1. <rp id="zsypk"></rp>

      2. 實用文檔>數(shù)學(xué)曲線方程教案

        數(shù)學(xué)曲線方程教案

        時間:2024-05-06 16:45:53

        數(shù)學(xué)曲線方程教案

        數(shù)學(xué)曲線方程教案

        數(shù)學(xué)曲線方程教案

          教學(xué)目標(biāo)

         。1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題.

         。2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念.

         。3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點(diǎn).

          (4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法.

         。5)進(jìn)一步理解數(shù)形結(jié)合的思想方法.

          教學(xué)建議

          (1)知識結(jié)構(gòu)

          曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

          (2)重點(diǎn)、難點(diǎn)分析

         、俦竟(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想.

          ②本節(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法.

          教法建議

         。1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點(diǎn)集與方程的解集之間的對應(yīng)關(guān)系,說明曲線與方程的對應(yīng)關(guān)系.曲線與方程對應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對應(yīng)關(guān)系.注意強(qiáng)調(diào)曲線方程的完備性和純粹性.

         。2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識幫助學(xué)生領(lǐng)會坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備.

         。3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則.

          (4)從集合與對應(yīng)的觀點(diǎn)可以看得更清楚:

          設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;

          表示二元方程的解對應(yīng)的點(diǎn)的坐標(biāo)的集合.

         。5)在學(xué)習(xí)求曲線方程的方法時,應(yīng)從具體實例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出總結(jié)出求解步驟,應(yīng)在充分分析實例的基礎(chǔ)上讓學(xué)生自然地獲得.教學(xué)中對課本例2的解法分析很重要.

          這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即文字語言中的幾何條件數(shù)學(xué)符號語言中的等式 數(shù)學(xué)符號語言中含動點(diǎn)坐標(biāo) ,的代數(shù)方程 簡化了的 的代數(shù)方程

          由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點(diǎn)是“含動點(diǎn)坐標(biāo)的代數(shù)方程.”

         。6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”.

          教學(xué)設(shè)計示例

          課題:求曲線的方程(第一課時)

          教學(xué)目標(biāo)

          (1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

         。2)進(jìn)一步理解曲線的方程和方程的曲線.

         。3)初步掌握求曲線方程的方法.

         。4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

          教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程.

          教學(xué)用具:計算機(jī).

          教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

          教學(xué)過程

          【引入】

          1.提問:什么是曲線的方程和方程的曲線.

          學(xué)生思考并回答.教師強(qiáng)調(diào).

          2.坐標(biāo)法和解析幾何的意義、基本問題.

          對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

         。1)根據(jù)已知條件,求出表示平面曲線的方程.

          (2)通過方程,研究平面曲線的性質(zhì).

          事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

          【問題】

          如何根據(jù)已知條件,求出曲線的方程.

          【實例分析】

          例1:設(shè) 、 兩點(diǎn)的坐標(biāo)是 、(3,7),求線段 的垂直平分線的方程.

          首先由學(xué)生分析:根據(jù)直線方程的知識,運(yùn)用點(diǎn)斜式即可解決.

          解法一:易求線段的中點(diǎn)坐標(biāo)為(1,3),

          由斜率關(guān)系可求得l的斜率為

          于是有

          即l的方程為

         、

          分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點(diǎn)斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

          (通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

          證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個方程的解.

          設(shè) 是線段 的垂直平分線上任意一點(diǎn),則

          即

          將上式兩邊平方,整理得

          這說明點(diǎn)的坐標(biāo) 是方程 的解.

         。2)以這個方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).

          設(shè)點(diǎn) 的坐標(biāo) 是方程①的任意一解,則

          到 、 的距離分別為

          所以 ,即點(diǎn) 在直線上.

          綜合(1)、(2),①是所求直線的方程.

          至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個方程的解中,設(shè) 是線段的垂直平分線上任意一點(diǎn),最后得到式子 ,如果去掉腳標(biāo),這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

          解法二:設(shè) 是線段的垂直平分線上任意一點(diǎn),也就是點(diǎn)屬于集合

          由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為

          將上式兩邊平方,整理得

          果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

          這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對應(yīng)的思想.因此是個好方法.

          讓我們用這個方法試解如下問題:

          例2:點(diǎn)與兩條互相垂直的直線的距離的積是常數(shù) 求點(diǎn) 的軌跡方程.

          分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

          求解過程略.

        【數(shù)學(xué)曲線方程教案】相關(guān)文章:

        數(shù)學(xué) -橢圓及其標(biāo)準(zhǔn)方程教案03-20

        曲線跑活動教案09-27

        數(shù)學(xué)教學(xué)之方程教學(xué)反思03-20

        《橢圓及其標(biāo)準(zhǔn)方程》的教學(xué)反思02-24

        解一元一次方程的教案(精選11篇)12-05

        數(shù)學(xué)單項式教案10-25

        數(shù)學(xué)教案:圓的認(rèn)識02-12

        數(shù)學(xué)因真實而精彩教案03-20

        認(rèn)識球體數(shù)學(xué)教案03-20

        蘇教版數(shù)學(xué)分?jǐn)?shù)的教案03-20

        用戶協(xié)議
        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>