二元一次方程教案(精選17篇)
作為一名優(yōu)秀的教育工作者,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法?靵韰⒖冀贪甘窃趺磳懙陌桑∫韵率切【帪榇蠹沂占亩淮畏匠探贪,歡迎閱讀,希望大家能夠喜歡。
二元一次方程教案 1
【教學(xué)目標(biāo)】
【知識(shí)目標(biāo)】
了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。
【能力目標(biāo)】
通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
【情感目標(biāo)】
通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
【重點(diǎn)】
二元一次方程組的含義
【難點(diǎn)】
判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
【教學(xué)過程】
一、引入、實(shí)物投影
1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個(gè),才比我多馱2個(gè)”老牛氣不過地說:“哼,我從你背上拿來一個(gè),我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問題呢?
2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)
這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程:x+1=2(y-1)
師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少? (含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)
師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程
注意:這個(gè)定義有兩個(gè)地方要注意
、佟⒑袃蓚(gè)未知數(shù)。
②、含未知數(shù)的次數(shù)是一次
練習(xí)(投影)
下列方程有哪些是二元一次方程
+2y=1 xy+x=1 3x-=5 x2-2=3x
xy=1 2x(y+1)=c 2x-y=1 x+y=0
二、議一議、
師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?
師:由于x、y的.含義分別相同,因而必同時(shí)滿足x-y=2和x+1=2(y-1),我們把這兩個(gè)方程用大括號(hào)聯(lián)立起來,寫成
x-y=2
x+1=2(y-1)
像這樣含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
如: 2x+3y=3 5x+3y=8
x-3y=0 x+y=8
三、做一做、
1、 x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x+y=8方程嗎?
2、 X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?
你能找到一組值x,y同時(shí)適合方程x+y=8和5x+3y=34嗎?
x=6,y=2是方程x+y=8的一個(gè)解,記作 x=6 同樣, x=5
y=2 y=3
也是方程x+y=8的一個(gè)解,同時(shí) x=5 又是方程5x+3y=34的一個(gè)解,
y=3
四、隨堂練習(xí)(P103)
五、小結(jié):
1、 含有兩未知數(shù),并且含有未知數(shù)的項(xiàng)的次數(shù)是一次的整式方程叫做二元一次方程。
2、 二元一次方程的解是一個(gè)互相關(guān)聯(lián)的兩個(gè)數(shù)值,它有無數(shù)個(gè)解。
3、 含有兩個(gè)未知數(shù)的兩個(gè)二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個(gè)方程的公共解,是一組確定的值。
六、教后感:
七、自備部分
二元一次方程教案 2
教學(xué)目標(biāo)
1.使學(xué)生會(huì)用代入消元法解二元一次方程組;
2.理解代入消元法的基本思想體現(xiàn)的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;
3.在本節(jié)課的教學(xué)過程中,逐步滲透樸素的辯證唯物主義思想.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):用代入法解二元一次方程組.
難點(diǎn):代入消元法的基本思想.
課堂教學(xué)過程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1.誰(shuí)能造一個(gè)二元一次方程組?為什么你造的方程組是二元一次方程組?
2.誰(shuí)能知道上述方程組(指學(xué)生提出的方程組)的解是什么?什么叫二元一次方程組的解?
3.上節(jié)課我們提出了雞兔同籠問題:(投影)一個(gè)農(nóng)民有若干只雞和兔子,它們共有50個(gè)頭和140只腳,問雞和兔子各有多少?設(shè)農(nóng)民有x只雞,y只兔,則得到二元一次方程組
對(duì)于列出的這個(gè)二元一次方程組,我們?nèi)绾吻蟪鏊慕饽兀?學(xué)生思考)教師引導(dǎo)并提出問題:若設(shè)有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問題得解.
問題:從上面一元一次方程解法過程中,你能得出二元一次方程組串問題,進(jìn)一步引導(dǎo)學(xué)生找出它的解法)
(1)在一元一次方程解法中,列方程時(shí)所用的等量關(guān)系是什么?
(2)該等量關(guān)系中,雞數(shù)與兔子數(shù)的表達(dá)式分別含有幾個(gè)未知數(shù)?
(3)前述方程組中方程②所表示的等量關(guān)系與用一元一次方程表示的等量關(guān)系是否相同?
(4)能否由方程組中的方程②求解該問題呢?
(5)怎樣使方程②中含有的兩個(gè)未知數(shù)變?yōu)橹缓幸粋(gè)未知數(shù)呢?(以上問題,要求學(xué)生獨(dú)立思考,想出消元的方法)結(jié)合學(xué)生的回答,教師作出講解.
由方程①可得y=50-x③,即兔子數(shù)y用雞數(shù)x的代數(shù)式50-x表示,由于方程②中的y與方程①中的y都表示兔子的.只數(shù),故可以把方程②中的y用(50-x)來代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.
將x=30代入方程③,得y=20.
即雞有30只,兔有20只.
本節(jié)課,我們來學(xué)習(xí)二元一次方程組的解法.
二、講授新課例1解方程組
分析:若此方程組有解,則這兩個(gè)方程中同一個(gè)未知數(shù)就應(yīng)取相同的值.因此,方程②中的y就可用方程①中的表示y的代數(shù)式來代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.
(本題應(yīng)以教師講解為主,并板書,同時(shí)教師在最后應(yīng)提醒學(xué)生,與解一元一次方程一樣,要判斷運(yùn)算的結(jié)果是否正確,需檢驗(yàn).其方法是將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是否相等.檢驗(yàn)可以口算,也可以在草稿紙上驗(yàn)算)教師講解完例1后,結(jié)合板書,就本題解法及步驟提出以下問題:
1.方程①代入哪一個(gè)方程?其目的是什么?
2.為什么能代入?
3.只求出一個(gè)未知數(shù)的值,方程組解完了嗎?
4.把已求出的未知數(shù)的值,代入哪個(gè)方程來求另一個(gè)未知數(shù)的值較簡(jiǎn)便?在學(xué)生回答完上述問題的基礎(chǔ)上,教師指出:這種通過代入消去一個(gè)未知數(shù),使二元方程轉(zhuǎn)化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡(jiǎn)稱代入法.例2解方程組
分析:例1是用y=1-x直接代入②的.例2的兩個(gè)方程都不具備這樣的條件(即用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)),所以不能直接代入.為此,我們需要想辦法創(chuàng)造條件,把一個(gè)方程變形為用含x的代數(shù)式表示y(或含y的代數(shù)式表示x).那么選用哪個(gè)方程變形較簡(jiǎn)便呢?通過觀察,發(fā)現(xiàn)方程②中x的系數(shù)為1,因此,可先將方程②變形,用含有y的代數(shù)式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(問:能否代入②中?)
2(8-3y)+5y=-21,-y=-37,所以y=37.
(問:本題解完了嗎?把y=37代入哪個(gè)方程求x較簡(jiǎn)單?)把y=37代入③,得x= 8-3×37,所以x=-103.
(本題可由一名學(xué)生口述,教師板書完成)
三、課堂練習(xí)(投影)用代入法解下列方程組:
四、師生共同小結(jié)
在與學(xué)生共同回顧了本節(jié)課所學(xué)內(nèi)容的基礎(chǔ)上,教師著重指出,因?yàn)榉匠探M在有解的前提下,兩個(gè)方程中同一個(gè)未知數(shù)所表示的是同一個(gè)數(shù)值,故可以用它的等量代換,即使“代入”成為可能.而代入的目的就是為了消元,使二元方程轉(zhuǎn)化為一元方程,從而使問題最終得到解決.
五、作業(yè)
用代入法解下列方程組:
5.x+3y=3x+2y=7.
二元一次方程教案 3
一、教材分析
1.教材的地位和作用
本節(jié)課是華東師大版七年級(jí)數(shù)學(xué)下冊(cè)第七章《二元一次方程組》中第二節(jié)的第四課時(shí),它是在學(xué)習(xí)了代入消元法和加減消元法的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。能夠靈活熟練地掌握加減消元法,在解方程組時(shí)會(huì)更簡(jiǎn)便準(zhǔn)確,也是為以后學(xué)習(xí)用待定系數(shù)法求一次函數(shù)、二次函數(shù)關(guān)系式打下了基礎(chǔ),特別是在聯(lián)系實(shí)際,應(yīng)用方程組解決問題方面,它會(huì)起到事半功倍的效果。
2.教學(xué)目標(biāo)
。1)知識(shí)目標(biāo):進(jìn)一步了解加減消元法,并能夠熟練地運(yùn)用這種方法解較為復(fù)雜的二元一次方程組。
(2)能力目標(biāo):經(jīng)歷探索用“加減消元法”解二元一次方程組的過程,培養(yǎng)學(xué)生分析問題、解決問題的能力和創(chuàng)新意識(shí)。
。3)情感目標(biāo):在自由探索與合作交流的過程中,不斷讓學(xué)生體驗(yàn)獲得成功的喜悅,培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生的學(xué)習(xí)熱情,增強(qiáng)學(xué)生的自信心。
3.教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):利用加減法解二元一次方程組。
教學(xué)難點(diǎn):二元一次方程組加減消元法的靈活應(yīng)用。
4.教學(xué)準(zhǔn)備:多媒體、課件。
二、學(xué)情分析
我所任教的初一(2)班學(xué)生基礎(chǔ)比較好,他們已經(jīng)具備了一定的探索能力,也初步養(yǎng)成了合作交流的習(xí)慣。大多數(shù)學(xué)生的好勝心比較強(qiáng),性格比較活潑,他們希望有展現(xiàn)自我才華的機(jī)會(huì),但是對(duì)于七年級(jí)的鄉(xiāng)鎮(zhèn)中學(xué)的學(xué)生來說,他們獨(dú)立分析問題的能力和靈活應(yīng)用的能力還有待提高,很多時(shí)候還需要教師的點(diǎn)撥和引導(dǎo)。因此,我遵循學(xué)生的認(rèn)識(shí)規(guī)律,由淺入深,適時(shí)引導(dǎo),調(diào)動(dòng)學(xué)生的積極性,并適當(dāng)?shù)亟o予表?yè)P(yáng)和鼓勵(lì),借此增強(qiáng)他們的自信心。
三、教法與學(xué)法分析
說教法:?jiǎn)l(fā)引導(dǎo)法,任務(wù)驅(qū)動(dòng)法,情境教學(xué)法,演示法。
說學(xué)法:合作探究法,觀察比較法。
四.教學(xué)設(shè)計(jì)
(一)復(fù)習(xí)舊知
1、解二元一次方程組的基本思想是什么?(消元)
2、前面我們學(xué)過了哪些消元方法?(“單身”代入法、“朋友”加減法)
下列兩題可以用什么方法來求解?
2x3y=16①
X-y=3②3
學(xué)生:觀察、思考、討論和交流,然后口述解題方法。
教師:肯定、鼓勵(lì)、板書。
[設(shè)計(jì)意圖:通過復(fù)習(xí),讓學(xué)生鞏固了相關(guān)的舊知識(shí),同時(shí)也為本節(jié)課做了鋪墊]
(二)探究新知
1、情境導(dǎo)入
師:我們用代入法來解題第一步是找“單身”,用加減法來解題第一步是找“朋友”,再用同減異加的法則進(jìn)行解答,那么我們一起來看一下這道題目:
問:這題能否用“單身”代入法或“朋友”加減法來求解?為什么?導(dǎo)入課題,板書課題。[設(shè)計(jì)意圖:利用富有挑戰(zhàn)性的問題,激發(fā)學(xué)生的好奇心和求知欲,可引發(fā)學(xué)生對(duì)問題的思考,并促進(jìn)學(xué)生運(yùn)用已有的知識(shí)去發(fā)現(xiàn)和獲取新的知識(shí)]
2、合作探究
。ㄗ寣W(xué)生分組討論交流,主動(dòng)探索出解法,教師巡視指導(dǎo)并肯定和鼓勵(lì)他們。)
總結(jié)解題方法:如果一個(gè)方程組中x或y的系
數(shù)不相同時(shí),也就是說它們不是“朋友”時(shí),先要想辦法把“陌生人”變成“朋友”。
方法一:將方程①變形后消去x。
方法二:將方程②變形后消去y。
讓學(xué)生嘗試著寫出解題過程,請(qǐng)兩位同學(xué)上臺(tái)展示結(jié)果,集體訂正。請(qǐng)做對(duì)的同學(xué)舉手,全班同學(xué)都為自己鼓鼓掌,做對(duì)的表示給自己一次祝賀,暫時(shí)還沒做對(duì)的表示給自己一次鼓勵(lì)。[設(shè)計(jì)意圖:讓學(xué)生探索這道過渡性的題目,是遵循了學(xué)生的認(rèn)識(shí)規(guī)律,由淺入深,為學(xué)習(xí)下面這道例題做好準(zhǔn)備,同時(shí)通過變“陌生人”為“朋友”這一設(shè)想過程,也培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)。]
3、例題探索例5、解方程組:3x-4y=10①
5x6y=42②
師:這道題的x與y的系數(shù)有何特點(diǎn)?如何變成“朋友”?
。ㄗ寣W(xué)生思考、分組討論、交流,教師引導(dǎo)并板書解題過程。)
[設(shè)計(jì)意圖:讓學(xué)生通過探討,逐步發(fā)現(xiàn)可以用加減消元法去解較為復(fù)雜的二元一次方程組,也讓他們?cè)俅误w會(huì)了消元化歸的數(shù)學(xué)思想,同時(shí)也培養(yǎng)了學(xué)生分析問題和解決問題的能力。在整個(gè)探討的過程中也增強(qiáng)了學(xué)生的信心,學(xué)生有了發(fā)現(xiàn)的樂趣和成功的喜悅后,會(huì)產(chǎn)生一種想表現(xiàn)自己的欲望。]
4、試一試
學(xué)生完成課本第30頁(yè)的試一試,讓學(xué)生用本節(jié)課的加減消元法和前面例2的代入消元法進(jìn)行比較,看一看哪種方法更簡(jiǎn)便?
。ㄐ〗M之間互相交流,寫出解答過程,并請(qǐng)一些同學(xué)談?wù)勛约旱目捶,教師展示兩種解題方法讓學(xué)生們進(jìn)行比較。)
[設(shè)計(jì)意圖:通過對(duì)比兩種方法,使學(xué)生更清晰地掌握知識(shí),當(dāng)學(xué)生發(fā)現(xiàn)本節(jié)課的.方法比例2的方法更簡(jiǎn)便時(shí),學(xué)生會(huì)產(chǎn)生一種用本節(jié)課的知識(shí)去解題的沖動(dòng)。]
。ㄈ┓答伋C正
解方程組:
(給學(xué)生提供展現(xiàn)自我才華的機(jī)會(huì),以前后兩桌為一個(gè)小組進(jìn)行討論交流,此時(shí)可輕聲播放一首鋼琴曲,為學(xué)生創(chuàng)造一種輕松和諧的學(xué)習(xí)氛圍)
讓兩個(gè)同學(xué)上臺(tái)解題,教師巡視,并每一個(gè)組選兩名代表檢查本組同學(xué)的完成情況和及時(shí)幫助有困難的同學(xué),待全班同學(xué)完成后,讓臺(tái)上這兩位同學(xué)試著當(dāng)一下小老師,為全班同學(xué)講解自己所做的題目,教師為評(píng)委,進(jìn)行點(diǎn)評(píng)并總結(jié),全班同學(xué)為他們鼓掌。
[設(shè)計(jì)意圖:由于學(xué)生人數(shù)較多,教師不能兼顧每個(gè)學(xué)生,所以讓學(xué)生自做自講,培養(yǎng)了學(xué)生綜合能力的同時(shí),也活躍了課堂氣氛。選代表巡視并幫助有困難的同學(xué),會(huì)讓學(xué)生感受到老師對(duì)他們的重視,這樣就能讓他們主動(dòng)參與到課堂中來。同時(shí)也培養(yǎng)了學(xué)生的合作精神和激發(fā)了學(xué)生的學(xué)習(xí)熱情。]
。ㄋ模┱n堂小結(jié):學(xué)完這節(jié)課,大家有什么收獲?請(qǐng)同學(xué)們談?wù)剬?duì)這節(jié)課的體會(huì)。
[設(shè)計(jì)意圖:加深對(duì)本節(jié)知識(shí)的理解和記憶,培養(yǎng)學(xué)生歸納、概括能力。]
(五)布置作業(yè):
必做題:課本第31頁(yè)的練習(xí)。
選做題:
、
(2)
、
[設(shè)計(jì)意圖:進(jìn)一步鞏固本節(jié)課知識(shí)的同時(shí),也給學(xué)生留下思考的余地和空間,學(xué)生是帶著問題走進(jìn)課堂,現(xiàn)在又帶著新的問題走出課堂。]
五、板書設(shè)計(jì):二元一次方程組的解法(四)
找“朋友”——變“陌生人”為“朋友”——同減異加
例題分析習(xí)題分析
[設(shè)計(jì)意圖:為了更好地突出本節(jié)課的教學(xué)重點(diǎn)和讓學(xué)生更明確本節(jié)課的教學(xué)目標(biāo)。]
二元一次方程教案 4
一、教材分析
1、教材的地位和作用
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。用函數(shù)的觀點(diǎn)看方程(組)與不等式,使學(xué)生不僅能加深對(duì)方程(組)、不等式的理解,提高認(rèn)識(shí)問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對(duì)一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過程中體驗(yàn)數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價(jià)值,這對(duì)今后的學(xué)習(xí)有著十分重要的意義。
2、教學(xué)重難點(diǎn)
重點(diǎn):一次函數(shù)與二元一次方程(組)關(guān)系的探索。
難點(diǎn):綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決實(shí)際問題。
3、教學(xué)目標(biāo)
知識(shí)技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會(huì)用圖象法解二元一次方程組。
數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實(shí)際問題的解決過程,學(xué)會(huì)用函數(shù)的觀點(diǎn)去認(rèn)識(shí)問題。
解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實(shí)際問題。
情感態(tài)度:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信心。
二、教法說明
對(duì)于認(rèn)知主體——學(xué)生來說,他們已經(jīng)具備了初步探究問題的能力,但是對(duì)知識(shí)的主動(dòng)遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在“生動(dòng)活潑、民主開放、主動(dòng)探索”的氛圍中愉快地學(xué)習(xí)。
三、教學(xué)過程
(一)感知身邊數(shù)學(xué)
學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對(duì)一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。
[設(shè)計(jì)意圖]建構(gòu)主義認(rèn)為,在實(shí)際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用“上網(wǎng)收費(fèi)”這一生活實(shí)際創(chuàng)設(shè)情境,并用問題啟發(fā)學(xué)生去思、鼓勵(lì)學(xué)生去探、激勵(lì)學(xué)生去說,努力給學(xué)生造成“心求通而未能得,口欲言而不能說”的情勢(shì),從而喚起學(xué)生強(qiáng)烈的求知欲,使他們以躍躍欲試的.姿態(tài)投入到探索活動(dòng)中來。
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形。現(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。
動(dòng)畫演示:
場(chǎng)景一:正方形折疊演示
師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線的長(zhǎng)度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。
[學(xué)生活動(dòng):各自測(cè)量。]
鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。
動(dòng)畫演示:
場(chǎng)景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫演示:
場(chǎng)景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形!
“有一個(gè)角是直角的菱形叫做正方形!
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
。ǘ┫硎芴骄繕啡
1、探究一次函數(shù)與二元一次方程的關(guān)系
[設(shè)計(jì)意圖]用一連串的問題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個(gè)方面的關(guān)系,為探索二元一次方程組的解與直線交點(diǎn)坐標(biāo)的關(guān)系作好鋪墊。
2、探究一次函數(shù)與二元一次方程組的關(guān)系
[設(shè)計(jì)意圖]學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個(gè)角度認(rèn)識(shí)一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點(diǎn)知識(shí),從而在頭腦中再現(xiàn)知識(shí)的形成過程,避免單純地記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。此時(shí)教師及時(shí)對(duì)學(xué)生進(jìn)行鼓勵(lì),充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗(yàn)。
。ㄈ┏俗腔劭燔
例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費(fèi)方式:方式A以每分0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分0.05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。如何選擇收費(fèi)方式能使上網(wǎng)者更合算?
[設(shè)計(jì)意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費(fèi)方式好嗎?”再次激起學(xué)生強(qiáng)烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過此問題的探究,使學(xué)生有效地理解本節(jié)課的難點(diǎn),體會(huì)數(shù)形結(jié)合這一思想方法的應(yīng)用。
。ㄋ模w驗(yàn)成功喜悅
1、搶答題
2、旅游問題
[設(shè)計(jì)意圖]抓住學(xué)生對(duì)競(jìng)爭(zhēng)充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動(dòng),并在搶答中品味成功的快樂,提高思維的速度。在學(xué)生感興趣的旅游問題中,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),更好地促進(jìn)學(xué)生對(duì)本節(jié)課難點(diǎn)的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。
。ㄎ澹┓窒砟阄沂斋@
在課堂臨近尾聲時(shí),向?qū)W生提出:通過今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?
[設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語(yǔ)言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。
(六)開拓嶄新天地
1、數(shù)學(xué)日記
2、布置作業(yè)
[設(shè)計(jì)意圖]新課程強(qiáng)調(diào)發(fā)展學(xué)生數(shù)學(xué)交流的能力,用數(shù)學(xué)日記給學(xué)生提供一種表達(dá)數(shù)學(xué)思想方法和情感的方式,以體現(xiàn)評(píng)價(jià)體系的多元化,并使學(xué)生嘗試用數(shù)學(xué)的眼睛觀察事物,體驗(yàn)數(shù)學(xué)的價(jià)值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。
四、教學(xué)設(shè)計(jì)反思
1、貫穿一個(gè)原則——以學(xué)生為主體的原則
2、突出一個(gè)思想——數(shù)形結(jié)合的思想
3、體現(xiàn)一個(gè)價(jià)值——數(shù)學(xué)建模的價(jià)值
4、滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)
二元一次方程教案 5
1學(xué)情分析
本節(jié)內(nèi)容是在學(xué)生掌握了二元一次方程組的解法,能列二元一次方程組解較簡(jiǎn)單的應(yīng)用題的基礎(chǔ)上安排的,其中的“牛飼料問題”“種植計(jì)劃問”“成本與產(chǎn)出問題”是具有一定綜合性的問題,涉及到估算與精確計(jì)算的比較、開放地探索設(shè)計(jì)方案、根據(jù)圖表信息列方程組等問題形式。由于本節(jié)需要探究的問題比較復(fù)雜,所以在教學(xué)的過程中,一方面需要設(shè)置部分臺(tái)階減小坡度、分散難點(diǎn),另一方面需要用一些具體的方法引導(dǎo)學(xué)生學(xué)會(huì)分析和表達(dá),還要留給學(xué)生充足的思考、交流、整理、反思的時(shí)間。在解決問題的過程中,使學(xué)生體會(huì)到方程組應(yīng)用的廣泛性與有效性,提高分析解決問題的能力。
根據(jù)我校農(nóng)村學(xué)校學(xué)生的具體學(xué)習(xí)情況和認(rèn)知特點(diǎn),本節(jié)內(nèi)容設(shè)計(jì)為3個(gè)教學(xué)課時(shí),第一課時(shí)主要引導(dǎo)學(xué)生探索列方程組解應(yīng)用題的步驟和基本思路;第二課時(shí)主要進(jìn)行綜合性應(yīng)用問題的探索;第三課時(shí)主要進(jìn)行思維拓展和鞏固提高。
2教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與技能
1、會(huì)用二元一次方程組解決生產(chǎn)生活中的實(shí)際問題;
2、用方程組的數(shù)學(xué)模型刻畫現(xiàn)實(shí)生活中的實(shí)際問題。
。ǘ┻^程與方法
1、培養(yǎng)學(xué)生應(yīng)用方程解決實(shí)際問題的意識(shí)和應(yīng)用數(shù)學(xué)的能力;
2、將解方程組的技能訓(xùn)練與解決實(shí)際問題融為一體,進(jìn)一步提高解方程組的技能。
。ㄈ┣楦袘B(tài)度與價(jià)值觀
1、體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效模型,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí)。
2、在用方程組解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)的實(shí)用性,提高學(xué)習(xí)數(shù)學(xué)的興趣。
3、結(jié)合實(shí)際問題,培養(yǎng)學(xué)生關(guān)注生產(chǎn)勞動(dòng)、熱愛生活的意識(shí),讓學(xué)生重視數(shù)學(xué)知識(shí)與實(shí)際生活的聯(lián)系。
3重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):根據(jù)題意找出等量關(guān)系,列二元一次方程組。
教學(xué)難點(diǎn):正確找出問題中的兩組等量關(guān)系。
4教學(xué)過程
4.1第一學(xué)時(shí)
教學(xué)活動(dòng)
活動(dòng)1【導(dǎo)入】活動(dòng)一:逛公園。
公園一角三個(gè)學(xué)生的對(duì)話:甲:昨天,我們一家8個(gè)人去公園玩,買門票花了34元。乙:哦,那你們家去了幾個(gè)大人?幾個(gè)小孩呢?丙:真笨,自已不會(huì)算嗎?成人票5元每人,小孩3元每人啊!
。ㄔO(shè)計(jì)說明:利用學(xué)生熟悉的公園購(gòu)票設(shè)計(jì)一個(gè)簡(jiǎn)單的問題,在解決這個(gè)問題的同時(shí),使學(xué)生熟悉列方程解應(yīng)用題的一般步驟,以及解二元一次方程組常用的方法,為下一步的探究做好準(zhǔn)備。)
解:設(shè)大人為x人,小孩為y人,依題意得
x+y=8 ①
5x+3y=34 ②
解得
x=5
y=3
答:大人5人,小孩3人。
注:對(duì)列出的不同形式的方程組及其解法作簡(jiǎn)要的比較說明,有意識(shí)的引導(dǎo)學(xué)生體會(huì)解決問題方法的多樣性及方法選擇的重要性。
(教學(xué)說明:以此活動(dòng)創(chuàng)設(shè)一個(gè)學(xué)生感興趣的情景,教師提出問題,學(xué)生嘗試解答,兩名學(xué)生板演,結(jié)合板演訂正,提醒學(xué)生注意選擇簡(jiǎn)單的方法解方程組,避免重列輕解現(xiàn)象的發(fā)生。)
活動(dòng)2【講授】活動(dòng)二:參觀農(nóng)場(chǎng)——合作探究。
養(yǎng)牛場(chǎng)原有30只大牛和15只小牛,1天約需要飼料675kg;一周后又購(gòu)進(jìn)12只大牛和5只小牛,這時(shí)1天約需要飼料940kg。飼養(yǎng)員李大叔估計(jì)平均每只大牛1天約需飼料18至20kg,每只小牛1天約需要飼料7至8kg。請(qǐng)你通過計(jì)算檢驗(yàn)李大叔的估計(jì)是否正確?
問題1:怎樣判斷李大叔的估計(jì)是否正確?
。ㄔO(shè)計(jì)說明:引導(dǎo)學(xué)生探尋解題思路,并對(duì)各種方法進(jìn)行比較,方法一主要是要估算的運(yùn)用,而方法二是方程思想的應(yīng)用學(xué)生在比較探究后發(fā)現(xiàn)用方法二較簡(jiǎn)便,思路明確之后進(jìn)一步考慮具體解答問題)
判斷李大叔的估計(jì)是否正確的方法有兩種:
1、先假設(shè)李大叔的`估計(jì)正確,再根據(jù)問題中給定的數(shù)量關(guān)系來檢驗(yàn)。
2、根據(jù)問題中給定的數(shù)量關(guān)系求出平均每只母牛和每只小牛1天各約需用飼料量,再來判斷李大叔的估計(jì)是否正確。
(教學(xué)說明:教師提出問題,讓學(xué)生討論交流,在此過程中可以逐步理解題意,找到解決問題的方法)
問題2 思考:題目中有哪些已知量?哪些未知量?等量關(guān)系有哪些?
。ㄔO(shè)計(jì)說明:利用思考中的問題,引導(dǎo)學(xué)生分析題目中的數(shù)量關(guān)系,逐步將學(xué)生的思維引向問題的核心,從而順利解決問題。)
分析:本題的等量關(guān)系是
。1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12)只母牛和(15+5)只小牛一天需用飼料為940kg
。ń虒W(xué)說明:教師先讓學(xué)生自己閱讀思考,然后同學(xué)之間互相交流,最后師生共同得出結(jié)論)
問題3 如何解這個(gè)應(yīng)用題?
(設(shè)計(jì)說明:在學(xué)生正確理解題意,把握題中數(shù)量關(guān)系的基礎(chǔ)上寫出解答過程,一方面可以進(jìn)一步梳理思路,熟悉解答過程,另一方面把想和做統(tǒng)一起來,在做的過程中發(fā)展計(jì)算、表達(dá)等多種能力。)
解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg根據(jù)題意列方程組,得
30x+15y=675 ①
。30+12)x+(15+5)y=940 ②
化簡(jiǎn)得
2x+y=45
2.1x+y=47
解這個(gè)方程組得
x=20
y=5
答:每只母牛和每只小牛1天各需用飼料為20kg和5kg,因此,飼養(yǎng)員李大叔對(duì)大牛的食量估計(jì)較準(zhǔn)確,對(duì)小牛的食量估計(jì)偏高。
。ń虒W(xué)說明:學(xué)生在寫解答過程時(shí),教師重點(diǎn)關(guān)注學(xué)習(xí)有困難的學(xué)生,同時(shí)平時(shí)做事不認(rèn)真規(guī)范的同學(xué)也是重點(diǎn)關(guān)注對(duì)象。完成之后針對(duì)出線的問題及時(shí)點(diǎn)評(píng),使學(xué)生形成良好的學(xué)習(xí)習(xí)慣。)
問題3 總結(jié):列方程組解應(yīng)用題的一般步驟及需要注意的問題。
。ㄔO(shè)計(jì)說明:?jiǎn)栴}解決之后及時(shí)回顧反思,能更清晰的發(fā)現(xiàn)存在的問題及需要改進(jìn)的地方,便于學(xué)生自查、自悟,找到適合自己的學(xué)習(xí)方法)
審:弄清題目中的數(shù)量關(guān)系;
設(shè):設(shè)出兩個(gè)未知數(shù);
列:分析題意,找出兩個(gè)等量關(guān)系,根據(jù)等量關(guān)系列出方程組;
解:解出方程組,求出未知數(shù)的值;
驗(yàn):檢驗(yàn)求得的值是否正確和符合實(shí)際情形;
答:寫出答案(有時(shí)要分別作答)。
活動(dòng)3【練習(xí)】活動(dòng)三:工廠鍛煉——知識(shí)應(yīng)用。
。ㄔO(shè)計(jì)說明:通過不同形式的情境設(shè)置,從不同的角度幫助學(xué)生進(jìn)一步加深對(duì)列方程組解決應(yīng)用問題的認(rèn)識(shí),形成初步技能。針對(duì)學(xué)習(xí)后進(jìn)的學(xué)生降低了解方程組的難度,有利于這部分學(xué)生把主要精力用于學(xué)習(xí)列方程組的方法步驟上。)
1、長(zhǎng)18米的鋼材,要鋸成10段,而每段的長(zhǎng)只能取“1米或2米”兩種型號(hào)之一,小明估計(jì)2米的有3段,你們認(rèn)為他估計(jì)的是否正確?為什么呢?
那2米和1米的各應(yīng)多少段?
解:設(shè)2米的有x段,1米的有y段,根據(jù)題意,得
x+y=10 ①
2x+y=18 ②
解得
x=8
y=2
答:小明估計(jì)不準(zhǔn)確,2米長(zhǎng)的8段,1米長(zhǎng)的2段。
活動(dòng)4【練習(xí)】活動(dòng)四:大顯身手——拓展提高。
。ㄕf明:通過從不同的角度幫助學(xué)生進(jìn)一步加深對(duì)列方程組解決應(yīng)用問題的認(rèn)識(shí),鞏固初步形成的技能。要求學(xué)生自主解決,以此檢驗(yàn)學(xué)生掌握情況和本堂課的教學(xué)效果,為第二課時(shí)教學(xué)奠定基礎(chǔ)。)
有大小兩種貨車,2輛大車與3輛小車一次可以運(yùn)貨15.50噸,5輛大車與6輛小車一次可以運(yùn)貨35噸。求:3輛大車與5輛小車一次可以運(yùn)貨多少噸?
活動(dòng)5【活動(dòng)】課堂小結(jié)
1、本節(jié)課你學(xué)習(xí)了什么?(利用列二元一次方程組解決實(shí)際問題。)
2、列二元一次方程組解決實(shí)際問題的主要步驟是什么?(審、設(shè)、列、解、驗(yàn)、答。)
3、列二元一次方程組解決實(shí)際問題應(yīng)注意哪些問題?
。ǎ保┱J(rèn)真審題,用數(shù)學(xué)語(yǔ)言或式子表示題目中的數(shù)量關(guān)系。
。ǎ玻┙獬龇匠探M時(shí)要選擇適當(dāng)?shù)姆椒ǎ\(yùn)算速度要快,準(zhǔn)確度要高。
。ǎ常┮匆髮懗龃鸢浮
活動(dòng)6【導(dǎo)入】布置作業(yè)
課外作業(yè):p101復(fù)習(xí)鞏固第1題、第2題、第3題。
活動(dòng)7【活動(dòng)】課后反思
在這節(jié)課之前的學(xué)習(xí)中,學(xué)生已經(jīng)了解了一些用方程組表示問題中的條件及解方程組的相關(guān)知識(shí),而且探究了用方程組解決具有現(xiàn)實(shí)意義的實(shí)際問題。因此,這一節(jié)課共安排了四個(gè)貼近實(shí)際問題的情境活動(dòng):活動(dòng)一:逛公園,提起學(xué)生興趣導(dǎo)入實(shí)際問題,數(shù)量關(guān)系較為簡(jiǎn)單;活動(dòng)一:參觀農(nóng)場(chǎng),幫助李大叔計(jì)算驗(yàn)證,數(shù)量關(guān)系的難度有所提高,活動(dòng)中總結(jié)列二元一次方程組解決實(shí)際問題的主要步驟,同時(shí)含有關(guān)注農(nóng)業(yè)生產(chǎn)的思想;活動(dòng)三:工廠鍛煉——知識(shí)應(yīng)用和活動(dòng)四:大顯身手——拓展提高。主要通過從不同的角度幫助學(xué)生進(jìn)一步加深對(duì)列方程組解決應(yīng)用問題的認(rèn)識(shí),鞏固初步形成的技能。
這節(jié)課更為關(guān)注建立二元一次方程組數(shù)學(xué)模型的“探索”過程。它不僅為解決實(shí)際問題提供了重要的策略,而且為數(shù)學(xué)交流提供了有效的途徑,它的模型化的方法,合理優(yōu)化的思想意識(shí)為學(xué)生解決實(shí)際問題提供了理論上的科學(xué)依據(jù)。所以我覺得設(shè)計(jì)此課的重點(diǎn)應(yīng)該是使學(xué)生在探究如何用二元一次方程組解決實(shí)際問題的過程中,進(jìn)一步提高分析問題中的數(shù)量關(guān)系、設(shè)未知數(shù)、列方程組并解方程組、檢驗(yàn)結(jié)果的合理性等能力,感受建立數(shù)學(xué)模型的作用。教學(xué)中我應(yīng)該根據(jù)學(xué)生的實(shí)際,選取學(xué)生熟悉的背景,讓學(xué)生體會(huì)數(shù)學(xué)建模的思想。在教學(xué)中應(yīng)發(fā)揮自主學(xué)習(xí)的積極性,引導(dǎo)學(xué)生先獨(dú)立探究,再進(jìn)行合作交流。
在此教學(xué)過程中,要熟練掌握多媒體課件的使用流程,充分發(fā)揮圖片資料創(chuàng)設(shè)情境和提高學(xué)生學(xué)習(xí)興趣的作用。
二元一次方程教案 6
教學(xué)目標(biāo):
1.會(huì)用加減消元法解二元一次方程組.
2.能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.
3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.
教學(xué)重點(diǎn):
加減消元法的理解與掌握
教學(xué)難點(diǎn):
加減消元法的靈活運(yùn)用
教學(xué)方法:
引導(dǎo)探索法,學(xué)生討論交流
教學(xué)過程:
一、情境創(chuàng)設(shè)
買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價(jià)各是多少?
設(shè)蘋果汁、橙汁單價(jià)為x元,y元.
我們可以列出方程3x+2y=23
5x+2y=33
問:如何解這個(gè)方程組?
二、探索活動(dòng)
活動(dòng)一:
1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?
2、這些方法與代入消元法有何異同?
3、這個(gè)方程組有何特點(diǎn)?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解這個(gè)方程得:y=4
把y=4代入③式
則
所以原方程組的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解這個(gè)方程得:x=5
把x=5代入①式,
3×5+2y=23
解這個(gè)方程得y=4
所以原方程組的.解是x=5
y=4
把方程組的兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡(jiǎn)稱加減法.
三、例題教學(xué):
例1.解方程組x+2y=1①
3x-2y=5②
解:①+②得,4x=6
將代入①,得
解這個(gè)方程得:
所以原方程組的解是
鞏固練習(xí)(一):練一練1.(1)
例2.解方程組5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
、邸,得:
11x=22
解這個(gè)方程得x=2
將x=2代入①,得
5×2-2y=4
解這個(gè)方程得:y=3
所以原方程組的解是x=2
y=3
鞏固練習(xí)(二):練一練1.(2)(3)(4)2.
四、思維拓展:
解方程組:
五、小結(jié):
1、掌握加減消元法解二元一次方程組
2、靈活選用代入消元法和加減消元法解二元一次方程組
六、作業(yè)
習(xí)題10.31.(3)(4)2.
二元一次方程教案 7
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.理解畫兩個(gè)角的差,一個(gè)角的幾倍、幾分之一的方法.
2.掌握用量角器畫兩個(gè)角的和差,一個(gè)角的幾倍、幾分之一的畫法.用三角板畫一些特殊角的畫法.
。ǘ┠芰τ(xùn)練點(diǎn)
通過畫角的和、差、倍、分,三角板和量角器的使用,培養(yǎng)學(xué)生動(dòng)手能力和操作技巧.
。ㄈ┑掠凉B透點(diǎn)
通過利用三角板畫特殊角的方法,說明幾何知識(shí)常用來解決實(shí)際問題,進(jìn)行幾何學(xué)在生產(chǎn)、生活中起著重要作用的教育,鼓勵(lì)他們努力學(xué)習(xí)。
。ㄋ模┟烙凉B透點(diǎn)
通過學(xué)生動(dòng)手操作,使學(xué)生體會(huì)到簡(jiǎn)單幾何圖形組合的多樣性,領(lǐng)會(huì)幾何圖形美.
二、學(xué)法引導(dǎo)
1.教師教法:嘗試指導(dǎo),以學(xué)生操作為主.
2.學(xué)生學(xué)法:在教師的指導(dǎo)下,積極動(dòng)手參與,認(rèn)真思考領(lǐng)會(huì)歸納.
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
。ㄒ唬┲攸c(diǎn)
用量角器畫角的和、差、倍、分及用三角板畫特殊角.
。ǘ╇y點(diǎn)
準(zhǔn)確使用量角器畫一個(gè)角的幾分之一.
。ㄈ┮牲c(diǎn)
量角器的正確使用.
(四)解決辦法
通過正確指導(dǎo),規(guī)范操作,使學(xué)生掌握畫法要領(lǐng),并以練習(xí)加以鞏固,從而解決重難點(diǎn)及疑點(diǎn).
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
一副三角板、量角器.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
1.通過教師設(shè),學(xué)生動(dòng)手及思考創(chuàng)設(shè)出情境,引出課題.
2.通過學(xué)生嘗試解決、教師把握幾何語(yǔ)言美的方法,放手由學(xué)生自己解決有關(guān)角的畫法.
3.通過提問的形式完成小結(jié).
七、教學(xué)步驟
(一)明確目標(biāo)
使學(xué)生會(huì)用量角器畫角及角的和、差、倍、分,培養(yǎng)學(xué)生動(dòng)手能力和操作能力。
。ǘ┱w感知
通過教師指導(dǎo),學(xué)生動(dòng)手操作完成對(duì)畫圖能力和操作能力的掌握。
圖1
。ㄈ┙虒W(xué)過程
創(chuàng)設(shè)情境,引出課題
教師在黑板上畫出(如圖1).
師:現(xiàn)有工具量角器和三角板,誰(shuí)到黑板上畫一個(gè)角等于呢?請(qǐng)同學(xué)們觀察他的操作,老師要找同學(xué)說明他的畫法。
【教法說明】有上節(jié)課的基礎(chǔ),學(xué)生會(huì)先用量角器測(cè)量的度數(shù),再畫一個(gè)度數(shù)等于這個(gè)度數(shù)的角,學(xué)生也會(huì)敘述其畫法。
提出問題:若老師想畫的余角、補(bǔ)角呢?
學(xué)生會(huì)想到畫、減去的度數(shù)后的角,即為的余角、補(bǔ)角.
師:是否還有別的方法?
這時(shí)學(xué)生一定會(huì)積極思考,立刻回答還有困難.教師抓住時(shí)機(jī)點(diǎn)明課題:同學(xué)們不用著急,今天我們就研究角的畫法,學(xué)習(xí)用三角板、量角器畫角的和、差、倍、分以及一些特殊角.老師提出的問題你們會(huì)解決的.另外,角的畫法在我們?nèi)粘I钪袘?yīng)用廣泛,希望同學(xué)們認(rèn)真學(xué)習(xí).(板書課題……)
。郯鍟1.7角的畫法
探究新知
1.畫一個(gè)角等于已知角
找學(xué)生再次敘述方法:用量角器量出已知角的度數(shù),再畫一個(gè)等于這個(gè)度數(shù)的角。
操作:略.
注意:量角器使用三要素:對(duì)中、重合、讀數(shù)。
2.用三角板畫特殊角
師:請(qǐng)同學(xué)們準(zhǔn)備好練習(xí)本和一副三角板,再找同學(xué)說出一副三角板中各角度數(shù)。
學(xué)生活動(dòng):用三角板在練習(xí)本上畫出直角、角、角、角。
提出問題:你能利用一副三角板畫出、的'角嗎?
學(xué)生活動(dòng):討論畫、的角的方法,在練習(xí)本上畫出圖形,同桌可相互交換檢查,找學(xué)生到黑板上畫.
【教法說明】有前一節(jié)角的和、差的理解和、 、角的畫法,學(xué)生對(duì)畫、的角不會(huì)有困難.因此,教師要敢于放手,讓學(xué)生自己去嘗試解決問題的方法,也培養(yǎng)他們的動(dòng)手操作的能力,但對(duì)于畫法學(xué)生不會(huì)敘述得太嚴(yán)密,教師要把關(guān),培養(yǎng)學(xué)生幾何語(yǔ)言的嚴(yán)密性.
教師根據(jù)前面學(xué)生所畫圖形,引導(dǎo)學(xué)生寫出畫法.(以角的畫法為例,與例題相符.)
圖1
畫法如圖l:
、倮萌前澹
、谠诘耐獠,再畫就是要畫的的角.
反饋練習(xí):用三角板畫、的角.
【教法說明】由學(xué)生獨(dú)立完成以上三個(gè)角的畫圖.教師不給任何提示,只要求寫出畫角的方法,注意觀察畫法,是否寫出了“在角的內(nèi)部畫的角”.區(qū)別例題中兩角和的畫法.
提出問題:由一副三角板可以畫出多少度的角?
學(xué)生討論得出可以畫出的角.
這些角都是的倍數(shù),用三角板也只限畫這樣的角.由此得出:由量角器畫任意角的和、差、倍、分角.
3.畫任意兩個(gè)角的和差及一個(gè)角的幾倍、幾分之一.
問題:如圖1,已知、(),如何畫出與的和?與的差?
圖1
學(xué)生活動(dòng):討論畫,的方法,并在練習(xí)本上根據(jù)自己的想法畫圖.
根據(jù)學(xué)生的討論回答,老師歸納以下方法:
。1)用量角器量出、的度數(shù),計(jì)算出它們度數(shù)的和、差,再用量角器畫出等于它們度數(shù)和、差的角.
。2)用量角器把移到上,如果本方法.
圖1
教師示范,寫出兩種畫法:
畫法一:(1)用量角器量得,.
(2)畫,就是要畫的角如圖1.
圖2
畫法二:(1)用量角器畫.
。2)以點(diǎn)為頂點(diǎn),射為一邊,在的外部畫.
就是要畫的角如圖2.
學(xué)生活動(dòng):敘述用兩種方法畫的畫法.出示例1由學(xué)生完成,要求用兩種方法,找同學(xué)板演.
例1?已知,畫出它們的余角.
畫法一:(1)量得.
圖1圖2
。2)畫,就是所要畫的角,見圖1.
畫法二:利用三角板,以的頂點(diǎn)為頂點(diǎn),一邊為邊,畫直角,使的另一邊在直角的內(nèi)部,如圖2,就是所要畫的角.
【教法說明】第二種畫法學(xué)生可能敘述或書寫不太完整,教師要注意其嚴(yán)密性.
反饋練習(xí)
1.已知,畫出它的補(bǔ)角.
2.已知,畫它們的角平分線.
3.畫的角,并把它分成三等份.
【教法說明】本練習(xí)只要求圖形正確即可,不要求寫出畫法.
(四)總結(jié)、擴(kuò)展
以提問的形式歸納出以下知識(shí)脈絡(luò):
八、布置作業(yè)
課本第46頁(yè)習(xí)題1.5A組第2、3題.
二元一次方程教案 8
一 內(nèi)容和內(nèi)容解析
1.內(nèi)容
二元一次方程, 二元一次方程組概念
2.內(nèi)容解析
二元一次方程組是解決含有兩個(gè)提供運(yùn)算未知數(shù)的問題的有力工具,也是解決后續(xù)一些數(shù)學(xué)問題的基礎(chǔ)。直接設(shè)兩個(gè)未知數(shù),列方程,方程組更加直觀,本章就從這個(gè)想法出發(fā)引入新內(nèi)容.
本節(jié)課一以引言中的問題開始,引導(dǎo)學(xué)生思考“問題中包含的等量關(guān)系”以及“設(shè)兩個(gè)未知數(shù)后如何用方程表示等量關(guān)系”.繼而深入探究二元一次方程, 二元一次方程組的解.
本節(jié)課的教學(xué)重點(diǎn)是:二元一次方程, 二元一次方程組的概念
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)會(huì)設(shè)兩個(gè)未知數(shù)后用方程表示等量關(guān)系列二元一次方程, 二元一次方程組.
。2)理解解二元一次方程, 二元一次方程組的解的概念.
2. 教學(xué)目標(biāo)解析
。1)學(xué)生能掌握設(shè)兩個(gè)未知數(shù)后,分析問題中包含的等量關(guān)系”以及“用方程表示等量關(guān)系”.
。2)要讓學(xué)生經(jīng)歷探究的過程.體會(huì)二元一次方程組的解, 二元一次方程組的解是實(shí)際意義.
三、教學(xué)問題診斷分?jǐn)?/strong>
1.學(xué)生過去已遇到二元問題,但只設(shè)一個(gè)未知數(shù),再表示出另一個(gè)未知數(shù),用一元一次方程解決. 現(xiàn)在如何引導(dǎo)學(xué)生設(shè)兩個(gè)未知數(shù)。需要結(jié)合實(shí)際問題進(jìn)行分析。由于方程組的兩個(gè)方程中同一個(gè)未知數(shù)表示的是同一數(shù)量,通過觀察對(duì)照,可以發(fā)現(xiàn)一元一次方程向二元一次方程組轉(zhuǎn)化的思路
2.結(jié)合一元一次方程的解向二元一次方程, 二元一次方程組的解轉(zhuǎn)化,學(xué)習(xí)知識(shí)的遷移.
本節(jié)教學(xué)難點(diǎn):
1.把一元向二元的轉(zhuǎn)化,設(shè)兩個(gè)未知數(shù).結(jié)合實(shí)際問題進(jìn)行分析,列二元一次方程, 二元一次方程組.
2.二元一次方程組的解的意義
四、教學(xué)過程設(shè)計(jì)
1.創(chuàng)設(shè)情境,提出問題
問題1 籃球聯(lián)賽中,每場(chǎng)都要分出勝負(fù),每隊(duì)勝1場(chǎng)得2分,負(fù)1場(chǎng)得1分,某隊(duì)10場(chǎng)比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?你能用一元一次方程解決這個(gè)問題嗎?
師生活動(dòng):學(xué)生回答:能。設(shè)勝x場(chǎng),負(fù)(10-x)場(chǎng)。根據(jù)題意,得2x+(10-x)=16
x=6,則勝6場(chǎng),負(fù)4場(chǎng)
教師追問:你能根據(jù)兩個(gè)問題中的等量關(guān)系設(shè)兩個(gè)未知數(shù)列出二個(gè)反映題意的方程嗎?
師生活動(dòng):學(xué)生回答:能。設(shè)勝x場(chǎng),負(fù)場(chǎng)。根據(jù)題意,得x+=10 , 2x+=16.
教師歸納:像這樣,每個(gè)方程都含有兩個(gè)未知數(shù)(x和)并且含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
設(shè)計(jì)意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個(gè)問題,轉(zhuǎn)變思路,再列二元一次方程,為后面教學(xué)做好了鋪墊.
問題2:對(duì)比兩個(gè)方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?
師生活動(dòng):通過對(duì)實(shí)際問題的分析,認(rèn)識(shí)方程組中的兩個(gè)x,都是這個(gè)隊(duì)的勝,負(fù)場(chǎng)
數(shù),它們必須同時(shí)滿足這兩個(gè)方程,這樣,連在一起寫成
就組成了一個(gè)方程組 。這個(gè)方程組中每個(gè)方程都含有兩個(gè)未知數(shù)(x和)并且含有未知數(shù)的項(xiàng)的`次數(shù)都是1,像這樣的方程組叫做二元一次方程組 。
設(shè)計(jì)意圖:從實(shí)際出發(fā),引入方程組的概念,切合學(xué)生的認(rèn)知過程。
問題3 : 探究
滿足了方程①,且符合問題的實(shí)際意義的x,的值有哪些?把它們填入表中
x
(3) 當(dāng) =12時(shí),x的值
師生活動(dòng):小組討論,然后每組各派一名代表上黑板完成.
設(shè)計(jì)意圖:借助本題,充分發(fā)揮學(xué)生的合作探究精神通過比較,進(jìn)一步體會(huì)二元一次方程及二元一次方程的解的意義.
3加深認(rèn)識(shí),鞏固提高
練習(xí): 一條船順流航行,每小時(shí)行20 ,逆流航行,每小時(shí)行16 .求船在靜水中的速度和水的流速。
師生活動(dòng):分兩小組討論.一組用一元一次方程解決,另一組嘗試列方程組(不要求求解),為解二元一次方程組埋下伏筆。然后每組各派一名代表上黑板完成。
設(shè)計(jì)意圖:提醒并指導(dǎo)學(xué)生要先分析問題的兩個(gè)未知數(shù)關(guān)系,嘗試結(jié)合題意,尋找到兩個(gè)等量關(guān)系,列方程組。體會(huì)直接設(shè)兩個(gè)未知數(shù),列方程,方程組更加直觀,
4歸納總結(jié)
師生活動(dòng):共同回顧本節(jié)課的學(xué)習(xí)過程,并回答以下問題
1.二元一次方程, 二元一次方程組的概念
2.二元一次方程, 二元一次方程組的解的概念.
3.在探究的過程中用到了哪些思想方法?
4.你還有哪些收獲?
設(shè)計(jì)意圖:通過這一活動(dòng)的設(shè)計(jì),提高學(xué)生對(duì)所學(xué)知識(shí)的遷移能力和應(yīng)用意識(shí);培養(yǎng)學(xué)生自我歸納概括的能力.
5. 布置作業(yè)
教科書第90頁(yè)第3,4題
五、目標(biāo)檢測(cè)設(shè)計(jì)
1.填表,使上下每對(duì)x,的值是方程3x+=5的解
x
2.選擇題
二元一次方程組的解為( )
A. B. C. D.
設(shè)計(jì)意圖:考查學(xué)生二元一次方程組的解的掌握情況.
二元一次方程教案 9
教學(xué)目標(biāo):
1使學(xué)生會(huì)借助二元一次方程組解決簡(jiǎn)單的實(shí)際問題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用
2通過應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性
3體會(huì)列方程組比列一元一次方程容易
4進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問題為數(shù)學(xué)問題的能力和分析問題,解決問題的能力
重點(diǎn)與難點(diǎn):
重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;
難點(diǎn):正確發(fā)找出問題中的兩個(gè)等量關(guān)系
課前自主學(xué)習(xí)
1.列方程組解應(yīng)用題是把“未知”轉(zhuǎn)化為“已知”的重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來,找出題目中的()
2.一般來說,有幾個(gè)未知量就必須列幾個(gè)方程,所列方程必須滿足:
(1)方程兩邊表示的是()量
(2)同類量的單位要()
(3)方程兩邊的數(shù)值要相符。
3.列方程組解應(yīng)用題要注意檢驗(yàn)和作答,檢驗(yàn)不僅要求所得的解是否( ),更重要的.是要檢驗(yàn)所求得的結(jié)果是否( )
4.一個(gè)籠中裝有雞兔若干只,從上面看共42個(gè)頭,從下面看共有132只腳,則雞有( ),兔有( )
新課探究
看一看
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關(guān)系有哪些?
3如何解這個(gè)應(yīng)用題?
本題的等量關(guān)系是(1)()
(2)()
解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg
根據(jù)題意列方程,得
解這個(gè)方程組得
答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計(jì)每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計(jì)算()出入。(“有”或“沒有”)
練一練:
1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計(jì)劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué),F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?
2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運(yùn)貨多少噸?
3、某工廠第一車間比第二車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的,問這兩車間原有多少人?
4、某運(yùn)輸隊(duì)送一批貨物,計(jì)劃20天完成,實(shí)際每天多運(yùn)送5噸,結(jié)果不但提前2天完成任務(wù)并多運(yùn)了10噸,求這批貨物有多少噸?原計(jì)劃每天運(yùn)輸多少噸?
小結(jié)
用方程組解應(yīng)用題的一般步驟是什么?
8.3實(shí)際問題與二元一次方程組(2)
教學(xué)目標(biāo):
1、經(jīng)歷用方程組解決實(shí)際問題的過程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;
2、能夠找出實(shí)際問題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;
3、學(xué)會(huì)開放性地尋求設(shè)計(jì)方案,培養(yǎng)分析問題,解決問題的能力
重點(diǎn)與難點(diǎn):
重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;
難點(diǎn):正確發(fā)找出問題中的兩個(gè)等量關(guān)系
課前自主學(xué)習(xí)
1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為()元和()元。
2.在一堆球中,籃球與排球之比為贊助單位又送來籃球隊(duì)10個(gè)排球10個(gè),這時(shí)籃球與排球的數(shù)量之比為27:40,則原有籃球()個(gè),排球()個(gè)。
3.現(xiàn)在長(zhǎng)為18米的鋼材,要據(jù)成10段,每段長(zhǎng)只能為1米或2米,則這個(gè)問題中的等量關(guān)系是(1)1米的段數(shù)+()=10(2)1米的鋼材總長(zhǎng)+()=18
二元一次方程教案 10
教學(xué)目標(biāo):
1. 認(rèn)識(shí)二元一次方程和二元一次方程組.
2. 了解二元一次方程和二元一次方程組的解,會(huì)求二元一次方程的正整數(shù)解.
教學(xué)重點(diǎn):
理解二元一次方程組的解的意義.
教學(xué)難點(diǎn):
求二元一次方程的正整數(shù)解.
教學(xué)過程:
籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分.負(fù)一場(chǎng)得1分,某隊(duì)為了爭(zhēng)取較好的名次,想在全部22場(chǎng)比賽中得到40分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?
思考:
這個(gè)問題中包含了哪些必須同時(shí)滿足的條件?設(shè)勝的場(chǎng)數(shù)是x,負(fù)的場(chǎng)數(shù)是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個(gè)必須同時(shí)滿足的條件:
勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù),
勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分.
這兩個(gè)條件可以用方程
x+y=22
2x+y=40
表示.
上面兩個(gè)方程中,每個(gè)方程都含有兩個(gè)未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程.
把兩個(gè)方程合在一起,寫成
x+y=22
2x+y=40
像這樣,把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.
探究:
滿足方程①,且符合問題的實(shí)際意義的x、y的值有哪些?把它們填入表中.
x
y
上表中哪對(duì)x、y的值還滿足方程②
一般地,使二元一次方程兩邊的值相等的兩個(gè)未知數(shù)的值,叫做二元一次方程的解.
二元一次方程組的'兩個(gè)方程的公共解,叫做二元一次方程組的解.
例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,試求a、b的取值范圍.
(2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,試求a的值.
例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值
例3 已知下列三對(duì)值:
x=-6 x=10 x=10
y=-9 y=-6 y=-1
(1) 哪幾對(duì)數(shù)值使方程 x-y=6的左、右兩邊的值相等?
(2) 哪幾對(duì)數(shù)值是方程組 的解?
例4 求二元一次方程3x+2y=19的正整數(shù)解.
課堂練習(xí):
教科書第102頁(yè)練習(xí)
習(xí)題8.1 1、2題
作業(yè):
教科書第102頁(yè)3、4、5題
二元一次方程教案 11
教學(xué)目標(biāo):
。、會(huì)用代入法解二元一次方程組
。病(huì)闡述用代入法解二元一次方程組的基本思路——通過“代入”達(dá)到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。
此外,在用代入法解二元一次方程組的知識(shí)發(fā)生過程中,讓學(xué)生從中體會(huì)“化未知為已知”的重要的數(shù)學(xué)思想方法。
引導(dǎo)性材料:
本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問題為例,探求二元一次方程組的解法。前面我們根據(jù)問題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過兩小時(shí)相遇。已知乙的速度是甲的.速度的2倍,求甲、乙兩人的速度。”設(shè)甲的速度為X千米/小時(shí),由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時(shí),乙的速度為Y千米/小時(shí),由題意可得二元一次方程組 2(X+Y)=60
Y=2X 觀察
。玻ǎ兀玻兀剑叮芭c 2(X+Y)=60 ①
Y=2X ② 有沒有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?
。ㄍㄟ^較短時(shí)間的觀察,學(xué)生通常都能說出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)
知識(shí)產(chǎn)生和發(fā)展過程的教學(xué)設(shè)計(jì)
問題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個(gè)新問題(解二元一次方程組)轉(zhuǎn)化為熟悉的問題(解一元一次方程)。
解方程組 2(X+Y)=60 ①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
。叮兀剑叮埃
。兀剑保
把X=10代入②,得
Y=20
因此: X=10
。伲剑玻
問題2:你認(rèn)為解方程組 2(X+Y)=60 ①
Y=2X ② 的關(guān)鍵是什么?那么解方程組
。兀剑玻伲
2X—3Y=4 的關(guān)鍵是什么?求出這個(gè)方程組的解。
上面兩個(gè)二元一次方程組求解的基本思路是:通過“代入”,達(dá)到消去一個(gè)未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡(jiǎn)稱“代入法”。
問題3:對(duì)于方程組 2X+5Y=-21 ①
。兀常伲剑 ② 能否像上述兩個(gè)二元一次方程組一樣,把方程組中的一個(gè)方程直接代入另一個(gè)方程從而消去一個(gè)未知數(shù)呢?
。ㄕf明:從學(xué)生熟悉的列一元一次方程求解兩個(gè)未知數(shù)的問題入手來研究二元一次方程組的解法,有利于學(xué)生建立新舊知識(shí)的聯(lián)系和培養(yǎng)良好的學(xué)習(xí)習(xí)慣,使學(xué)生逐步學(xué)會(huì)把一個(gè)還不會(huì)解決的問題轉(zhuǎn)化為一個(gè)已經(jīng)會(huì)解決的問題的思想方法,對(duì)后續(xù)的解三無一次方程組、一元二次方程、分式方程等,學(xué)生就有了求解的策略。)
例題解析
例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:
。ǎ保兀剑保 ①
。常兀玻伲剑 ②
將①代入②(消去X)得:
3(1-Y)+2Y=5
。ǎ玻担兀玻伲玻.2=0 ①
。常兀担剑 ②
將②代入①(消去Y)得:
。担兀玻ǎ常兀担玻.2=0
。ǎ常玻兀伲剑 ①
。常兀矗伲剑 ②
由①得Y=5-2X,將Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
。ǎ矗玻樱裕剑 ①
。常樱玻裕剑 ②
由①得T=2S-3,將T=2S-3代入②消去T得:
3S+2(2S-3)=8
課內(nèi)練習(xí):
解下列方程組。
。ǎ保玻兀担伲剑玻 (2)3X-Y=2
。兀常伲剑 3X=11-2Y
小結(jié):
。薄⒂么敕ń舛淮畏匠探M的關(guān)鍵是“消元”,把新問題(解二元一次方程組)轉(zhuǎn)化為舊知識(shí)(解一元一次方程)來解決。
2、用代入法解二元一次方程組,常常選用系數(shù)較簡(jiǎn)單的方程變形,這用利于正確、簡(jiǎn)捷的消元。
。、用代入法解二元一次方程組,實(shí)質(zhì)是數(shù)學(xué)中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個(gè)未知數(shù)Y。
課后作業(yè):
教科書第14頁(yè)練習(xí)題2(1)、(2)題,第15頁(yè)習(xí)題5.2A組2(1)、(2)、(4)題。
二元一次方程教案 12
教學(xué)目標(biāo):
通過學(xué)生積極思考,互相討論,經(jīng)歷探索事物之間的數(shù)量關(guān)系,形成方程模型,解方程和運(yùn)用方程解決實(shí)際問題的過程進(jìn)一步體會(huì)方程是刻劃現(xiàn)實(shí)世界的有效數(shù)學(xué)模型
重點(diǎn):
讓學(xué)生實(shí)踐與探索,運(yùn)用二元一次方程解決有關(guān)配套與設(shè)計(jì)的應(yīng)用題
難點(diǎn):
尋找等量關(guān)系
教學(xué)過程:
看一看:課本99頁(yè)探究2
問題:
1、“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?
2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?
3、本題中有哪些等量關(guān)系?
提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?
思考:這塊地還可以怎樣分?
練一練
某農(nóng)場(chǎng)300名職工耕種51公頃土地,計(jì)劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動(dòng)力人數(shù)及投入的設(shè)備獎(jiǎng)金如下表:
農(nóng)作物品種每公頃需勞動(dòng)力每公頃需投入獎(jiǎng)金
水稻4人1萬元
棉花8人1萬元
蔬菜5人2萬元
已知該農(nóng)場(chǎng)計(jì)劃在設(shè)備投入67萬元,應(yīng)該怎樣安排這三種作物的種植面積,才能使所有職工都有工作,而且投入的資金正好夠用?
問題:題中有幾個(gè)已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?
教材106頁(yè):探究3:如圖,長(zhǎng)青化工廠與A、B兩地有公路、鐵路相連,這家工廠從A地購(gòu)買一批每噸1000元的`原料運(yùn)回工廠,制成每噸8000元的產(chǎn)品運(yùn)到B地。公路運(yùn)價(jià)為1.5元/(噸?千米),鐵路運(yùn)價(jià)為1.2元/(噸?千米),這兩次運(yùn)輸共支出公路運(yùn)費(fèi)15000元,鐵路運(yùn)費(fèi)97200元。這批產(chǎn)品的銷售款比原料費(fèi)與運(yùn)輸費(fèi)的和多多少元?
二元一次方程教案 13
教學(xué)目的
1.使學(xué)生了解二元一次方程,二元一次方程組的概念。
2.使學(xué)生了解二元一次方程;二元一次方程組的解的含義,會(huì)檢驗(yàn)一對(duì)數(shù)是不是它們的解。
3.通過引例的教學(xué),使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中的等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。
重點(diǎn):了解二元一次方程、二元一次方程組以及二元一次方程組的解的`含
難點(diǎn);了解二元一次方程組的解的含義。
導(dǎo)學(xué)提綱:
1.什么叫一元一次方程?什么叫一元一次方程的解?怎樣檢驗(yàn)一個(gè)數(shù)是否是這個(gè)方程的解?
2.閱讀教材問題1思考下列問題
、.能否用我們已經(jīng)學(xué)過的知識(shí)來解決這個(gè)問題?
用算術(shù)法解答
用一元一次方程解答
解后反思:既然是求兩個(gè)未知量,那么能不能同時(shí)設(shè)兩個(gè)未知數(shù)?
、.此問題中有兩個(gè)問題如果分別設(shè)為x、y,怎樣列式呢?(完成教材中的表格)
、.對(duì)于方程x十y=73x+y=17請(qǐng)思考下列問題
①它們是一元一次方程嗎?
、谶@兩個(gè)方程有沒有共同特點(diǎn)/若有,有河共同特點(diǎn)?
③類比一元一次方程的概念,總結(jié)二元一次方程的概念
3.從教材中找出二元一次方程和二元一次方程組的概念(結(jié)合一元一次方程,二元一次方程對(duì)“元”和“次”作進(jìn)一步的解釋)
注意二元一次方程組的書寫方式,方程組中的各方程中,同一個(gè)字母必須代表同一個(gè)量
4.與是否滿足方程①與是否滿足方程②類比一元一次方程的解總結(jié)二元一次方程組的解的概念
注意:(1)未知數(shù)的值必須同時(shí)滿足兩個(gè)方程時(shí),才是方程組的解.若取,時(shí),它們能滿足方程①,但不滿足方程②,所以它們不是方程組的解.
(2)二元一次方程組的解是一對(duì)數(shù),而不是一個(gè)數(shù),所以必須把與合起來,才是方程組的解.
5.思考討論在方程組①②③④
、茛拗,屬于二元一次方程組的有
達(dá)標(biāo)檢測(cè):
1.根據(jù)下列語(yǔ)句,分別設(shè)適當(dāng)?shù)奈粗獢?shù),列出二元一次方程或方程組:
(1)甲數(shù)的比乙數(shù)的2倍少7:_____________________________;
(2)摩托車的時(shí)速是貨車的倍,它們的速度之和是200千米/時(shí):________;
(3)某種時(shí)裝的價(jià)格是某種皮裝的價(jià)格的1.4倍,5件皮裝比3件時(shí)裝貴700元:______________________________.
2.下列方程是二元一次方程的是()
A、2x+x=1B、x-3yC、x+x-3=0D、x+y=2
3.下列不是二元一次方程組的是()
x+3y=5m+3m=152x+3x=0m+n=5
A、B、C、D、
2x-3x=3+=3-5y=02m+n=6
x=2
4.在方程3x-ky=0中,如果是它的一個(gè)解,則k的值為_______.
y=-3
5.若mxy+9x+3y=-9是關(guān)于x、y的二元一次方程,則m=_______n=_______.
二元一次方程教案 14
【教學(xué)目標(biāo)】
知識(shí)目標(biāo):
1、通過觀察,歸納二元一次方程的概念 ,會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式.
2、二元一次方程解的不定性和相關(guān)性,即二元一次方程的解有無數(shù)個(gè),但又不是任意兩個(gè)數(shù)是它的解。
過程與方法:通過與一元一次方程的比較,加強(qiáng)學(xué)生的類比的思想方法。
情感態(tài)度與價(jià)值觀:通過“合作學(xué)習(xí)”,使學(xué)生認(rèn)識(shí)數(shù)學(xué)是根據(jù)實(shí)際的需要而產(chǎn)生發(fā)展的觀點(diǎn)。
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):二元一次方程的意義及二元一次方程的解的概念。
難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。
【教學(xué)過程】
一、 復(fù)習(xí)引入:
。1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?
。2) 合作學(xué)習(xí):
、傩〖t到郵局寄掛號(hào)信,需要郵資3元8角。小紅有票額為6角和8角的郵票若干張,問各需要多少?gòu)堖@兩種面額的郵票?
這個(gè)問題中有幾個(gè)未知數(shù),能列一元一次方程求解嗎?
如果設(shè)需要票額為6角的郵票x張,需要票額為8角的`郵票y張,你能列出方程嗎?
、谠诟咚俟飞希惠v轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),你能列出方程嗎?
二、 新課教學(xué)
這就是我們今天要學(xué)習(xí)的4、1二元一次方程(板書課題)
。1) 觀察上述兩個(gè)方程,歸納特點(diǎn)
。2) 討論選擇正確概念
、 含有兩個(gè)未知數(shù)的方程叫二元一次方程。
、 含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是1次的方程叫二元一次方程。
。3) 做一做P86——1,2
。4) 例:已知方程3x+2y=10
① 用關(guān)于x的代數(shù)式表示y (分析:只要把方程3x+2y=10看作未知數(shù)是y的一元一次方程,解關(guān)于y的方程)
② 求當(dāng)x=-2,0,3時(shí),對(duì)應(yīng)的y的值
。ㄌ釂枺喊褁=-2,y=8代入方程3x+2y=10,能否使其左右兩邊相等?
回憶方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一個(gè)解,記作 。
同理試寫出該方程的兩個(gè)解(注意寫法格式)
思考:方程3x+2y=10的解有多少個(gè)?
師歸納:二元一次方程解具不定性和相關(guān)性
(5) 練習(xí):P88——課內(nèi)練習(xí)1,2
(6) 補(bǔ)充練習(xí):P89---作業(yè)題4(說明:方程的解須是正整數(shù))
已知 ,是方程2x+3y=5的一個(gè)解,那么由此可知道些什么?
。ㄕf明:1.本例是根據(jù)教科書P89---B組第5題改編。原題要求a的值,但學(xué)
生常常有困難,因此這里把原題改為開放式命題,看起來似乎比原
題要求高了,其實(shí)有利于各類學(xué)生參與并尋求結(jié)論。
三、 課堂小結(jié):
二元一次方程的意義及二元一次方程的解的概念(注意書寫格式)
二元一次方程解的不定性和相關(guān)性
會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式
四、 作業(yè) :
課堂作業(yè)本
二元一次方程教案 15
教學(xué)目標(biāo)
1.會(huì)用加減法解一般地二元一次方程組。
2.進(jìn)一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。
3.增強(qiáng)克服困難的勇力,提高學(xué)習(xí)興趣。
教學(xué)重點(diǎn)
把方程組變形后用加減法消元。
教學(xué)難點(diǎn)
根據(jù)方程組特點(diǎn)對(duì)方程組變形。
教學(xué)過程
一、復(fù)習(xí)引入
用加減消元法解方程組。
二、新課。
1.思考如何解方程組(用加減法)。
先觀察方程組中每個(gè)方程x的系數(shù),y的`系數(shù),是否有一個(gè)相等;蚧橄喾磾(shù)?
能否通過變形化成某個(gè)未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。
學(xué)生解方程組。
2.例1.解方程組
思考:能否使兩個(gè)方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?
學(xué)生討論,小組合作解方程組。
提問:用加減消元法解方程組有哪些基本步驟?
三、練習(xí)。
1.P40練習(xí)題(3)、(5)、(6)。
2.分別用加減法,代入法解方程組。
四、小結(jié)。
解二元一次方程組的加減法,代入法有何異同?
五、作業(yè)。
P33.習(xí)題2.2A組第2題(3)~(6)。
B組第1題。
選作:閱讀信息時(shí)代小窗口,高斯消去法。
后記:
2.3二元一次方程組的應(yīng)用(1)
二元一次方程教案 16
【摘要】
本文通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
【教學(xué)目標(biāo)】
【知識(shí)目標(biāo)】了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會(huì)判斷一組數(shù)是不是某個(gè)二元一次方程組的解。
【能力目標(biāo)】通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
【情感目標(biāo)】通過對(duì)實(shí)際問題的分析,使學(xué)生進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的'有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
【重點(diǎn)】
二元一次方程組的含義
【難點(diǎn)】
判斷一組數(shù)是不是某個(gè)二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識(shí)。
【教學(xué)過程】
一、引入、實(shí)物投影
1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:累死我了,小馬說:你還累,這么大的個(gè),才比我多馱2個(gè)老牛氣不過地說:哼,我從你背上拿來一個(gè),我的包裹就是你的2倍!,小馬天真而不信地說:真的?!同學(xué)們,你們能否用數(shù)學(xué)知識(shí)幫助小馬解決問題呢?
2、請(qǐng)每個(gè)學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)
這個(gè)問題由于涉及到老牛和小馬的馱包裹的兩個(gè)未知數(shù),我們?cè)O(shè)老牛馱x個(gè)包裹,小馬馱y個(gè)包裹,老牛的包裹數(shù)比小馬多2個(gè),由此得方程x-y=2,若老牛從小馬背上拿來1個(gè)包裹,這時(shí)老牛的包裹是小馬的2倍, 得方程:x+1=2(y-1)
師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個(gè)未知數(shù)?含未知數(shù)的項(xiàng)的次數(shù)是多少? (含有兩個(gè)未知數(shù),并且所含未知數(shù)項(xiàng)的次數(shù)是1)
師:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)都是1的方程叫做二元一次方程
注意:這個(gè)定義有兩個(gè)地方要注意①、含有兩個(gè)未知數(shù),②、含的次數(shù)是一次
練習(xí):(投影)
下列方程有哪些是+2y=1 xy+x=1 3x-=5 x2-2=3x
xy=1 2x(y+1)=c 2x-y=1 x+y=0
二、議一議、
師:上面的方程中x-y=2的x含義相同嗎?
師:
x-y=2
x+1=2(y-1)
2x+3y=3 5x+3y=8
x-3y=0 x+y=8
1、 x=6,y=22、 X=5,y=3 x=6 x=5
y=2 y=3
x=5 y=3
1、 2、 3、
二元一次方程教案 17
教學(xué)目標(biāo)
1.使學(xué)生會(huì)用加減法解二元一次方程組。
2.學(xué)生通過解決問題,了解代入法與加減法的共性及個(gè)性。
重點(diǎn):
探尋用加減法解二元一次的方程組的進(jìn)程。
難點(diǎn):
消元轉(zhuǎn)化的過程
教學(xué)方法:
講練結(jié)合、探索交流課型新授課教具投影儀
教師活動(dòng):
學(xué)生活動(dòng)
情景設(shè)置:
小明買了兩份水果,一份是3kg蘋果、2kg香蕉,共用去13.2元;另一份是2kg蘋果、5kg香蕉,共用去19.8元。設(shè)蘋果x元/kg,香蕉y元/kg.列出方程。
新課講解:
列出方程組
1.解方程組
分析:關(guān)鍵的出方程〈1〉中的2y與方程〈2〉中的-2y互為相反數(shù)。想象出如果相加兩個(gè)方程,會(huì)是什么結(jié)果?
板演:
解:〈1〉+〈2〉得:
4x=6
x=
把x= 代入〈1〉得
+2y=1
解出這個(gè)方程,得
y=
所以原方程組的解是
2.解方程組
通過議一議,讓學(xué)生都有感覺消去含x或y的項(xiàng)都可以,但哪個(gè)更簡(jiǎn)便?
解:〈1〉 3,得
15x-6y=12 〈3〉
〈2〉 2,得
4x-6y=-10 〈4〉
〈3〉-〈4〉,得
11x=22
x=2
將x=2代入〈1〉,得
5 2-2y=4
y=3
所以原方程組的解是
加減消元法:把方程組的.兩個(gè)防城(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程。
練一練:
解方程組
小結(jié):
加減消元法關(guān)鍵是如何消元,化二元為一元。
先觀察后確定消元。
教學(xué)素材:
A組題:解下列方程組:
(1)
(2)
(3)
(4)
(5)
B組題:運(yùn)用轉(zhuǎn)化的思想方法,你能解下面的三元一次方程組嗎?
(1)
(2)
學(xué)生讀題,議一議
學(xué)生想一想,如感到困難則看道簡(jiǎn)單題。
由學(xué)生觀察,如何求出x,y的值,學(xué)生再討論。
試一試。學(xué)生口述。
老師板演
得到一元一次方程
學(xué)生再觀察,議一議
①消去哪個(gè)未知數(shù)
、谠鯓酉?
P112 1(1)(2)(3)(4)
作業(yè)習(xí)題11.3 P112 1(3)(4) 3 , 4
【二元一次方程教案】相關(guān)文章:
二元一次方程教案07-27
二元一次方程教案15篇07-27
《二元一次方程組》的教案06-23
《二元一次方程》導(dǎo)學(xué)教案設(shè)計(jì)06-19
二元一次方程組試題09-24
《二元一次方程組》說課稿12-29
二元一次方程及其解法的總結(jié)06-25