性。

          2、通過自主學習、組內(nèi)交流、合作,達到培養(yǎng)學生自主、互助的精神。

          3、給足夠的時間讓學生學習,讓學生發(fā)現(xiàn)。

          4、多層次的練習形式,有利于學生對知識進一步的理解與掌握,并及時有效地鞏固強化概念。

          5、教師始終把學生放在主體地位,為學生提供了一個自己去想去說,去回味知識掌握過程的舞臺,這樣將更有助于學生掌握正確的學習方法,總結失敗原因,發(fā)揚成功經(jīng)驗,培養(yǎng)良好的學習習慣。

          6、自學思考匯報交流既有利于每個學生的自主探索,保證個性發(fā)展,也有利于教師考察學生思維的合理性和靈活性,考察學生是否能用清晰的數(shù)學語言表達自己的觀點。

          在具體教學過程中,我從以下幾個方面入手:

          一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

          教學中我先利用課件演示了“我說你答”的游戲讓學生回顧:天平兩端同時加上或減去同樣的重量,天平任然保持平衡,目的是讓學生直觀感受天平保持平衡原理,為學生遷移類推到方程中打基礎。然后出示例題X+20=70

          二、利用 等式性質(zhì)解方程-,初步感悟它的`妙用

          在計算過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,通過討論:方程X+20=70中左右兩邊同時減去的為什么是20,而不是其它數(shù)呢?讓學生明白:左邊減去20是為了使方程左邊只剩,右邊減去20是為了使方程兩邊仍然相等!不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學習活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。

          三、確保正確率,及時進行檢驗。

          原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細的檢驗過程之后,然后教給學生一個簡便的檢驗方法,學生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。

          通過教學,發(fā)現(xiàn)學生對這種方法掌握的很好,而且很樂意用等式的性質(zhì)來解方程,但同時讓我感到了一點困惑:

          從教材的編排上,整體難度下降,有意避開了,形如:A—X=B 和 A÷X=B等類型的題目。把用等式解決的方法單一化了。在實際教學中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。但是用減法和除法各部分之間的關系解答就比較簡單。這會不會與教材主倡導的用等式的性質(zhì)解決問題有矛盾呢?

          《解方程二》教學反思 10

          小學五年級第四單元教材的設計打破了傳統(tǒng)的教學方法。在以前人教版教材中,學習解方程之前首先要求學生掌握加、減、乘、除法各部分之間的關系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學會解方程,還能使之與中學的移項解方程建立起聯(lián)系。

          在教學前,由于我個人比較偏好于傳統(tǒng)的教學方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的教學思想,更新教學觀念,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學生是學習的主人”和“教師是學習的組織者、引導者與合作者”的這一角度上,為學生創(chuàng)設學習此課的情境,通過直觀演示,充分給學生提供小組交流的機會。在教學的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學習活動是那么的有滋有味,進而使我很順利地就完成了本課的教學任務。 通過近段時間的學習,發(fā)現(xiàn)學生對這種方法掌握的很好,而且很樂意用等式的性質(zhì)來解方程,但同時讓我感到了一些困惑:

          1、教材的編排上,整體難度下降,有意避開了,形如:45—X=23 56÷X=8等類型的題目。把用等式解決的`方法單一化了。在實際教學中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。但是用減法和除法各部分之間的關系解答就比較簡單。

          2、 內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補充X前面是除號或減號的方程的解法。

          總之,要使孩子們愛學、樂學,教師就必須更新教學觀念,充分理解教材,并要懂得為教學去創(chuàng)設合理情境,靈活處理教材中的問題,鼓勵學生算法的多樣化,真正體現(xiàn)課改精神——“人人學有價值的數(shù)學,人人都能獲得必須的數(shù)學;不同的人在數(shù)學上得到不同的發(fā)展。

          《解方程二》教學反思 11

          1、教材的編排上難度下降。有意避開了,形如:7.8—X=2.6,12÷X=1.2等類型的題目。把用等式解決的方法單一化了,這和提倡算法多樣化又有了矛盾。盡管老師一再強調(diào)用等式的性質(zhì)解,還是有多數(shù)學生用原來的方法解答。

          2、強調(diào)書寫格式得有層次。告訴學生利用等式的性質(zhì)來解方程熟練以后特別快。同時強調(diào)書寫格式。通過教學,學生利用等式的性質(zhì)學生能解決簡單的方程,如果有過程,方程中的等號不易上下對齊,這點問題不大。到熟練之后省去過程時再強調(diào)格式。

         。、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,()可以實際上反而是多了。教師要給他們補充X在后面的方程的解法。要教他們列方程時怎么避免X在后面這樣方程的出現(xiàn)等等。

          在實際教學中我們要求學生較熟練地利用等式的方法來解方程,用這樣的方法來解方程之后,書本中不再出現(xiàn)X做減數(shù),除數(shù)的`方程題了,但學生在列方程解實際應用時,學生列出的方程中還有這樣的題目,但不會解答,這時我們又要強調(diào)算法多樣化,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學生還很難掌握這樣方法。有的學生又不得不用除、減法各部分間的關系做題。在實際的方程應用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。因此教學中我還是對學生說盡量用方程的性質(zhì)解,若遇到用等式的性質(zhì)解決不了時,可以用以前學過的知識解答。認識方程教學反思解方程教學反思方程教學反思

          《解方程二》教學反思 12

          《解方程》是學生接觸方程以來的第一堂計算課,理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。本著孩子比較感興趣的基礎上,本節(jié)課我采用的是課前預習,課上交流的形式進行,整節(jié)課大多數(shù)孩子在預習的.基礎上能夠掌握方程的解法,但是個別孩子沒有掌握,F(xiàn)反思如下:

          1、出示預習提綱,讓孩子預習有根據(jù)。

          為讓孩子形成自覺的學習習慣,師指導孩子進行預習,出示了以下三個問題:

          一是什么是方程的解?舉例說明。

          二是什么是解方程?你是根據(jù)什么來解方程?

          三是如何進行方程的檢驗?

          好多孩子能夠?qū)@幾個問題進行探究,并對意義理解比較深刻。

          2、課上交流。

          交流是學生思維火花的碰撞。對于什么是方程的解,孩子們舉例子,根據(jù)例題來詮釋方程的解的意義。在進行交流根據(jù)什么來解方程的環(huán)節(jié)中,孩子們各抒已見,有的是用加法中各部分間的`關系,有的是用等式的性質(zhì),還有的還接口答。依次把方法展示給大家,讓孩子明白方程的解的意義和解方程的過程。再確定統(tǒng)一的解答方法,這個環(huán)節(jié)孩子興趣很高,大部分孩子能夠?qū)W會利用等式的性質(zhì)進行解方程。整個的環(huán)節(jié)讓孩子在探究中發(fā)現(xiàn)規(guī)律,找到方法,學生學的開心,對于概念的理解也很扎實。

          《解方程二》教學反思 13

          本節(jié)主要教學目標是使學生通過結合具體實際問題的分析與解決,導出形如ax±b=c和ax±bx=c形式的方程,并結合原有舊知——等式的性質(zhì)推導出解法步驟,同時利用這些方程來解決一些實際問題,豐富學生的解題方法,提高學生解決問題的能力。

          通過幾課時的教學與練習,學生在掌握方程解法上沒有問題,說明學生對等式的性質(zhì)掌握的比較扎實。但在運用方程解決一些實際問題時,部分學生表現(xiàn)出缺少一定的分析習慣和缺乏一定的分析能力,造成在解決問題(特別是一些例題的變式題)時產(chǎn)生較多錯誤。

          通過前后練習的比較、觀察,發(fā)現(xiàn)產(chǎn)生上述問題的主要原因在于學生在練習時偏重模仿和記憶,缺少具體分析的意識。從而造成在碰到一些變式題時就明顯缺少解題策略,學生在讀題后首先想到的不是去思考題中有怎樣的數(shù)量關系,而是在記憶中極力搜索“這個問題以前有沒有講過?或跟哪個問題是一樣的?”等舊痕跡。然而這些變式題的解答難就難在它與例題有密切的聯(lián)系,但又有區(qū)別。如果學生不能找到其中的區(qū)別和練習,光靠模仿和記憶,那就很難正確解答了。因此,在教學中教師要注意學生重模仿輕分析的.學習方式,在練習中要加強數(shù)量關系的分析,注重學生對解題思路的表述。教師要強調(diào)學生讀題后先分析并寫出等量關系,每個實際問題的解答過程中都要設計等量關系的分析與交流,從潛意識中使學生重視起對問題的分析與判斷。一開始學生可能在分析、判斷等量關系時還會模仿例題的形式,因此在學生對基本類型有了一定的感悟后,要有針對性的出現(xiàn)變式題讓學生來解決,使其在認知沖突中進一步感悟先分析、判斷等量關系的重要性。但同時教師也要十分清楚的認識到尋找等量關系對于課改后的六年級學生來講,并不是一件容易的事,除了缺少一定的意識外,更重要的是缺乏一定的分析能力。

          產(chǎn)生這種情況的原因主要有兩個,一是在新教材的編排中,在六年級前很少涉及甚至沒有安排過等量關系尋找的內(nèi)容。正是由于教材中忽視了這方面內(nèi)容的安排,也就引起了第二個原因——教師和學生都忽視了尋找等量關系能力的培養(yǎng)。等到六年級要大量具體涉及到時,就發(fā)現(xiàn)學生很不適應了。如何提高學生尋找題目中等量關系的能力,就成了教學的一個重點,也是一個難點。為了提高學生等量關系的分析能力,除了如前所述要加強意識培養(yǎng)外,還應在具體方法上加以指導。而用線段圖來表示題目中的條件和問題,是一種非常有效的提升學生分析、判斷等量關系的方法,教材在例題分析中就先借助了線段圖來分析,從而幫助學生找出題中的等量關系。在實際教學中我深深地體會到了畫線段圖來表示條件和問題,從而形象的表示出等量關系的有效性。同時,在教學中不能因為問題簡單或趕進度而忽視畫線段圖表示條件和問題的環(huán)節(jié)。一開始學生可能由于以前缺少一定的訓練而顯得有些不適應,但經(jīng)過幾次的努力后,學生就能很快提高作圖能力,從而有助于等量關系的尋找。

          綜上所述,在列方程解決實際問題的教學中,教師首先要注意學生學習方式的培養(yǎng),從偏重模仿和記憶中逐步糾正過來,逐步建立具體分析的意識。其次是要培養(yǎng)學生用線段圖表示題目中條件和問題的能力,借助線段圖的表示形象的表現(xiàn)出相關的等量關系,提高學生尋找等量關系的能力,從而進一步提高學生列方程解決實際問題的能力。

          《解方程二》教學反思 14

          一、引入了天平,理解等式的性質(zhì)。

          新教材的突出之處從直觀的天平入手,天平的兩邊同時加上或減去相同的重量,仍然保持平衡,這樣就引入了等式的性質(zhì)1,利用這個性質(zhì),可以解決a+x=b,或a-x=b的方程,接著又從天平的兩邊同時乘或除以相同的非零的數(shù),天平仍然平衡,可以解決ax=b或x÷a=b的方程。從長遠角度看,學生經(jīng)過這樣的學習,對于七年級以后的后續(xù)學習減少了障礙,很好地做好了銜接。

          二、兩條腳走路,解決不便的問題。

          教材中有意避免了形如-x或÷x的.方程的出現(xiàn),可是在實際中,出現(xiàn)這種方程是不可避免的,如果出現(xiàn)了,我們教者如何解釋呢?學生又應如何解答呢?當然還可以根據(jù)等式的性質(zhì)來進行左右兩邊的化解,使得左邊或右邊變?yōu)樾稳鐇的情況,學生對于其中的減數(shù)與除數(shù)為未知數(shù)還可以啟發(fā)他運用四則運算的內(nèi)部的關系來解決。不要怕給了學生又一種選擇的機會,這樣在用等式的性質(zhì)解決問題不方便時,未嘗不是一種好的方法。

          三、抓住其本質(zhì),簡化方程的過程。

          兩邊同時加上或減去同一個數(shù)的過程,其本質(zhì)是為什么要這么做,當學生經(jīng)過思考發(fā)現(xiàn)這樣的過程就是把方程的一邊變?yōu)橹皇O挛粗獢?shù)的過程,因而可以簡化一些不必要的多余過程,典型的如x+5=20,x+5-5=20+5,讓學生通過計算體驗這樣的第二步過程實際即為x=20+5,因而可以使方程的解答變得簡便。學生覺得當然還是簡便的過程值得效仿,積極性顯得非常之高。

          四、確保正確率,及時進行檢驗。

          原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細的檢驗過程之后,然后教給學生一個簡便的檢驗方法,學生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。

          同時,在這部分的教學期間,也有一些問題引發(fā)了個人的一些思考。

          首先是學習中如何提高學生的學習規(guī)范性,方程的解答是一種規(guī)范的過程,它有一些固定的格式,例如必須寫“解:”,必須“=”上下對齊,要正確必須進行檢驗等,而這些都必須讓學生多進行訓練,多強化練習,理解各種題型的結構。

          其次是對于特殊方程的解答,如減數(shù)與除數(shù)為未知數(shù)的方程,用兩種方法解決的問題,可能會引起部分的的不理解,會不會與教材主倡導的用等式的性質(zhì)解決問題有矛盾呢

          《解方程二》教學反思 15

          五年級上冊利用等式的性質(zhì)解方程一直困擾著老師們,因為類似a-x=b的方程,則比較麻煩,因此許多老師就避開等式的性質(zhì),轉(zhuǎn)而用四則運算各部分之間的關系進行教學,這樣以來勢必會削弱學生對等式的性質(zhì)的理解和掌握。我教學中是這樣做的:第一節(jié)課時教學學習等式的性質(zhì)和用等式的性質(zhì)解方程,在書寫上要求學生按這樣的`格式書寫如:

          x+100=250

          解:x-100+100-100=250-100

          X=150

          強調(diào)我們解方程的根據(jù)是等式的性質(zhì),即把等式的兩邊同時減去100,等式左右兩邊仍然相等,通過練習使學生達到熟練程度。

          第二課時教學時,引入類似a-x=b的方程,例如10.5-x=7.5這樣的方程,讓學生討論,這樣的方程我們?nèi)绾谓饽?有的學生想到了運用減法各部分之間的關系來解方程,即除數(shù)等于被除數(shù)除以商,也有一部分同學運用等式的性質(zhì)來解方程,先將方程的左右兩邊同時加上x,,即10.5-x+x=7.5+x:方程變成了x+7.5=10.5,再把方程左右兩邊同時減去7.5,求出x的值;然后引導學生觀察在運用等式的基本性質(zhì)解方程時,方程左邊加一個數(shù)又減一這個數(shù),可以相互抵消,因此在書寫時,可以省略不寫,如:15+x=85,15+x-15=85-15,左邊可以將加15和減15省略不寫,學生很快學會了這種方法。最后引導學生把我們所學習的加減法方程的樣式及解法可以歸納如下:

          x+a=b

          x=b-a(根據(jù):把方程的左右兩邊同時減去a,等式仍然成立;

          或者是想:一個加數(shù)=和-另一個加數(shù))

          x-a=b

          x=b+a(根據(jù):把方程的左右兩邊同時加a,等式仍然成立;

          或者想:被減數(shù)=減數(shù)+差)

          a-x=b

          x=a-b(根據(jù):把方程的左右兩邊同時加x,再把方程左右兩邊同時減去b等式仍然成立;或者想:減數(shù)=被減數(shù)-差)

          通過以上幾個步驟的教學,我班學生對于用等式的基本性質(zhì)解方程,或是運用加減法各部分間的關系解方程,都能運用自如,并能在后面學習了乘除法的方程后能夠自覺進行整理,概括方程的樣式和解方程的根據(jù),收到了較好的教學效果。

          《解方程二》教學反思 16

          《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領域中的一個重要內(nèi)容,是“代數(shù)”教學的起始單元,對于滲透與發(fā)展學生的代數(shù)思想有著極其重要的作用。

          在開課時,通過復習哪些是方程,鞏固方程的含義,為后面教學作鋪墊。

          教學時,我讓學生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗的方法及書寫格式,并在后面的鞏固練習當中加入口答檢驗,根據(jù)課本上的“注意”強調(diào)說明雖然不要求每題都寫出檢驗,但都要口算進行檢驗,使學生養(yǎng)成良好的學習習慣。

          在出示概念時,先讓學生自學了概念。自學完概念后,應讓學生對兩概念講講自己的理解,自己勾畫出重點字,然后才是教師對概念重點的'強調(diào),這樣更能區(qū)分兩概念不同的含義,對難點的突破也是一個很好的方法,可以讓學生將易混易錯的地方,清楚理解后,明確兩概念的區(qū)別,這點在課上忽略了。

          在后面的反饋練習時,因前面例題的格式講的還不夠明確,所以練習時有點反復,但在后面的練習中學生已完全掌握。鞏固練習的層次很好,由易到難,對學生的學習有突破,學生完成的正確率也很高。

          這節(jié)課整體來說我比較滿意,對于細節(jié)上的處理。在今后的教學中我會更加注意,使教學更加嚴謹,也會更注意教材的研讀,爭取上一節(jié)完美的好課。

          《解方程二》教學反思 17

          前兩天講解了簡單的方程的解法,加法、減法乘法除法的,覺得孩子們接受的不錯,一節(jié)課下來練習了好多題,每個孩子都能得心應手,自己還有點竊喜。可是今天卻讓我大跌眼鏡。

          昨天上課講解了例4和例5,孩子們對了復雜的方程有了初步認識,但在每一步的分析之下孩子們也覺得很熟悉,原來是簡單的方程結合在一起變成復雜的,只要掌握運算順序就不難,結合例題的圖示,分彩筆的`例子,先分什么再分什么,讓學生明白在具體算式中也是結合著實物圖來做,先把3x看做一個整體,把剩下的4根彩筆減掉,要想得到一整盒x根的彩筆,就得把3整盒再平均分配,這樣下來孩子們能夠明白每一步的意思,他們能夠知道先處理多余的彩筆,再考慮整盒的彩筆。這樣下來理解也不是問題,又練了幾道同類的題,也很順手。例5的講解上有些難度,孩子始終不太理解把括號看做一個整體,但在講解和練習下也能做上了。

          今天我想驗收一下昨天學的怎么樣,結果讓我很頭疼,為什么過了一宿好多同學又沒了思緒,留了6道題,少數(shù)幾個好同學能夠順利的做上,大部分同學還在思索著,課下輔導了幾個差生,原來他們又把前面學的簡單的方程解法又忘了,自己思考了一下,得給孩子們消化時間,課上會了不代表他們一直不忘,還得多加練習啊

        【《解方程二》教學反思】相關文章:

        《解方程二》教學反思06-02

        《解方程(二)》教學反思04-07

        解方程二教學反思12-29

        解方程二教學反思01-10

        解方程二的教學反思02-05

        解方程二教學反思9篇01-10

        解方程的教學反思11-06

        《解方程》的教學反思09-17

        解方程的教學反思11-06

        《解方程》的教學反思04-07

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>