1. <rp id="zsypk"></rp>

      2. 二次根式教案

        時(shí)間:2022-10-14 10:19:51 教案 我要投稿

        關(guān)于二次根式教案六篇

          作為一名老師,很有必要精心設(shè)計(jì)一份教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么你有了解過(guò)教案嗎?下面是小編幫大家整理的二次根式教案6篇,僅供參考,歡迎大家閱讀。

        關(guān)于二次根式教案六篇

        二次根式教案 篇1

          一、教學(xué)目標(biāo)

          1。使學(xué)生知道什么是最簡(jiǎn)二次根式,遇到實(shí)際式子能夠判斷是不是最簡(jiǎn)二次根式。

          2。使學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。

          3。使學(xué)生了解把二次根式化簡(jiǎn)成最簡(jiǎn)二次根式在實(shí)際問(wèn)題中的應(yīng)用。

          二、教學(xué)重點(diǎn)和難點(diǎn)

          1。重點(diǎn):能夠把所給的二次根式,化成最簡(jiǎn)二次根式。

          2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡(jiǎn)二次根式的方法。

          三、教學(xué)方法

          通過(guò)實(shí)際運(yùn)算的例子,引出最簡(jiǎn)二次根式的概念,再通過(guò)解題實(shí)踐,總結(jié)歸納化簡(jiǎn)二次根式的方法。

          四、教學(xué)手段

          利用投影儀。

          五、教學(xué)過(guò)程

          (一)引入新課

          提出問(wèn)題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長(zhǎng)是多少?能不能求出它的近似值?

          了。這樣會(huì)給解決實(shí)際問(wèn)題帶來(lái)方便。

         。ǘ┬抡n

          由以上例子可以看出,遇到一個(gè)二次根式將它化簡(jiǎn),為解決問(wèn)題創(chuàng)

          這兩個(gè)二次根式化簡(jiǎn)前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開(kāi)方數(shù)的因數(shù)化簡(jiǎn)后是否是整數(shù)了,另一方面被開(kāi)方數(shù)中還有沒(méi)有開(kāi)得盡方的因數(shù)。

          總結(jié)滿足什么樣的條件是最簡(jiǎn)二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式:

          1。被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式。

          2。被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。

          例1 指出下列根式中的最簡(jiǎn)二次根式,并說(shuō)明為什么。

          分析:

          說(shuō)明:這里可以向?qū)W生說(shuō)明,前面兩小節(jié)化簡(jiǎn)二次根式,就是要求化成最簡(jiǎn)二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡(jiǎn)二次根式。

          例2 把下列各式化成最簡(jiǎn)二次根式:

          說(shuō)明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開(kāi)方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先將被開(kāi)方數(shù)或被開(kāi)方式分解因數(shù)或分解因式,然后把開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn)。

          例3 把下列各式化簡(jiǎn)成最簡(jiǎn)二次根式:

          說(shuō)明:

          1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開(kāi)方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫(xiě)成分式的形式,然后利用分母有理化化簡(jiǎn)。

          2。要提問(wèn)學(xué)生

          問(wèn)題,通過(guò)這個(gè)小題使學(xué)生明確如何使用化簡(jiǎn)中的條件。

          通過(guò)例2、例3總結(jié)把一個(gè)二次根式化成最簡(jiǎn)二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問(wèn)題。

          注意:

         、倩(jiǎn)時(shí),一般需要把被開(kāi)方數(shù)分解因數(shù)或分解因式。

         、诋(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡(jiǎn)成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

         。ㄈ┬〗Y(jié)

          1。滿足什么條件的根式是最簡(jiǎn)二次根式。

          2。把一個(gè)二次根式化成最簡(jiǎn)二次根式的主要方法。

         。ㄋ模┚毩(xí)

          1。指出下列各式中的最簡(jiǎn)二次根式:

          2。把下列各式化成最簡(jiǎn)二次根式:

          六、作業(yè)

          教材P。187習(xí)題11。4;A組1;B組1。

          七、板書(shū)設(shè)計(jì)

        二次根式教案 篇2

          第十六章 二次根式

          代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式

          5.5(解析:這類題保證被開(kāi)方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

          6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

          7.解:(1) . (2)寬:3 ;長(zhǎng):5 .

          8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

          9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

          10.解析:在利用=|a|=化簡(jiǎn)二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來(lái)根號(hào)里面的符號(hào),這也是化簡(jiǎn)時(shí)最容易出錯(cuò)的地方.

          解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

          本節(jié)課通過(guò)“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對(duì)知識(shí)的形成與掌握變得簡(jiǎn)單起來(lái),將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.

          在探究二次根式的性質(zhì)時(shí),通過(guò)“提問(wèn)——追問(wèn)——討論”的形式展開(kāi),保證了活動(dòng)有一定的針對(duì)性,但是學(xué)生發(fā)揮主體作用不夠.

          在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.

          練習(xí)(教材第4頁(yè))

          1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

          2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

          習(xí)題16.1(教材第5頁(yè))

          1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.

          2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

          3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長(zhǎng)為2x,則它的鄰邊長(zhǎng)為3x.由長(zhǎng)方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長(zhǎng)方形的相鄰兩邊的長(zhǎng)分別為和.

          4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

          5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

          6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長(zhǎng)為.

          7.解:(1)∵x2+1>0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.

          8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.

          9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

          10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.

          如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn):+.

          〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡(jiǎn).

          解:由數(shù)軸可得:a+b<0,a-b>0,

          ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

          [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡(jiǎn)二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

          已知a,b,c為三角形的三條邊,則+= .

          〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對(duì)值符號(hào)并化簡(jiǎn).因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

          [解題策略] 此類化簡(jiǎn)問(wèn)題要特別注意符號(hào)問(wèn)題.

          化簡(jiǎn):.

          〔解析〕 題中并沒(méi)有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

          解:當(dāng)x≥3時(shí),=|x-3|=x-3;

          當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.

          [解題策略] 化簡(jiǎn)時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義分情況進(jìn)行討論.

          5

          O

          M

        二次根式教案 篇3

          目 標(biāo)

          1. 熟練地運(yùn)用二次根式的性質(zhì)化簡(jiǎn)二次根式;

          2. 會(huì)運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題;

          3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。

          教學(xué)設(shè)想

          本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。

          教 學(xué) 程序 與 策 略

          一、預(yù)習(xí)檢測(cè)

          1.解決節(jié)前問(wèn)題:

          如圖,架在消防車(chē)上的云梯AB長(zhǎng)為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

          歸納:

          在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一 些問(wèn)題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問(wèn)題時(shí)經(jīng)常用到二次根式及其運(yùn)算。

          二、合作交流:

          1、:如圖,扶梯AB的坡比(BE與AE的長(zhǎng)度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的.頂部,然后從滑梯滑下,他經(jīng)過(guò)了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)

          讓學(xué)生有充分的時(shí)間閱讀問(wèn)題,并結(jié)合圖形分析問(wèn)題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長(zhǎng)是已知的?哪些線段的長(zhǎng)是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡(jiǎn)嗎?

          注意解題格式

          教 學(xué) 程 序 與 策 略

          三、鞏固練習(xí):

          完成課本P17、1,組長(zhǎng)檢查反饋;

          四、拓展提高:

          1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過(guò)多少cm。

          師生共同分析解題思路,請(qǐng)學(xué)生寫(xiě)出解題過(guò)程。

          五、課堂小結(jié):

          1.談一談:本節(jié)課你有什么收獲?

          2.運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題時(shí)應(yīng)注意的的問(wèn)題

          六、堂堂清

          1: 作業(yè)本(2)

          2:課本P17頁(yè):第4、5題選做。

        二次根式教案 篇4

          活動(dòng)1、提出問(wèn)題

          一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

          問(wèn)題:10+20是什么運(yùn)算?

          活動(dòng)2、探究活動(dòng)

          下列3個(gè)小題怎樣計(jì)算?

          問(wèn)題:1)-還能繼續(xù)往下合并嗎?

          2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?

          二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的進(jìn)行合并。

          活動(dòng)3

          練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

          創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。

          學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。

          教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。

          我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

          教師引導(dǎo)驗(yàn)證:

         、僭O(shè)=,類比合并同類項(xiàng)或面積法;

         、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路

          ③先化簡(jiǎn),再合并

          學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。

          教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。

          提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。

        二次根式教案 篇5

          教學(xué)目標(biāo)

          1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡(jiǎn)含二次根式的式子;

          2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

          教學(xué)重點(diǎn)和難點(diǎn)

          重點(diǎn):含二次根式的式子的混合運(yùn)算.

          難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡(jiǎn)和計(jì)算含二次根式的式子.

          教學(xué)過(guò)程設(shè)計(jì)

          一、復(fù)習(xí)

          1.請(qǐng)同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來(lái),并說(shuō)明各 式成立的條件.

          指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡(jiǎn)二次根式.

          2.二次根式 的乘法及除法的法則是什么?用式子表示出來(lái).

          指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,

          計(jì)算結(jié)果要把分母有理化.

          3.在二次根式的化簡(jiǎn)或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:

          4.在含有二次根式的式子的化簡(jiǎn)及求值等問(wèn)題中,常運(yùn)用三個(gè)可逆的式子:

          二、例題

          例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:

          分析:

          (1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;

          (3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;

          (4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.

          x-2且x0.

          解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以

          例3

          分析:第一個(gè)二次根式的被開(kāi)方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡(jiǎn),化簡(jiǎn)中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

          解 因?yàn)?-a>0,3-a0,所以

          a<1,|a-2|=2-a.

          (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

          這些性質(zhì)化簡(jiǎn)含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

          問(wèn):上面的代數(shù)式中的兩個(gè)二次根式的被開(kāi)方數(shù)的式子如何化為完全平方式?

          分析:先把第二個(gè)式子化簡(jiǎn),再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.

          注意:

          所以在化簡(jiǎn)過(guò)程中,

          例6

          分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹?jiǎn)捷.

          a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

          三、課堂練習(xí)

          1.選擇題:

          A.a(chǎn)2B.a(chǎn)2

          C.a(chǎn)2D.a(chǎn)<2

          A .x+2 B.-x-2

          C.-x+2D.x-2

          A.2x B.2a

          C.-2x D.-2a

          2.填空題:

          4.計(jì)算:

          四、小結(jié)

          1.本節(jié)課復(fù)習(xí)的五個(gè)基本問(wèn)題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.

          2.在一次根式的化簡(jiǎn)、計(jì)算及求值的過(guò)程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開(kāi)方數(shù)為非負(fù)數(shù),以確定被開(kāi)方數(shù)中的字母或式子的取值范圍.

          3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.

          4.通過(guò)例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡(jiǎn)、計(jì)算及求值等問(wèn)題.

          五、作業(yè)

          1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?

          2.把下列各式化成最簡(jiǎn)二次根式:

        二次根式教案 篇6

          【 學(xué)習(xí)目標(biāo) 】

          1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問(wèn)題。

          2、過(guò)程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。

          3、情感、態(tài)度與價(jià)值觀:通過(guò)小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。

          【 學(xué)習(xí)重難點(diǎn) 】

          1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。

          2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

          【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁(yè)

          【 學(xué)習(xí)流程 】

          一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見(jiàn)附件1)

          學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

          二、 課堂教學(xué)

          (一)合作學(xué)習(xí)階段。

          教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問(wèn)題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問(wèn)題做好記錄。

          (二)集體講授階段。(15分鐘左右)

          1. 各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

          2. 教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的問(wèn)題進(jìn)行集體講解。

          3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。

          (三)當(dāng)堂檢測(cè)階段

          為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。

          (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

          三、 課后作業(yè)(課后作業(yè)見(jiàn)附件2)

          教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

          四、板書(shū)設(shè)計(jì)

          課題:二次根式(1)

          二次根式概念 例題 例題

          二次根式性質(zhì)

          反思:

        【二次根式教案】相關(guān)文章:

        二次根式的教案10-19

        《二次根式的運(yùn)算》的教案06-20

        關(guān)于二次根式教案08-27

        《二次根式的運(yùn)算》的教案09-07

        【精選】二次根式教案3篇08-13

        【精選】二次根式教案4篇07-02

        二次根式教案4篇07-21

        二次根式教案九篇02-06

        二次根式說(shuō)課稿01-11

        什么是同類二次根式,什么是最簡(jiǎn)二次根式09-30

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>