高中數(shù)學(xué)3.1.2 兩角和與差的正弦、余弦、正切公式教案 新人教A版必修4高二
作為一位兢兢業(yè)業(yè)的人民教師,就不得不需要編寫教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。我們該怎么去寫教案呢?下面是小編為大家收集的高中數(shù)學(xué)3.1.2 兩角和與差的正弦、余弦、正切公式教案 新人教A版必修4高二,供大家參考借鑒,希望可以幫助到有需要的朋友。
整體設(shè)計(jì)
教學(xué)分析
1.兩角和與差的正弦、余弦、正切公式是在研究了兩角差的余弦公式的基礎(chǔ)上,進(jìn)一步研究具有“兩角和差”關(guān)系的正弦、余弦、正切公式的在這些公式的推導(dǎo)中,教科書都把對(duì)照、比較有關(guān)的三角函數(shù)式,認(rèn)清其區(qū)別,尋找其聯(lián)系和聯(lián)系的途徑作為思維的起點(diǎn),如比較cos(α-β)與cos(α+β),它們都是角的余弦只是角形式不同,但不同角的形式從運(yùn)算或換元的角度看都有內(nèi)在聯(lián)系,即α+β=α-(-β)的關(guān)系,從而由公式C(α-β)推得公式C(α+β),又如比較sin(α-β)與cos(α-β),它們包含的角相同但函數(shù)名稱不同,這就要求進(jìn)行函數(shù)名的互化,利用誘導(dǎo)公式(5)(6)即可推得公式S(α-β)、S(α+β)等.
2.通過對(duì)“兩角和與差的正弦、余弦、正切公式”的推導(dǎo),揭示了兩角和、差的三角函數(shù)與這兩角的三角函數(shù)的運(yùn)算規(guī)律,還使學(xué)生加深了數(shù)學(xué)公式的推導(dǎo)、證明方法的理解.因此本節(jié)內(nèi)容也是培養(yǎng)學(xué)生運(yùn)算能力和邏輯思維能力的重要內(nèi)容,對(duì)培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力,發(fā)現(xiàn)問題和解決問題的能力都有著十分重要的意義.
3.本節(jié)的幾個(gè)公式是相互聯(lián)系的,其推導(dǎo)過程也充分說明了它們之間的內(nèi)在聯(lián)系,讓學(xué)生深刻領(lǐng)會(huì)它們的這種聯(lián)系,從而加深對(duì)公式的理解和記憶.本節(jié)幾個(gè)例子主要目的是為了訓(xùn)練學(xué)生思維的有序性,逐步培養(yǎng)他們良好的思維習(xí)慣,教學(xué)中應(yīng)當(dāng)有意識(shí)地對(duì)學(xué)生的思維習(xí)慣進(jìn)行引導(dǎo),例如在面對(duì)問題時(shí),要注意先認(rèn)真分析條件,明確要求,再思考應(yīng)該聯(lián)系什么公式,使用公式時(shí)要具備什么條件等.另外,還要重視思維過程的表述,不能只看最后結(jié)果而不顧過程表述的正確性、簡捷性等,這些都是培養(yǎng)學(xué)生三角恒等變換能力所不能忽視的
三維目標(biāo)
1.在學(xué)習(xí)兩角差的余弦公式的基礎(chǔ)上,通過讓學(xué)生探索、發(fā)現(xiàn)并推導(dǎo)兩角和與差的正弦、余弦、正切公式,了解它們之間的內(nèi)在聯(lián)系,并通過強(qiáng)化題目的訓(xùn)練,加深對(duì)公式的理解,培養(yǎng)學(xué)生的運(yùn)算能力及邏輯推理能力,從而提高解決問題的能力.
2.通過兩角和與差的正弦、余弦、正切公式的運(yùn)用,會(huì)進(jìn)行簡單的求值、化簡、恒等證明,使學(xué)生深刻體會(huì)聯(lián)系變化的觀點(diǎn),自覺地利用聯(lián)系變化的觀點(diǎn)來分析問題,提高學(xué)生分析問題解決問題的能力.
3.通過本節(jié)學(xué)習(xí),使學(xué)生掌握尋找數(shù)學(xué)規(guī)律的方法,提高學(xué)生的觀察分析能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高學(xué)生的數(shù)學(xué)素質(zhì).
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):兩角和與差的正弦、余弦、正切公式及其推導(dǎo).
教學(xué)難點(diǎn):靈活運(yùn)用所學(xué)公式進(jìn)行求值、化簡、證明.
課時(shí)安排
2課時(shí)
教學(xué)過程
第1課時(shí)
導(dǎo)入新課
思路1.(舊知導(dǎo)入)教師先讓學(xué)生回顧上節(jié)課所推導(dǎo)的兩角差的余弦公式,并把公式默寫在黑板上或打出幻燈片,注意有意識(shí)地讓學(xué)生寫整齊.然后教師引導(dǎo)學(xué)生觀察cos(α-β)與cos(α+β)、sin(α-β)的內(nèi)在聯(lián)系,進(jìn)行由舊知推出新知的`轉(zhuǎn)化過程,從而推導(dǎo)出C(α+β)、S(α-β)、S(α+β).本節(jié)課我們共同研究公式的推導(dǎo)及其應(yīng)用.
思路2.(問題導(dǎo)入)教師出示問題,先讓學(xué)生計(jì)算以下幾個(gè)題目,既可以復(fù)習(xí)回顧上節(jié)所學(xué)公式,又為本節(jié)新課作準(zhǔn)備.若sinα=,α∈(0,),cosβ=,β∈(0,),求cos(α-β),cos(α+β)的值.學(xué)生利用公式C(α-β)很容易求得cos(α-β),但是如果求cos(α+β)的值就得想法轉(zhuǎn)化為公式C(α-β)的形式來求,此時(shí)思路受阻,從而引出新課題,并由此展開聯(lián)想探究其他公式.
推進(jìn)新課
新知探究
提出問題
①還記得兩角差的余弦公式嗎?請一位同學(xué)到黑板上默寫出來.
、谠诠紺(α-β)中,角β是任意角,請學(xué)生思考角α-β中β?lián)Q成角-β是否可以?此時(shí)觀察角α+β與α-(-β)之間的聯(lián)系,如何利用公式C(α-β)來推導(dǎo)cos(α+β)=?
、鄯治鲇^察C(α+β)的結(jié)構(gòu)有何特征?
④在公式C(α-β)、C(α+β)的基礎(chǔ)上能否推導(dǎo)sin(α+β)=?sin(α-β)=?
⑤公式S(α-β)、S(α+β)的結(jié)構(gòu)特征如何?
、迣(duì)比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推導(dǎo)出tan(α-β)=?
tan(α+β)=?
、叻治鲇^察公式T(α-β)、T(α+β)的結(jié)構(gòu)特征如何?
⑧思考如何靈活運(yùn)用公式解題?
活動(dòng):對(duì)問題①,學(xué)生默寫完后,教師打出課件,然后引導(dǎo)學(xué)生觀察兩角差的余弦公式,點(diǎn)撥學(xué)生思考公式中的α,β既然可以是任意角,是怎樣任意的?你會(huì)有些什么樣的奇妙想法呢?鼓勵(lì)學(xué)生大膽猜想,引導(dǎo)學(xué)生比較cos(α-β)與cos(α+β)中角的內(nèi)在聯(lián)系,學(xué)生有的會(huì)發(fā)現(xiàn)α-β中的角β可以變?yōu)榻?β,所以α-(-β)=α+β〔也有的會(huì)根據(jù)加減運(yùn)算關(guān)系直接把和角α+β化成差角α-(-β)的形式〕.這時(shí)教師適時(shí)引導(dǎo)學(xué)生轉(zhuǎn)移到公式C(α-β)上來,這樣就很自然地得到
cos(α+β)=cos[α-(-β)]
=cosαcos(-β)+sinαsin(-β)
=cosαcosβ-sinαsinβ.
所以有如下公式:
cos(α+β)=cosαcosβ-sinαsinβ
我們稱以上等式為兩角和的余弦公式,記作C(α+β).
對(duì)問題②,教師引導(dǎo)學(xué)生細(xì)心觀察公式C(α+β)的結(jié)構(gòu)特征,可知“兩角和的余弦,等于這兩角的余弦積減去這兩角的正弦積”,同時(shí)讓學(xué)生對(duì)比公式C(α-β)進(jìn)行記憶,并填空:cos75°=cos(_________)==__________=___________.
對(duì)問題③,上面學(xué)生推得了兩角和與差的余弦公式,教師引導(dǎo)學(xué)生觀察思考,怎樣才能得到兩角和與差的正弦公式呢?我們利用什么公式來實(shí)現(xiàn)正、余弦的互化呢?學(xué)生可能有的想到利用誘導(dǎo)公式⑸⑹來化余弦為正弦(也有的想到利用同角的平方和關(guān)系式sin2α+cos2α=1來互化,此法讓學(xué)生課下進(jìn)行),因此有
sin(α+β)=cos[-(α+β)]=cos[(-α)-β]
=cos(-α)cosβ+sin(-α)sinβ
=sinαcosβ+cosαsinβ.
在上述公式中,β用-β代之,則
sin(α-β)=sin[α+(-β)]=sinαcos(-β)+cosαsin(-β)
=sinαcosβ-cosαsinβ.
因此我們得到兩角和與差的正弦公式,分別簡記為S(α+β)、S(α-β).
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α-β)=sinαcosβ-cosαsinβ.
對(duì)問題④⑤,教師恰時(shí)恰點(diǎn)地引導(dǎo)學(xué)生觀察公式的結(jié)構(gòu)特征并結(jié)合推導(dǎo)過程進(jìn)行記憶,同時(shí)進(jìn)一步體會(huì)本節(jié)公式的探究過程及公式變化特點(diǎn),體驗(yàn)三角公式的這種簡潔美、對(duì)稱美.為強(qiáng)化記憶,教師可讓學(xué)生填空,如sin(θ+φ)=___________,sin=__________.
對(duì)問題⑥,教師引導(dǎo)學(xué)生思考,在我們推出了公式C(α-β)、C(α+β)、S(α+β)、S(α-β)后,自然想到兩角和與差的正切公式,怎么樣來推導(dǎo)出tan(α-β)=?,tan(α+β)=?呢?學(xué)生很容易想到利用同角三角函數(shù)關(guān)系式,化弦為切得到.在學(xué)生探究推導(dǎo)時(shí)很可能想不到討論,這時(shí)教師不要直接提醒,讓學(xué)生自己悟出來.
當(dāng)cos(α+β)≠0時(shí),tan(α+β)=
如果cosαcosβ≠0,即cosα≠0且cosβ≠0時(shí),分子、分母同除以cosαcosβ得
tan(α+β)=,據(jù)角α、β的任意性,在上面的式子中,β用-β代之,則有
tan(α-β)=
由此推得兩角和、差的正切公式,簡記為T(α-β)、T(α+β).
tan(α+β)=
tan(α-β)=
對(duì)問題⑥,讓學(xué)生自己聯(lián)想思考,兩角和與差的正切公式中α、β、α±β的取值是任意的嗎?學(xué)生回顧自己的公式探究過程可知,α、β、α±β都不能等于+kπ(k∈Z),并引導(dǎo)學(xué)生分析公式結(jié)構(gòu)特征,加深公式記憶.
對(duì)問題⑦⑧,教師與學(xué)生一起歸類總結(jié),我們把前面六個(gè)公式分類比較可得C(α+β)、S(α+β)、T(α+β)叫和角公式;S(α-β)、C(α-β)、T(α-β)叫差角公式.并由學(xué)生歸納總結(jié)以上六個(gè)公式的推導(dǎo)過程,從而得出以下邏輯聯(lián)系圖.可讓學(xué)生自己畫出這六個(gè)框圖.通過邏輯聯(lián)系圖,深刻理解它們之間的內(nèi)在聯(lián)系,借以理解并靈活運(yùn)用這些公式.同時(shí)教師應(yīng)提醒學(xué)生注意:不僅要掌握這些公式的正用,還要注意它們的逆用及變形用.如兩角和與差的正切公式的變形式
tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ),在化簡求值中就經(jīng)常應(yīng)用到,使解題過程大大簡化,也體現(xiàn)了數(shù)學(xué)的簡潔美.對(duì)于兩角和與差的正切公式,當(dāng)tanα,tanβ或tan(α±β)的值不存在時(shí),不能使用T(α±β)處理某些有關(guān)問題,但可改用誘導(dǎo)公式或其他方法,例如:化簡tan(-β),因?yàn)閠an的值不存在,所以改用誘導(dǎo)公式tan(-β)=來處理等.
應(yīng)用示例
思路1
例1已知sinα=,α是第四象限角,求sin(-α),cos(+α),tan(-α)的值.
活動(dòng):教師引導(dǎo)學(xué)生分析題目中角的關(guān)系,在面對(duì)問題時(shí)要注意認(rèn)真分析條件,明確要求.再思考應(yīng)該聯(lián)系什么公式,使用公式時(shí)要有什么準(zhǔn)備,準(zhǔn)備工作怎么進(jìn)行等.例如本題中,要先求出cosα,tanα的值,才能利用公式得解,本題是直接應(yīng)用公式解題,目的是為了讓學(xué)生初步熟悉公式的應(yīng)用,教師可以完全讓學(xué)生自己獨(dú)立完成.
解:由sinα=,α是第四象限角,得cosα=.
∴tanα==.
于是有sin(-α)=sincosα-cossinα=
cos(+α)=coscosα-sinsinα=
tan(α-)===.
點(diǎn)評(píng):本例是運(yùn)用和差角公式的基礎(chǔ)題,安排這個(gè)例題的目的是為了訓(xùn)練學(xué)生思維的有序性,逐步培養(yǎng)他們良好的思維習(xí)慣.
變式訓(xùn)練
1.不查表求cos75°,tan105°的值.
解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°
=,
tan105°=tan(60°+45°)==-(2+).
2.設(shè)α∈(0,),若sinα=,則2sin(α+)等于( )
A. B. C. D.4
答案:A
例2 已知sinα=,α∈(,π),cosβ=,β∈(π,).
求sin(α-β),cos(α+β),tan(α+β).
活動(dòng):教師可先讓學(xué)生自己探究解決,對(duì)探究困難的學(xué)生教師給以適當(dāng)?shù)狞c(diǎn)撥,指導(dǎo)學(xué)生認(rèn)真分析題目中已知條件和所求值的內(nèi)在聯(lián)系.根據(jù)公式S(α-β)、C(α+β)、T(α+β)應(yīng)先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解題中三角函數(shù)值的符號(hào).
解:由sinα=,α∈(,π),得
cosα==-=,∴tanα=.
又由cosβ=,β∈(π,).
sinβ==,
∴tanβ=.∴sin(α-β)=sinαcosβ-cosαsinβ
=×()-(.
∴cos(α+β)=cosαcosβ-sinαsinβ=()×()-×()
=
∴tan(α+β)==.
點(diǎn)評(píng):本題仍是直接利用公式計(jì)算求值的基礎(chǔ)題,其目的還是讓學(xué)生熟練掌握公式的應(yīng)用,訓(xùn)練學(xué)生的運(yùn)算能力.
變式訓(xùn)練
引導(dǎo)學(xué)生看章頭圖,利用本節(jié)所學(xué)公式解答課本章頭題,加強(qiáng)學(xué)生的應(yīng)用意識(shí).
解:設(shè)電視發(fā)射塔高CD=x米,∠CAB=α,則sinα=,
在Rt△ABD中,tan(45°+α)=tanα.
于是x=,
又∵sinα=,α∈(0,),∴cosα≈,tanα≈.
tan(45°+α)==3,
∴x=-30=150(米).
答:這座電視發(fā)射塔的高度約為150米.
例3在△ABC中,sinA=(0° 活動(dòng):本題是解三角形問題,在必修5中還作專門的探究,這里用到的僅是與三角函數(shù)誘導(dǎo)公式與和差公式有關(guān)的問題,難度不大,但應(yīng)是學(xué)生必須熟練掌握的同時(shí)也能加強(qiáng)學(xué)生的應(yīng)用意識(shí),提高學(xué)生分析問題和解決問題的能力.教師可讓學(xué)生自己閱讀、探究、討論解決,對(duì)有困難的學(xué)生教師引導(dǎo)學(xué)生分析題意和找清三角形各角之間的內(nèi)在聯(lián)系,從而找出解決問題的路子.教師要提醒學(xué)生注意角的范圍這一暗含條件.
解:∵在△ABC中,A+B+C=180°,∴C=180°-(A+B).
又∵sinA=且0°又∵cosB=且45°
∴sinC=sin[180°-(A+B)]=sin(A+B)=sinAcosB+cosAsinB
=×+×=,
cosC=cos[180°-(A+B)]=-cos(A+B)=sinAsinB-cosAcosB
=×-×=.
點(diǎn)評(píng):本題是利用兩角和差公式,來解決三角形問題的典型例子,培養(yǎng)了學(xué)生的應(yīng)用意識(shí),也使學(xué)生更加認(rèn)識(shí)了公式的作用,解決三角形問題時(shí),要注意三角形內(nèi)角和等于180°這一暗含條件.
變式訓(xùn)練
在△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是( )
A.銳角三角形 B.鈍角三角形
C.直角三角形 D.等腰非直角三角形
答案:C
思路2
例1若sin(+α)=,cos(-β)=,且0<α<<β<,求cos(α+β)的值.
活動(dòng):本題是一個(gè)典型的變角問題,也是一道經(jīng)典例題,對(duì)訓(xùn)練學(xué)生的運(yùn)算能力以及邏輯思維能力很有價(jià)值.盡管學(xué)生思考時(shí)有點(diǎn)難度,但教師仍可放手讓學(xué)生探究討論,教師不可直接給出解答.對(duì)于探究不出的學(xué)生,教師可恰當(dāng)點(diǎn)撥引導(dǎo),指導(dǎo)學(xué)生解決問題的關(guān)鍵是尋找所求角與已知角的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生理清所求的角與已知角的關(guān)系,觀察選擇應(yīng)該選用哪個(gè)公式進(jìn)行求解,同時(shí)也要特別提醒學(xué)生注意:在求有關(guān)角的三角函數(shù)值時(shí),要特別注意確定準(zhǔn)角的范圍,準(zhǔn)確判斷好三角函數(shù)符號(hào),這是解決這類問題的關(guān)鍵.學(xué)生完全理清思路后,教師應(yīng)指導(dǎo)學(xué)生的規(guī)范書寫,并熟練掌握它.對(duì)于程度比較好的學(xué)生可讓其擴(kuò)展本題,或變化條件,或變換所求的結(jié)論等.如教師可變換α,β角的范圍,進(jìn)行一題多變訓(xùn)練,提高學(xué)生靈活應(yīng)用公式的能力,因此教師要充分利用好這個(gè)例題的訓(xùn)練價(jià)值.
解:∵0<α<<β<,∴<+α<π,-<-β<0,
又已知sin(+α)=,cos(-β)=,
∴cos(+α)=,sin(-β)=.
∴cos(α+β)=sin[+(α+β)]=sin[(+α)-(-β)]
=sin(+α)cos(-β)-cos(+α)sin(-β)
=×-()×()=.
本題是典型的變角問題,即把所求角利用已知角來表示,實(shí)際上就是化歸思想.這需要巧妙地引導(dǎo),充分讓學(xué)生自己動(dòng)手進(jìn)行角的變換,培養(yǎng)學(xué)生靈活運(yùn)用公式的能力.
變式訓(xùn)練
已知α,β∈(,π),sin(α+β)=,sin(β-)=,
求cos(α+)的值.
解:∵α,β∈(,π),sin(α+β)=,sin(β-)=,
∴<α+β<2π,<β-<.
∴cos(α+β)=,cos(β-)=.
∴cos(α+)=cos[(α+β)-(β-)]
=cos(α+β)cos(β-)+sin(α+β)sin(β-)
=×()+()×=.
例2化簡
活動(dòng):本題是直接利用公式把兩角的和、差化為兩單角的三角函數(shù)的形式,教師可以先讓學(xué)生自己獨(dú)立地探究,然后進(jìn)行講評(píng).
解:原式=
==
=0.
點(diǎn)評(píng):本題是一個(gè)很好的運(yùn)用公式進(jìn)行化簡的例子,通過學(xué)生獨(dú)立解答,培養(yǎng)學(xué)生熟練運(yùn)用公式的運(yùn)算能力.
變式訓(xùn)練
化簡
解:原式=
=
知能訓(xùn)練
課本本節(jié)練習(xí)1—4.
1.(1),(2),(3),(4)2-.
2..
3.
4.-2.
作業(yè)
已知0<β<,<α<,cos(-α)=,sin(+β)=,求sin(α+β)的值.
解:∵<α<,∴<-α<0.∴sin(-α)==.
又∵0<β<,∴<+β<π,cos(+β)==.
∴sin(α+β)=-cos(+α+β)=-cos[(+β)-(-α)]
=-cos(+β)cos(-α)-sin(+β)sin(-α)
=-()××()=.
課堂小結(jié)
1.先由學(xué)生回顧本節(jié)課都學(xué)到了哪些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法,有哪些收獲與提高,在公式推導(dǎo)中你悟出了什么樣的數(shù)學(xué)思想?對(duì)于這六個(gè)公式應(yīng)如何對(duì)比記憶?其中正切公式的應(yīng)用有什么條件限制?怎樣用公式進(jìn)行簡單三角函數(shù)式的化簡、求值與恒等式證明.
2.教師畫龍點(diǎn)睛:我們本節(jié)課要理解并掌握兩角和與差的正弦、余弦、正切公式及其推導(dǎo),明白從已知推得未知,理解數(shù)學(xué)中重要的數(shù)學(xué)思想——轉(zhuǎn)化思想,并要正確熟練地運(yùn)用公式解題.在解題時(shí)要注意分析三角函數(shù)名稱、角的關(guān)系,一個(gè)題目能給出多種解法,從中比較最佳解決問題的途徑,以達(dá)到優(yōu)化解題過程,規(guī)范解題步驟,領(lǐng)悟變換思路,強(qiáng)化數(shù)學(xué)思想方法之目的
設(shè)計(jì)感想
1.本節(jié)課是典型的公式教學(xué)模式,是在兩角差的余弦公式的基礎(chǔ)上進(jìn)行的,因此本教案的設(shè)計(jì)流程是“提出問題→轉(zhuǎn)化推導(dǎo)→分析記憶→應(yīng)用訓(xùn)練”.它充分展示了公式教學(xué)中以學(xué)生為主體,進(jìn)行主動(dòng)探索數(shù)學(xué)知識(shí)發(fā)生、發(fā)展的過程.同時(shí)充分發(fā)揮教師的主導(dǎo)作用,引導(dǎo)學(xué)生利用舊知識(shí)推導(dǎo)證明新知識(shí),并學(xué)會(huì)記憶公式的方法,靈活運(yùn)用公式解決實(shí)際問題,從而使學(xué)生領(lǐng)會(huì)了數(shù)學(xué)中重要的數(shù)學(xué)思想——轉(zhuǎn)化思想,并培養(yǎng)他們主動(dòng)利用轉(zhuǎn)化思想指導(dǎo)探索解決數(shù)學(xué)問題的能力.
2.縱觀本教案的設(shè)計(jì),知識(shí)點(diǎn)集中,容量較大,重點(diǎn)是公式的推導(dǎo)證明、記憶以及簡單的應(yīng)用等,通過本節(jié)的學(xué)習(xí),使學(xué)生深刻理解公式的推導(dǎo)、證明方法,熟練應(yīng)用公式解決簡單的問題.同時(shí)教給學(xué)生發(fā)現(xiàn)規(guī)律、探索推導(dǎo)、獲取新知的方法,讓他們真正體驗(yàn)到自己發(fā)現(xiàn)探索數(shù)學(xué)知識(shí)的喜悅和成功感.
第2課時(shí)
導(dǎo)入新課
思路1.(復(fù)習(xí)導(dǎo)入)讓學(xué)生回憶上節(jié)課所學(xué)的六個(gè)公式,并回憶公式的來龍去脈,然后讓一個(gè)學(xué)生把公式默寫在黑板上或打出幻燈.教師引導(dǎo)學(xué)生回顧比較各公式的結(jié)構(gòu)特征,說出它們的區(qū)別和聯(lián)系,以及公式的正用、逆用及變形用,以利于對(duì)公式的深刻理解.這節(jié)課我們將進(jìn)一步探究兩角和與差的正弦、余弦、正切公式的靈活應(yīng)用.
思路2.(問題導(dǎo)入)教師可打出幻燈,出示一組練習(xí)題讓學(xué)生先根據(jù)上節(jié)課所學(xué)的公式進(jìn)行解答.
1.化簡下列各式
(1)cos(α+β)cosβ+sin(α+β)sinβ;
(2);
2.證明下列各式
(2)tan(α+β)tan(α-β)(1-tan2tan2β)=tan2α-tan2β;
答案:1.(1)cosα;(2)0;(3)1.
2.證明略.
教師根據(jù)學(xué)生的解答情況進(jìn)行一一點(diǎn)撥,并對(duì)上節(jié)課所學(xué)的六個(gè)公式進(jìn)行回顧復(fù)習(xí),由此展開新課.
推進(jìn)新課
新知探究
提出問題
、僬埻瑢W(xué)們回憶這一段時(shí)間我們一起所學(xué)的和、差角公式.
、谡埻瑢W(xué)們回顧兩角和與差公式的區(qū)別與聯(lián)系,可從推導(dǎo)體系中思考.
活動(dòng):待學(xué)生稍做回顧后,教師打出幻燈,出示和與差角公式,讓學(xué)生進(jìn)一步在直觀上發(fā)現(xiàn)它們內(nèi)在的區(qū)別與聯(lián)系,理解公式的推導(dǎo)充分發(fā)揮了向量的工具作用,更要體會(huì)由特殊到一般的數(shù)學(xué)思想方法.教師引導(dǎo)學(xué)生觀察,當(dāng)α、β中有一個(gè)角為90°時(shí),公式就變成誘導(dǎo)公式,所以前面所學(xué)的誘導(dǎo)公式其實(shí)是兩角和與差公式的特例.在應(yīng)用公式時(shí),還要注意角的相對(duì)性,如α=(α+β)-β,等.讓學(xué)生在整個(gè)的數(shù)學(xué)體系中學(xué)會(huì)數(shù)學(xué)知識(shí),學(xué)會(huì)數(shù)學(xué)方法,更重要的是學(xué)會(huì)發(fā)現(xiàn)問題的方法,以及善于發(fā)現(xiàn)規(guī)律及其內(nèi)在聯(lián)系的良好習(xí)慣,提高數(shù)學(xué)素養(yǎng).
sin(α±β)=sinαcosβ±cosαsinβ〔S(α±β)〕;
cos(α±β)=cosαcosβ簊inαsinβ〔C(α±β)〕;
tan(α±β)=〔T(α±β)〕.
討論結(jié)果:略.
應(yīng)用示例
思路1
例1利用和差角公式計(jì)算下列各式的值.
。1)sin72°cos42°-cos72°sin42°;
。2)cos20°cos70°-sin20°sin70°;
【高中數(shù)學(xué)3.1.2 兩角和與差的正弦、余弦、正切公式教案 新人教A版必修4高二】相關(guān)文章:
半角的正弦、余弦和正切說課稿11-05
高中數(shù)學(xué) 基本不等式 的證明示范教案 新人教A版必修5高三03-01
魯教版必修4《米洛斯的維納斯》教案02-16
《論“雅而不高”》教案(粵教版必修四)02-17
最新人教必修1數(shù)學(xué)教學(xué)設(shè)計(jì)12-28
人教A版高中數(shù)學(xué)必修3 程序框圖說課稿11-02
高中數(shù)學(xué)必修4優(yōu)秀教案五篇02-17