關(guān)于中學數(shù)學教案范文
作為一名為他人授業(yè)解惑的教育工作者,時常需要編寫教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。如何把教案做到重點突出呢?下面是小編精心整理的關(guān)于中學數(shù)學教案范文,歡迎閱讀與收藏。
教學目標:
知識與技能目標:
通過對實際問題的分析,使學生進一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學模型,初步掌握列二元一次方程組解應(yīng)用題.初步體會解二元一次方程組的基本思想“消元”。
培養(yǎng)學生列方程組解決實際問題的意識,增強學生的數(shù)學應(yīng)用能力。
過程與方法目標:
經(jīng)歷和體驗列方程組解決實際問題的過程,進一步體會方程(組)是刻畫現(xiàn)實世界的有效數(shù)學模型。
情感態(tài)度與價值觀目標:
1.進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
2.通過"雞兔同籠",把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的"趣";進一步強調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神。重點:
經(jīng)歷和體驗列方程組解決實際問題的過程;增強學生的數(shù)學應(yīng)用能力。
難點:
確立等量關(guān)系,列出正確的二元一次方程組。
教學流程:
課前回顧
復習:列一元一次方程解應(yīng)用題的一般步驟
情境引入
探究1:今有雞兔同籠,
上有三十五頭,
下有九十四足,
問雞兔各幾何?
“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?
(1)畫圖法
用表示頭,先畫35個頭
將所有頭都看作雞的,用表示腿,畫出了70只腿
還剩24只腿,在每個頭上在加兩只腿,共12個頭加了兩只腿
四條腿的是兔子(12只),兩條腿的是雞(23只)
(2)一元一次方程法:
雞頭+兔頭=35
雞腳+兔腳=94
設(shè)雞有x只,則兔有(35-x)只,據(jù)題意得:
2x+4(35-x)=94
比算術(shù)法容易理解
想一想:那我們能不能用更簡單的方法來解決這些問題呢?
回顧上節(jié)課學習過的二元一次方程,能不能解決這一問題?
(3)二元一次方程法
今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?
(1)上有三十五頭的意思是雞、兔共有頭35個,
下有九十四足的意思是雞、兔共有腳94只.
(2)如設(shè)雞有x只,兔有y只,那么雞兔共有(x+y)只;
雞足有2x只;兔足有4y只.
解:設(shè)籠中有雞x只,有兔y只,由題意可得:
雞兔合計頭xy35足2x4y94
解此方程組得:
練習1:
1.設(shè)甲數(shù)為x,乙數(shù)為y,則“甲數(shù)的二倍與乙數(shù)的一半的和是15”,列出方程為_2x+05y=15
2.小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設(shè)5角有x枚,1元有y枚,列出方程為05x+y=65.
三、合作探究
探究2:以繩測井。若將繩三折測之,繩多五尺;若將繩四折測之,繩多一尺。繩長、井深各幾何?
題目大意:用繩子測水井深度,如果將繩子折成三等份,一份繩長比井深多5尺;如果將繩子折成四等份,一份繩長比井深多1尺。問繩長、井深各是多少尺?
找出等量關(guān)系:
解:設(shè)繩長x尺,井深y尺,則由題意得
x=48
將x=48y=11。
所以繩長4811尺。
想一想:找出一種更簡單的創(chuàng)新解法嗎?
引導學生逐步得出更簡單的方法:
找出等量關(guān)系:
(井深+5)×3=繩長
(井深+1
解:設(shè)繩長x尺,井深y尺,則由題意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以繩長48尺,井深11尺。
練習2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙.設(shè)甲速為x米/秒,乙速為y米/秒,則可列方程組為(B).
歸納:
列二元一次方程解決實際問題的一般步驟:
審:審清題目中的等量關(guān)系.
設(shè):設(shè)未知數(shù).
列:根據(jù)等量關(guān)系,列出方程組.
解:解方程組,求出未知數(shù).
答:檢驗所求出未知數(shù)是否符合題意,寫出答案.
四、自主思考
探究3:用長方形和正方形紙板作側(cè)面和底面,做成如圖中豎式和橫式的兩種無蓋紙盒,F(xiàn)在倉庫里有1000張正方形紙板和20xx張長方形紙板,問兩種紙盒各做多少只,恰好使庫存的`紙板用完?
解:設(shè)做豎式紙盒X個,橫式紙盒y個。根據(jù)題意,得
x+2y=1000
4x+3y=20xx
解這個方程組得x=200
y=400
答:設(shè)做豎式紙盒200個,橫式紙盒400個,恰好使庫存的紙板用完。
練習3:上題中如果改為庫存正方形紙板500,長方形紙板1001張,那么,能否做成若干只豎式紙盒和若干只橫式紙盒后,恰好把庫存紙板用完?
解:設(shè)做豎式紙盒x個,做橫式紙盒y個,根據(jù)題意
y不是自然數(shù),不合題意,所以不可能做成若干個紙盒,恰好不庫存的紙板用完.
歸納:
五、達標測評
1.解下列應(yīng)用題
(1)買一些4分和8分的郵票,共花6元8角,已知8分的郵票比4分的郵票多40張,那么兩種郵票各買了多少張?
解:設(shè)4分郵票x張,8分郵票y張,由題意得:
4x+8y=6800①
y-x=40②
所以,4分郵票540張,8分郵票580張
(2)一項工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天
的工作量。現(xiàn)在知道在施工期間雨天比晴天多3天。問這項工程要多少天才能完成
分析:由于工作總量未知,我們將其設(shè)為單位1
晴天一天可完成
雨天一天可完成
解:設(shè)晴天x天,雨天y天,工作總量為單位1,由題意得:
總天數(shù):7+10=17
所以,共17天可完成任務(wù)
六、應(yīng)用提高
學校買鉛筆、圓珠筆和鋼筆共232支,共花了300元。其中鉛筆數(shù)量是圓珠筆的4倍。已知鉛筆每支0.60元,圓珠筆每支2.7元,鋼筆每支6.3元。問三種筆各有多少支?
分析:鉛筆數(shù)量+圓珠筆數(shù)量+鋼筆數(shù)量=232
鉛筆數(shù)量=圓珠筆數(shù)量×4
鉛筆價格+圓珠筆價格+鋼筆價格=300
解:設(shè)鉛筆x支,圓珠筆y支,鋼筆z支,根據(jù)題意,可得三元一次方程組:
將②代入①和③中,得二元一次方程組
4y+y+z=232④
0.6×4y+2.7x+6.3z=300⑤
解得
所以,鉛筆175支,圓珠筆44支,鋼筆12支
七、體驗收獲
1.解決雞兔同籠問題
2.解決以繩測井問題
3.解應(yīng)用題的一般步驟
七、布置作業(yè)
教材116頁習題第2、3題。
x+y=35
2x+4y=94
x=23
y=12
繩長的三分之一-井深=5
繩長的四分之一-井深=1
-y=5①
①-②,得
-y=1②
-y=5①
-y=5①
-y=5①
X=540
Y=580
y-x=3②
x=7
y=10
x+y+z=232①
x=4y②
0.6x+2.7y+6.3z=300③
X=176
Y=44
Z=12
【中學數(shù)學教案】相關(guān)文章:
巧斷金鏈中學趣味數(shù)學教案10-26
經(jīng)典數(shù)學教案02-22
數(shù)學教案09-13
分類數(shù)學教案03-21
趣味數(shù)學教案08-17
《分類》數(shù)學教案08-17
人教版數(shù)學教案08-28
數(shù)學教案《配對》10-14
小學數(shù)學教案08-22
小學數(shù)學教案08-24