圓周角教案設(shè)計(jì)及反思
教材依據(jù)
圓周角是新課標(biāo)人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十四章第一節(jié)圓的有關(guān)性質(zhì)的重要內(nèi)容,本節(jié)內(nèi)容依據(jù)新人教版九年級(jí)《課程標(biāo)準(zhǔn)》和《教師教學(xué)用書》及《初中數(shù)學(xué)新教材詳解》。
設(shè)計(jì)思想
本節(jié)課是在學(xué)習(xí)了圓心角的定義、性質(zhì)定理和推論的基礎(chǔ)上,由生活實(shí)例引出圓周角,類比圓心角認(rèn)識(shí)圓周角,類比圓心角的性質(zhì)探究圓周角定理,精選例題及習(xí)題對(duì)本節(jié)內(nèi)容進(jìn)行遷移應(yīng)用。
在教學(xué)過程中本著“以人為本,讓課堂變?yōu)閷W(xué)堂,把時(shí)間和空間更多地留給學(xué)生”為原則,注重學(xué)生的實(shí)踐活動(dòng),通過讓學(xué)生作圖、度量、分析、猜想、驗(yàn)證得出結(jié)論,教學(xué)過程中充分利用學(xué)生已有的認(rèn)知水平,由淺入深、逐層遞進(jìn),并能適時(shí)地應(yīng)用直觀教具引導(dǎo)學(xué)生運(yùn)用分類討論及轉(zhuǎn)化的數(shù)學(xué)思想對(duì)圓周角定理進(jìn)行證明,化解本節(jié)課的難點(diǎn)。這樣學(xué)生易于接受新知識(shí),也能很快地理解并掌握?qǐng)A周角定理的內(nèi)容,同時(shí)給學(xué)生自主探索留有很大空間,讓學(xué)生在實(shí)踐探究、合作交流活動(dòng)中,親身體驗(yàn)應(yīng)用數(shù)學(xué)的樂趣和成功的喜悅,發(fā)展學(xué)生的思維,培養(yǎng)學(xué)生的多種學(xué)習(xí)能力。
教學(xué)目標(biāo)
1.知識(shí)與技能
(1)理解圓周角的概念,掌握?qǐng)A周角定理,并運(yùn)用它進(jìn)行簡單的論證和計(jì)算。
(2)經(jīng)歷圓周角定理的證明,使學(xué)生初步學(xué)會(huì)運(yùn)用分類討論的數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想解決問題。
2.過程與方法
采用“活動(dòng)與探究”的學(xué)習(xí)方法,由感性到理性、由簡單到復(fù)雜、由特殊到一般的思維過程研究新知識(shí),引導(dǎo)學(xué)生理解知識(shí)的發(fā)生發(fā)展過程,并使學(xué)生能應(yīng)用所學(xué)知識(shí)解決簡單的實(shí)際問題。
3.情感、態(tài)度與價(jià)值觀
通過學(xué)生探索圓周角定理,自主學(xué)習(xí)、合作交流的學(xué)習(xí)過程,激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)數(shù)學(xué)的自信心。
教學(xué)重點(diǎn)
圓周角的概念、圓周角定理及應(yīng)用。
教學(xué)難點(diǎn)
圓周角定理的探究過程及定理的應(yīng)用。
教學(xué)準(zhǔn)備
學(xué)生:圓規(guī)、量角器、尺子
教師:多媒體課件、活動(dòng)教具
教學(xué)過程
一、 創(chuàng)設(shè)情景,引入新課
大屏幕顯示學(xué)生熟悉的畫面(足球射門游戲)
足球場(chǎng)有句順口溜:“沖向球門跑,越近就越好;歪著球門跑,射點(diǎn)要選好!逼渲刑N(yùn)藏了一定的數(shù)學(xué)道理,學(xué)習(xí)了本節(jié)課,我們就可以解釋其中的道理。
二、實(shí)踐探索,揭示新知
。ㄒ唬﹫A周角的概念
在射門游戲中,球員射中球門的難易程度與他所處的`位置B對(duì)球門AC的張角∠ABC有關(guān).(教師出示圖片,提出問題)
圖中∠ABC是圓心角嗎?什么是圓心角?圖中∠ABC有什么特點(diǎn)?
。▽W(xué)生通過與圓心角的類比、分析、觀察得出∠ABC的特點(diǎn),進(jìn)而概括出圓周角的概念,教師引導(dǎo)并板書)
定義:頂點(diǎn)在圓上,并且兩邊都與圓相交的角叫做圓周角。
概念辨析:
判斷下列各圖形中的角是不是圓周角,并說明理由。(圖略)
。ㄍㄟ^概念辨析,讓學(xué)生理解圓周角的定義,提高學(xué)生的語言表達(dá)能力,教師強(qiáng)調(diào)知識(shí)要點(diǎn))
強(qiáng)調(diào):圓周角必須具備的兩個(gè)條件:①頂點(diǎn)在圓上;②兩邊都與圓相交.
(二)圓周角定理
1.提出問題,引發(fā)思考
類比圓心角的結(jié)論:同弧或等弧所對(duì)的圓心角相等。提出本節(jié)課研究的問題:同弧或等弧所對(duì)的圓周角相等嗎?為了搞清這個(gè)問題,我們可以先研究:同弧所對(duì)的圓心角和圓周角的關(guān)系。
2.活動(dòng)與探究
畫一個(gè)圓心角,然后再畫同弧所對(duì)的圓周角。你能畫多少個(gè)圓周角? 用量角器量一量這些圓周角及圓心角的度數(shù),你有何發(fā)現(xiàn)呢?
。ń處熖岢鰡栴},學(xué)生作圖、度量、分析、歸納出發(fā)現(xiàn)的結(jié)論。)
結(jié)論:(1)同一條弧所對(duì)的圓周角有無數(shù)個(gè),同弧所對(duì)的任意一個(gè)圓周角都相等。
。2)同一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.
由上述操作可以看出:同一條弧所對(duì)的任意一個(gè)圓周角都等于該條弧所對(duì)的圓心角的一半。
。▽W(xué)生通過實(shí)踐探究,討論概括出結(jié)論,教師點(diǎn)評(píng))
3.推理與論證
。1)教師演示活動(dòng)教具,一條弧所對(duì)的圓心角只有一個(gè),所對(duì)的圓周角有無數(shù)個(gè),我們沒有辦法一一論證,提出本節(jié)課研究方法:分類討論法。
。ń處熝菔,引導(dǎo)學(xué)生觀察圓心與圓周角的位置關(guān)系,學(xué)生觀察、小組交流,最后得出結(jié)論,教師出示圓心和圓周角的三種位置關(guān)系圖片)
(2)分類討論,證明結(jié)論 ① 當(dāng)圓心在圓周角的一條邊上時(shí),如何證明?(從特殊情況入手,學(xué)生通過觀察、分析、討論,證明所發(fā)現(xiàn)的結(jié)論,教師鼓勵(lì)學(xué)生看清此數(shù)學(xué)模型。)
、诹硗鈨煞N情況如何證明,可否轉(zhuǎn)化成第一種情況呢?
。▽W(xué)生采取小組合作的學(xué)習(xí)方式進(jìn)行探索發(fā)現(xiàn),教師巡視指導(dǎo),啟發(fā)并引導(dǎo)學(xué)生,通過添加輔助線,將問題進(jìn)行轉(zhuǎn)化,學(xué)生寫出證明過程,并討論歸納出結(jié)論,教師做出點(diǎn)評(píng))
結(jié)論:在同圓中,同弧所對(duì)的圓周角相等,都等于該條弧所對(duì)圓心角的一半
4.變式拓展,引出重點(diǎn)
將上述結(jié)論改為“在同圓或等圓中,等弧所對(duì)的圓周角相等嗎?
(學(xué)生思考、推理、討論、總結(jié)出圓周角定理,教師板書)
圓周角定理: 在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。
強(qiáng)調(diào):(1)定理的適用范圍:同圓或等圓(2)同弧或等弧所對(duì)的圓周角相等(3)同弧或等弧所對(duì)的圓周角等于它所對(duì)圓心角的一半
。ń處煆(qiáng)調(diào)圓周角定理的內(nèi)容,學(xué)生思考、默記、熟悉定理,加深對(duì)定理的理解)
三、應(yīng)用練習(xí),鞏固提高
1.范例精析:
例:如圖,在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A(圖略)
(鼓勵(lì)學(xué)生用多種方法解決問題,發(fā)散學(xué)生的思維,培養(yǎng)學(xué)生良好的思維品質(zhì),讓學(xué)生書寫推力計(jì)算過程,教師補(bǔ)充、點(diǎn)評(píng)、并和學(xué)生一起歸納解法。兩種解法分別應(yīng)用了圓周角定理中的兩個(gè)結(jié)論,進(jìn)一步對(duì)本節(jié)課的重點(diǎn)知識(shí)熟練深化,同時(shí)又培養(yǎng)了學(xué)生規(guī)范的書寫表達(dá)能力)
2.應(yīng)用遷移:
。1)比比看誰算得快:(圖略)
。ū拘☆}既可鞏固圓周角定理,又可培養(yǎng)學(xué)生的競(jìng)爭(zhēng)意識(shí)以適應(yīng)時(shí)代的要求,同時(shí)對(duì)回答問題積極準(zhǔn)確的學(xué)生提出表揚(yáng),激發(fā)學(xué)生的學(xué)習(xí)積極性)
。2)生活中的數(shù)學(xué)
如圖.在足球比賽中,甲帶球向?qū)Ψ角蜷TPQ進(jìn)攻,當(dāng)他帶球沖到A點(diǎn)時(shí),同伴乙已經(jīng)沖到B點(diǎn),這時(shí)甲是直接射門好,還是將球傳給乙,讓乙射門好﹙僅從射門角度考慮﹚(圖略)
。ㄟx用學(xué)生熟悉的生活材料,讓學(xué)生通過合作交流,討論找出合理的解答方法,通過本小題的練習(xí),使學(xué)生體味到生活離不開數(shù)學(xué),從而激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí))
四、總結(jié)評(píng)價(jià),感悟收獲
通過本節(jié)課的學(xué)習(xí)你有哪些收獲?(學(xué)生歸納總結(jié),老師點(diǎn)評(píng))
知識(shí):(1)圓周角的定義;
。2)圓周角定理。
能力:觀察、操作、分析、歸納、表達(dá)等能力.
思想方法:分類討論思想、轉(zhuǎn)化思想、類比思想、數(shù)形結(jié)合思想、
五、作業(yè)設(shè)計(jì),查漏補(bǔ)缺
1.課本習(xí)題:P88.1,2,3,P89.5,P124.11
2.在⊙O中,圓心角∠AOB=70°,點(diǎn)C是⊙O上異于A、B的一點(diǎn),求圓周角∠AOB的度數(shù)。
3.生活中的數(shù)學(xué):監(jiān)控器的監(jiān)控范圍是65度,圓形的博物館內(nèi)需要安裝幾盞才能全方位監(jiān)控?(圖略)
(設(shè)計(jì)課本習(xí)題與課外拓展作業(yè),不僅可以使學(xué)生對(duì)本節(jié)課的知識(shí)加以鞏固、提高和查漏補(bǔ)缺,而且讓學(xué)生會(huì)用數(shù)學(xué)的眼光和頭腦去觀察和思考世界,達(dá)到學(xué)以致用)
教學(xué)反思
成功之處:本節(jié)課內(nèi)容豐富,結(jié)構(gòu)合理,設(shè)計(jì)精細(xì)。教學(xué)時(shí)能根據(jù)學(xué)生實(shí)際遵循認(rèn)知規(guī)律,由淺入深,循序漸進(jìn),及時(shí)了解學(xué)生的學(xué)習(xí)情況,靈活調(diào)整教學(xué)內(nèi)容。能適時(shí)的用教材又不拘泥于教材,挖掘教材的多種功能,在教學(xué)結(jié)構(gòu)的安排上也體現(xiàn)了新課標(biāo)、新理念,重視學(xué)生自主學(xué)習(xí)、自主探究、合作交流、主動(dòng)地觀察與思考,各個(gè)環(huán)節(jié)銜接緊密、合理、流暢,教學(xué)效果比較理想。
不足之處:學(xué)生不易理解用分類討論思想證明圓周角定理,在后面的教學(xué)中逐步讓學(xué)生了解分類討論思想在解題時(shí)的應(yīng)用。另外學(xué)生語言表達(dá)的準(zhǔn)確性還需不斷加強(qiáng)。
【圓周角教案設(shè)計(jì)及反思】相關(guān)文章:
圓周角的教學(xué)反思02-22
圓周角教學(xué)反思05-17
圓周角教學(xué)反思05-17
圓周角定理的教學(xué)反思05-13
《圓周角與圓心角的關(guān)系》教學(xué)反思范文12-29
《圓周角的概念和圓周角定理》備課教案04-25
圓周角和圓心角的關(guān)系教學(xué)反思范文11-25
數(shù)學(xué)《圓周角和圓心角的關(guān)系》教學(xué)反思09-11
圓周角教學(xué)課件03-31